Měření množství dopadající energie světla. Fotoinhibice, fotopoškození a fotoprotekční mechanismy. (osvětlenost ln.m -2 = lux) Ozářenost W.

Rozměr: px
Začít zobrazení ze stránky:

Download "Měření množství dopadající energie světla. Fotoinhibice, fotopoškození a fotoprotekční mechanismy. (osvětlenost ln.m -2 = lux) Ozářenost W."

Transkript

1 Fotoinhibice, fotopoškození a fotoprotekční mechanismy Měření množství dopadající energie světla Ozářenost W.m -2 (osvětlenost ln.m -2 = lux) Fotonová (kvantová) ozářenost mol.s -1.m -2 Vzájemné převody závisí na vlnových délkách fotonů (tedy přesné jsou jen pro monochromatické světlo)!

2 Závislost rychlosti čisté fotosyntézy (P N ) na ozářenosti (PAR) - s rostoucí ozářeností klesá účinnost využití záření 3 0 0,0 7 ε - kvantový výtěžek ε =mol CO 2 /mol fotonů (kvantum = foton) P N (µmol CO 2 m -2 s -1 ) P N ε 0,0 6 0,0 5 0,0 4 0,0 3 0,0 2 0,0 1 ε (mol CO 2 mol -1 quanta) -5 0, P A R (µm o l m -2 s -1 ) ε- max. teoretická hodnota = 0,125 mol CO 2 / mol kvant (min. kvantový požadavek Q (ε = 1/Q) je: Q = 8 mol kvant / mol CO 2 ) 2 H 2 O 4 e- 4 fotony v PSII 4 fotony PSI 2 NADPH Na redukci každé ze dvou fosfoglycerových kys. vzniklých po navázání CO 2 na ribulóza-1,5- bisfosfát je potřeba 1 NADPH (které se oxiduje) Fotoinhibice soubor procesů projevujících se snížením rychlosti fotosyntézy při zvyšující se ozářenosti Fotopoškození - snížení počtu fčních fotosystémů - fotosyntetických struktur (proteinů) - UV světlo, oxidativní poškození (ROS, P680 +, ) ROS: 1 O 2 - nastává i za nízké ozářenosti, ale rychlá oprava nenastává fotoinhibice Fotoprotekce - snížení E přenesené do RC (ε) (= snížení E k fotochemii) - předcházení fotopoškození (rychle vratné změny)

3 Fotopoškození mechanismy a cíle PSII 1) blok transportu elektronů 2) poškození D1 ( D2, proteiny cyt b559) Vysoká ozářenost (poškozování PSII D1 za světla pořád!): donorová strana: 1) poškození OEC 2) P oxidativní poškození okolí akceptorová strana PSII: málo oxid. PQ 3 P680* 1 O 2 (x PTO, STN7) Nízká ozářenost: Q B- - rekombinace náboje zpět na P680 3 P680* 1 O 2 Fotopoškození mechanismy a cíle PSI - jen při nízké teplotě (zřejmě inhibicí aktivity SOD Cu/Zn) - kumulativní poškození celého PSI 1. O 2- poškození FeS klastrů (F A, F B ) blok transportu e - Pomalá oprava mnoho dní po přenesení do tepla

4 Oprava PSII výměna poškozeného D1 (PSII repair cycle) Odbourání 1. fosforylace proteinů PSII (STN8, příp. STN7- především LHCII) 2. odpoutání LHCII, monomerizace 3. transport do strom. membrán, odpoutání OEC proteinů 4. defosforylace (PBCP (TLP40)) 5. degradace D1 (FtsH, degh) Vložení nového 1. kotranslačně (interakce s D2 a cyt b559) 2. odštěpení C-konce v luminu 3. interakce s anténami CP43, CP47 4. připojení dalších podjednotek (OEC) 5. monomer do gran, dimerizace, +LHCII?

5 Fotoinhibice je způsobena příliš silnou ozářeností Původní představa: - D1 je poškozován přebytkem záření zachyceného fotosyntetickými pigmenty ALE (při bloku repair chloramfenicol, lincomycin) - rychlost poškození je zcela úměrná ozářenosti! (tedy nastává i při nízké!) - účinné vlnové délky se liší od absorpce Chl a karotenoidů - nemění se inhibicí DCMU (blok QA QB) ani glykol (glycer)aldehydem (blok fosforibulokinase), ani ROS! Revize: ozářenost vede k fotopoškození D1, příliš silná ozářenost vede k inhibici reparace D1 Primární poškození ne fotos. absorpce, ne ROS Cíl - Mn klastr - přímá absorpce záření (UV, žluté) - uvolnění Mn neredukuje se primární donor P680 + (alt. donor ascorbate!) - P680 + poškození D1 Výměna poškozeného D1 (PSII repair cycle) - silně inhibována ROS (~ ozářenosti!) - inhibice translace D1 (EF-G)

6 Fotoinhibice důsledek nerovnováhy mezi poškozením a opravnými pochody Fotoprotekce - ochrana před nadbytečným tokem energie do listů Strukturní úroveň listu - paraheliotropismus (x dia-) - tenčí listy, ochranné pigmenty (x UV, VIS) (fenolické l., antokyany, flavonoidy) úroveň buňky: dlouhodobé: méně chloroplastů, krátkodobé: pohyb chloroplastů - PHOT1, 2, CHUP1, aktin, - méně poškození, méně ROS (opravy stíhají) pevné nastavení není tropismus!

7 Fotoprotekce Zhášení ROS: - tvorba na PSII i PSI - blok chloroplastové translace (!) Fotoprotekce Změny na úrovni chloroplastu pomalejší: méně LHCII a LHCI ku PSII a PSI (rel. rychlá degradace LHC 1,2,3 a 6) méně PSI a PSII ku Rubisco krátkodobé: zvýšení disipace - Xantofylový cyklus (+ protonace PsbS) PQH/PQ STN7 fosforylace LHCII posílení cyklického transportu elektronů vyšší gradient H+ aktivace VDE vyšší disipace méně ROS rychlejší reparace D1 fosforylace LHCII (STN7 kinase) cyklický transport PSI

8 Xanthofyly anteraxanthin a zeaxanthin - zvýšená disipace světelné energie (teplo): chl excit + karotenoid => karotenoid excit + chl karotenoid + teplo (kinetická E) - přenos energie není doprovázen přenosem elektronu na chl a! Xantofylový cyklus - modifikace karotenoidů - (de)epoxidace při poklesu ph - zvýšená schopnost odvádění nadbytečné energie z chlorofylu - méně energie do fotochemie Diurnální změny - violaxanthin a zeaxanthin - anteraxanthin poměrně stabilní Místo disipace - nejvíce asi LHCII

9 Disipace světelné energie xantofyly Regulace prostřednictvím ph v lumen tylakoidu - prostřednictvím violaxanthin deepoxidase (VDE) - PsbS protein (protonizace vazba zeaxanthinu) - zřejmě úloha v odpoutávání či změně konformace LHCII - neváže karotenoidy! - zhášení až 80 % exc. singletových chlorofylů - u zastíněných zůstává deepoxid. stav déle - u jehličnanů v zimě permanentně deepoxidováno Disipace světelné energie = nefotochemické zhášení fluorescence chlorofylu Disipace karotenoidy v LHCII - odpoutání od PSII - tvorba trimerů (role PsbS?)

10 Fluorescence chlorofylu: 680 nm LHCII 685 nm CP nm CP nm PSI core 740 nm LHCI C3 rostliny: % fluor. z PSII! fluorescence PSI: vcelku neměnná Kautského efekt (Fluorescence induction): - rychlý nárůst a pomalý pokles fluorescence po ozáření listu ze tmy OJIP křivka - chloroplasty ze tmy (dark adopted): 1. krátký pulz o nízké intenzitě (fotoaktivace, ) 2. hodnota fluorescence F o (Origin) - všechna reakční centra otevřená (mohou přijímat kvanta) = Q A oxidovaný 3. kontinuální, saturační světlo F m (Peak) - za cca 1 s všechna reakční centra uzavřená (Q A plně redukovaný) 3 = saturační

11 OJIP fotochemická fáze (0-J) na ozářenosti tepelná fáze (J-I-P) teplotě inflexní body = zhášení fluorescence! (různé mechanismy) - ne zcela jasné! Fluorescence chlorofylu - pomalá Fotochemické zhášení qp = (F m F s )/(F m F 0 ) kolik E jde k PSI Nefotochemické zhášení qn = (F m F m )/(F m F 0 ) F 0 všechny PSII otevřené F m všechny PSII uzavřené F s steady state fluorescence při daném osvětlení F v = F m F 0 maximální variabilní fluorescence φ = F v / F m = (1 - F 0 / F m ) max. účinnost využití excitační energie PSII (poměrně konstantní = 0,83 kvantovému požadavku 9-10 fotonů na O 2 )

12 Nefotochemické zhášení fluorescence chlorofylu (NPQ) = fotoprotekce qn = q E + q T + q I q E feed-back deexcitation (ph aktivace: VDE, PsbS) q T state transition (fosforylace LHCII) q I fotoinhibice (poškozené fotosystémy disipují) Využití energie záření - účinnost využití difúzního záření je vyšší

13 Asimilace záření listem Anatomické adaptace: Epidermis (koncentrování světla) Palisádový prostup světla Houbový odrazy na površích (rozptyl) Variabilita asimilačních orgánů Vybrané fyziologické charakteristiky listů: (2548 druhů na 175 lokalitách planety, Wright et al. 2004, Nature) 1. Specifická hmotnost 14 až 1500 g (DM) m Kapacita fotosyntézy (P N ) 5 až 660 nmol (CO 2 ) g -1 s Obsah N v sušině listů 0,2 až 6,4 % 4. Doba života: 0,9 až 288 měsíců Charakteristiky listové čepele - různé strategie investic do vytváření listů v závislosti na vnějších podmínkách

14 Využití záření struktura porostu Absorpce záření porostem velmi záleží na struktuře porostu a LAI leaf area index kumulativní index pokryvnosti listoví (plocha listů / plocha půdy) LAI optimálně hodnoty 4 5 P N (µmol m -2 s -1 ) W m -2 leaf ground o o o 70 o Adaptace k asimilaci v porostu: (konkurovat ostatním x nekonkurovat sobě) o r anatomie listu - biochemie listu (rubisco, chlorofyl, xathofyly) - stomy, liány, epifyty, růžice - fylotaxe - natáčení listů (úhel) Celková účinnost využití záření se v porostu zvyšuje 25 P N (µmol CO 2 m -2 s -1 ) x8= = 64 13x4= = 52 17,6 x 2 =35,2 20,7 x 1 =20, Ozářenost (µmol kvant m -2 s -1 )

15 Produkce biomasy rostlin (hospodářského výnosu plodin) Hospodářský výnos (g m -2 rok -1 ) Y P = P N. HI P N = S. ε i. ε c / k kde Y P : hospodářský výnos (g m -2 rok -1) HI: sklizňový index (podíl hospodářsky hlavního produktu a hmotnosti sušiny celé rostliny, porostu) P N :čistá fotosyntetická produkce S: roční suma slunečního záření (MJ m -2 rok -1 ) ε i : účinnost pohlcení záření dopadajícího na porost rostlinami ε c : účinnost přeměny pohlceného záření ve fotosyntéze k: obsah energie v biomase (MJ g -1 ) Fotosyntetická produktivita ekosystémů na Zemi Celosvětová produkce: 105 Pg (C) rok -1 (P peta ) - průměr u terestrických (bez zaledněných) tedy cca 200 g (C) rok -1 m -2 (jiné odhady až 400 g) 1 g C > 3,7 g CO 2 a 2,5 g DM (dry matter) 1 g CO 2 > 0,27 g C a 0,675 g DM 1 g DM > 1,47 g CO 2 a 0,378 g C

16 Ilustrace pro podmínky ČR Charakteristické hodnoty: S = J m -2 rok -1 ε i = 0,8 ε c = 0,01 k = J g -1 Produkce biomasy P N = ,8. 0,01 / = = 2285 g m -2 rok -1 = = 2,285 kg m -2 rok -1 ε i : účinnost pohlcení záření ε c : účinnost přeměny záření k: obsah energie v biomase Hospodářský výnos Y P = P N. HI = 22,85. 0,5 = 11,43 t ha -1 rok -1 Možnosti zvyšování produkce biomasy a výnosů polních plodin S: - je určeno geografickou polohou εi: - je dáno fyzikálními vlastnostmi porostu - lze ovlivnit strukturou porostu dynamikou rozvoje listů během vegetace εc: - lze teor. zvýšit optimalizací ozářenosti jednotlivých listů - vertikální a prostorová orientace - anatomická stavba listů (?) - fyziologických funkcí (obsah N, snížení R L, ) - zvýšení aktivity rubisco HI: - maximum je patrně 0,6 (dosaženo u obilnin)

17 Využití slunečního záření ve fotosyntéze Příčiny ztráty Ztráta (%) Využitelný zůstatek Ne FAR 50,0 50,0 Odraz a propustnost 5,0 (10) 45,0 Absorpce nefotos. částmi 1,8 (4) 43,2 Fotochem. neúčinnost (teplo) 8,4 (20) 34,8 Typ fotosyntézy C3 C4 C3 C4 Metabolismus 22,8 (65) 24,8 12,0 10,0 Fotorespirace 3,5 (10) 0 8,3 10 Temnotní dýchání 3,4 (10) 4 5,1 6 Výsledná účinnost využití ve fotosyntéze 5,1 % 6,0 % v období vegetace (z absorbovaného PAR (43 %) = cca %)

Měření množství dopadající energie světla. Fotoinhibice, fotopoškození a fotoprotekční mechanismy

Měření množství dopadající energie světla. Fotoinhibice, fotopoškození a fotoprotekční mechanismy Fotoinhibice, fotopoškození a fotoprotekční mechanismy Měření množství dopadající energie světla Ozářenost: W.m -2 (= J.s -1.m -2 ) (osvětlenost: ln.m -2 = lux)? Fotonová (kvantová) ozářenost: mol.s -1.m

Více

Světlosběrné komplexy rostlin. Fotoinhibice, fotopoškození a fotoprotekční mechanismy. (+ světlosběrné komplexy) Rodina Lhc (light harvesting complex)

Světlosběrné komplexy rostlin. Fotoinhibice, fotopoškození a fotoprotekční mechanismy. (+ světlosběrné komplexy) Rodina Lhc (light harvesting complex) Fotoinhibice, fotopoškození a fotoprotekční mechanismy (+ světlosběrné komplexy) Světlosběrné komplexy rostlin Rodina Lhc (light harvesting complex) - vyvinuly se z proteinů sinic chránících fotosystémy

Více

Vyjádření fotosyntézy základními rovnicemi

Vyjádření fotosyntézy základními rovnicemi FOTOSYNTÉZA Fotochemický proces, při němž fotosynteticky aktivní pigmenty v zelených částech rostlin přijímají energii světelného záření a přeměňují ji na energii chemickou. Ta je dále využita při biologických

Více

Fotosyntéza Ekofyziologie. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni

Fotosyntéza Ekofyziologie. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Fotosyntéza Ekofyziologie Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Fyziologické a ekologické aspekty fotosyntézy vliv stresů a proměnného prostředí na fotosyntézu; mechanismy

Více

aneb Fluorescence chlorofylu jako indikátor stresu

aneb Fluorescence chlorofylu jako indikátor stresu Měření fotosyntézy rostlin pomocí chlorofylové fluorescence aneb Fluorescence chlorofylu jako indikátor stresu Fotosyntéza: Fotosyntéza je proces, ve kterém je světelná energie zachycena světlosběrnými

Více

Vylepšování fotosyntézy

Vylepšování fotosyntézy Vylepšování fotosyntézy Využití fotosyntézy potraviny energie (paliva) Obojího bude podle predikcí potřebovat lidstvo čím dál tím víc. Energetické využití fotosyntézy potřeba nahrazení fosilních paliv

Více

7 Fluorescence chlorofylu in vivo

7 Fluorescence chlorofylu in vivo 7 Fluorescence chlorofylu in vivo Petr Ilík KBF a CRH, PřF UP Fluorescence chlorofylu in vivo fluorescence in vivo z chlorofylu a (ostatní přídavné pigmenty přenos energie na chl a) indikátor neschopnosti

Více

FOTOSYNTÉZA. Princip, jednotlivé fáze

FOTOSYNTÉZA. Princip, jednotlivé fáze FOTOSYNTÉZA Princip, jednotlivé fáze FOTOSYNTETICKÉ PIGMENTY - chlorofyl a modrozelený - chlorofyl b žlutozelený + karoteny, xantofyly žluté a oranžové zbarvení CHLOROFYL a, b CHLOROFYL a - nejdůležitější

Více

12-Fotosyntéza FRVŠ 1647/2012

12-Fotosyntéza FRVŠ 1647/2012 C3181 Biochemie I 12-Fotosyntéza FRVŠ 1647/2012 Petr Zbořil 10/6/2014 1 Obsah Fotosyntéza, světelná fáze. Chlorofyly, struktura fotosyntetického centra. Komponenty přenosu elektronů (cytochromy, chinony,

Více

Fluorescence chlorofylu

Fluorescence chlorofylu Pro připomenutí Fluorescence chlorofylu Princip Fotochemické a nefotochemické zhášení fluorescence Excitace chlorofylu: plantphys.info Analýza zhášení (quenching analysis) Temnostní adaptace Kautského

Více

VLIV SPEKTRÁLNÍHO SLOŽENÍ FOTOSYNTETICKY AKTIVNÍ RADIACE NA INDUKCI FOTOSYNTÉZY TERMOOPTICKÝ JEV

VLIV SPEKTRÁLNÍHO SLOŽENÍ FOTOSYNTETICKY AKTIVNÍ RADIACE NA INDUKCI FOTOSYNTÉZY TERMOOPTICKÝ JEV VLIV SPEKTRÁLNÍHO SLOŽENÍ FOTOSYNTETICKY AKTIVNÍ RADIACE NA INDUKCI FOTOSYNTÉZY TERMOOPTICKÝ JEV 1 Vladimír Špunda, 2 Otmar Urban, 1 Martin Navrátil 1 Přírodovědecká fakulta, Ostravská univerzita v Ostravě,

Více

Fyziologie rostlin. 9. Fotosyntéza část 1. Primární fáze fotosyntézy. Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014

Fyziologie rostlin. 9. Fotosyntéza část 1. Primární fáze fotosyntézy. Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014 Fyziologie rostlin 9. Fotosyntéza část 1. Primární fáze fotosyntézy Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014 Fotosyntéza 1. část - úvod - chloroplasty - sluneční záření -

Více

Energetický metabolismus rostlin. respirace

Energetický metabolismus rostlin. respirace Energetický metabolismus rostlin Zdroje E: fotosyntéza respirace Variabilní využívání: - orgánové a pletivové rozdíly (kořen, prýt, pokožka, ) - změny při vývoji a diferenciaci - vliv dostupnosti vody,

Více

FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková

FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74 Katedra experimentální biologie rostlin, Z. Lhotáková proteinové komplexy thylakoidní membrány - jsou kódovány jak plastidovými tak jadernými geny 1905

Více

1- Úvod do fotosyntézy

1- Úvod do fotosyntézy 1- Úvod do fotosyntézy Prof. RNDr. Petr Ilík, Ph.D. KBF a CRH, PřF UP FS energetická bilance na povrch Země dopadá 2/10 10 energie ze Slunce z toho 30% odraz do kosmu 47% teplo 23% odpar vody 0.02% pro

Více

Fotosyntéza (2/34) = fotosyntetická asimilace

Fotosyntéza (2/34) = fotosyntetická asimilace Fotosyntéza (2/34) = fotosyntetická asimilace FOTO - protože k fotosyntéze je třeba fotonů Jedná se tedy o zachycování sluneční energie a přeměnu jednoduchých anorganických látek (CO 2 a H 2 O) na složitější

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fotosyntéza Fotosyntéza pohlcení energie slunečního záření a její přeměna na chemickou energii rovnováha fotosyntetisujících a heterotrofních

Více

FOTOBIOLOGICKÉ POCHODY

FOTOBIOLOGICKÉ POCHODY FOTOBIOLOGICKÉ POCHODY Základním zdrojem energie nutné pro život na Zemi je sluneční záření. Většina pochodů souvisí s přímým využitím zářivé energie pro metabolické pochody nebo pro orientaci organizmu

Více

Fotosyntéza Světelné reakce. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni

Fotosyntéza Světelné reakce. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Fotosyntéza Světelné reakce Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Literatura Plant Physiology (L.Taiz, E.Zeiger), kapitola 7 pdf verze na požádání www.planthys.net Fotosyntéza

Více

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,

Více

Světelné reakce fotosyntézy. - fixace energie záření

Světelné reakce fotosyntézy. - fixace energie záření Světelné reakce fotosyntézy - fixace energie záření Slunečnízáření Ultrafialové (UV, < 400 nm) Fotosynteticky aktivní radiace PAR, 400 až 700 nm (380-750nm) Infračervené (>750 nm) Sluneční záření http://www.giss.nasa.gov

Více

FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1

FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1 FOTOSYNTÉZA Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1 Fotosyntéza (z řec. phos, photós = světlo) je anabolický děj probíhající u autotrofních organismů (řasy,

Více

Měření fluorescence chlorofylu hedery helix

Měření fluorescence chlorofylu hedery helix Měření fluorescence chlorofylu hedery helix V rámci cvičení blokového semináře PV225 Laboratoř systémové biologie Jan Kotrs, 2010 Cíl projektu Cílem laboratorní části bylo porovnání fotosyntetických schopností

Více

4 Přenos energie ve FS

4 Přenos energie ve FS 4 Přenos energie ve FS Petr Ilík KF a CH, PřF UP Přenos energie (excitace) do C - 1-1 molekula chl je i při vysoké ozářenosti excitována max. 10x za sekundu neefektivní pro C - nténní systém s mnoha pigmenty

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Fotosyntéza světelná fáze. VY_32_INOVACE_Ch0214.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Fotosyntéza světelná fáze. VY_32_INOVACE_Ch0214. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi

FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi Fotosyntéza FOTOSYNTÉZA soubor chemických reakcí,, probíhaj hajících ch v rostlinách a sinicích ch zachycení a využit ití sluneční energie k tvorbě složitých chemických sloučenin z CO2 a vody jediný zdroj

Více

Autor: Katka Téma: fyziologie (fotosyntéza) Ročník: 1.

Autor: Katka  Téma: fyziologie (fotosyntéza) Ročník: 1. Fyziologie Fotosyntéza Celým názvem: fotosyntetická asimilace - vznikla při ohrožení, že již nebudou anorg. l. rostliny začaly dělat fotosyntézu v atmosféře vzrostl počet O 2 = 1. energetická krize - nejdůležitější

Více

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 Respirace (buněčné dýchání) Fotosyntéza Dýchání Energie záření teplo chem. energie CO 2 (ATP, NAD(P)H) O 2 Redukce za spotřeby NADPH BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 oxidace produkující

Více

MB130P68 Globální změny a trvalá udržitelnost. ZS 2012/2013. Lubomír Nátr. Lubomír Nátr

MB130P68 Globální změny a trvalá udržitelnost. ZS 2012/2013. Lubomír Nátr. Lubomír Nátr MB130P68 Globální změny a trvalá udržitelnost. ZS 2012/2013 Globální změny klimatu a trvale udržitelný rozvoj 2. Biologické principy fotosyntetické produkce rostlin Lubomír Nátr Lubomír Nátr 2. Biologické

Více

Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron).

Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron). Otázka: Fotosyntéza a biologické oxidace Předmět: Biologie Přidal(a): Ivana Černíková FOTOSYNTÉZA = fotosyntetická asimilace: Jediný proces, při němž vzniká v přírodě kyslík K přeměně jednoduchých látek

Více

Ekologie fotosyntézy

Ekologie fotosyntézy Ekologie fotosyntézy Fotosyntéza Přeměna zářivé energie Slunce na energii chemických vazeb primární produkce organické hmoty fotochemický (Hillova reakce) a biochemický proces 1 mol přijatého CO 2 energetický

Více

SLEDOVÁNÍ VZTAHU MEZI OBSAHEM ENZYMU RUBISCO A KONCENTRACÍ CO 2 V CHLOROPLASTU

SLEDOVÁNÍ VZTAHU MEZI OBSAHEM ENZYMU RUBISCO A KONCENTRACÍ CO 2 V CHLOROPLASTU SLEDOVÁNÍ VZTAHU MEZI OBSAHEM ENZYMU RUBISCO A KONCENTRACÍ CO 2 V CHLOROPLASTU Nikola Burianová Experimentální biologie 2.ročník navazujícího studia Katedra Fyziky Ostravská univerzita v Ostravě OBSAH

Více

Biosyntéza sacharidů 1

Biosyntéza sacharidů 1 Biosyntéza sacharidů 1 S a c h a r id y p o tr a v y (š k r o b, g ly k o g e n, sa c h a r o sa, a j.) R e z e r v n í p o ly sa c h a r id y J in é m o n o sa c h a r id y Trávení (amylásy - sliny, pankreas)

Více

EKOTECH Fluorescence chlorofylu in vivo 1

EKOTECH Fluorescence chlorofylu in vivo 1 INDUKCE FLUORESCENCE CHLOROFYLU in vivo V PRŮBĚHU PRIMÁRNÍ FOTOSYNTÉZY U VYŠŠÍCH ROSTLIN RNDr. Karel Roháček, CSc. Biologické centrum AV ČR, v.v.i. Ústav molekulární biologie rostlin, Branišovská 31, 370

Více

14. Fyziologie rostlin - fotosyntéza, respirace

14. Fyziologie rostlin - fotosyntéza, respirace 14. Fyziologie rostlin - fotosyntéza, respirace Metabolismus -přeměna látek a energií (informací) -procesy: anabolický katabolický autotrofie Anabolismus heterotrofie Autotrofní organismy 1. Chemoautotrofy

Více

Vodní režim rostlin. Regulace výměny plynů otevřeností. průduchů. Stomatální limitace rychlosti transpirace a rychlosti. Efektivita využití vody

Vodní režim rostlin. Regulace výměny plynů otevřeností. průduchů. Stomatální limitace rychlosti transpirace a rychlosti. Efektivita využití vody Vodní režim rostlin Regulace výměny plynů otevřeností průduchů Stomatální limitace rychlosti transpirace a rychlosti fotosyntézy Efektivita využití vody Globální změna klimatu Antitranspiranty Regulace

Více

RYCHLÁ KINETIKA FLUORESCENČNÍ INDUKCE

RYCHLÁ KINETIKA FLUORESCENČNÍ INDUKCE Teoretický úvod: FLUORESCENCE RYCHLÁ KINETIKA FLUORESCENČNÍ INDUKCE Praktikum fyziologie rostlin FLUORESCENCE 1. Co je to fluorescence? Emisi záření, ke kterému dochází při přechodu excitované molekuly

Více

Struktura bílkovin očima elektronové mikroskopie

Struktura bílkovin očima elektronové mikroskopie Struktura bílkovin očima elektronové mikroskopie Roman Kouřil Katedra Biofyziky (http://biofyzika.upol.cz) Centrum regionu Haná pro biotechnologický a zemědělský výzkum Přírodovědecká fakulta, Univerzita

Více

Sacharidy a polysacharidy (struktura a metabolismus)

Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana

Více

6 Přenos elektronů a protonů

6 Přenos elektronů a protonů 6 Přenos elektronů a protonů Petr Ilík KBF a CRH, PřF UP Evoluce FS 1 Halobaktérie H + pumpa http://www.rsc.org/publishing/chemtech/volume/2008/11/b acteriorhodopsin_insight.asp - Protonová pumpa halobakterií

Více

Fotosyntéza a Calvinův cyklus. Eva Benešová

Fotosyntéza a Calvinův cyklus. Eva Benešová Fotosyntéza a Calvinův cyklus Eva Benešová Fotosyntéza světlo CO 2 + H 2 O O 2 + (CH 2 O) světlo 6CO 2 + 6H 2 O 6O 2 + C 6 H 12 O 6 Opět propojení toku elektronů se syntézou ATP. Zachycení světelné energie

Více

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces

Více

ení k tvorbě energeticky bohatých organických sloučenin

ení k tvorbě energeticky bohatých organických sloučenin Fotosyntéza mimořádně významný proces, využívající energii slunečního zářenz ení k tvorbě energeticky bohatých organických sloučenin (sacharidů) z jednoduchých anorganických látek oxidu uhličitého a vody

Více

Fotofyzikální děje během fotosyntetické přeměny zářivé energie na biochemicky využitelnou formu

Fotofyzikální děje během fotosyntetické přeměny zářivé energie na biochemicky využitelnou formu Fotofyzikální děje během fotosyntetické přeměny zářivé energie na biochemicky využitelnou formu RNDr. Karel Roháček, CSc. Biologické centrum AV ČR, Ústav molekulární biologie rostlin České Budějovice,

Více

FYZIKA VE FYZIOLOGII ROSTLIN

FYZIKA VE FYZIOLOGII ROSTLIN FYZIKA VE FYZIOLOGII ROSTLIN Martina Špundová Katedra biofyziky PřF UP Olomouc TRANSPORT VODY V ROSTLINÁCH 1. chemický a vodní potenciál 2. transport vody v rostlinách 3. metody a přístroje pro stanovení

Více

FOTOSYNTÉZA ZÁKLAD ŽIVOTA NA ZEMI

FOTOSYNTÉZA ZÁKLAD ŽIVOTA NA ZEMI FOTOSYNTÉZA ZÁKLAD ŽIVOTA NA ZEMI Pavel Peč Katedra biochemie Přírodovědecké fakulty Univerzita Palackého v Olomouci Fotosyntéza fixuje na Zemi ročně asi 1011 tun uhlíku, což reprezentuje 1018 kj energie.

Více

FOTOSYNTÉZA. CO 2 a vody. - soubor chemických reakcí. - probíhá v rostlinách a sinicích. - zachycení a využití světelné energie

FOTOSYNTÉZA. CO 2 a vody. - soubor chemických reakcí. - probíhá v rostlinách a sinicích. - zachycení a využití světelné energie Fotosyntéza FOTOSYNTÉZA - soubor chemických reakcí - probíhá v rostlinách a sinicích - zachycení a využití světelné energie - tvorba složitějších chemických sloučenin z CO 2 a vody - jediný zdroj kyslíku

Více

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence) Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)

Více

Fotosyntéza. Ondřej Prášil

Fotosyntéza. Ondřej Prášil Fotosyntéza 5 Ondřej Prášil prasil@alga.cz 384-340430 Karotenoidy - polyisopreny Pomocné pigmenty, strukturní funkce a disipace energie Tetraterpeny (40 C) vytvořené z 8 isoprenových jednotek, délka 30

Více

Fotosyntéza. Ondřej Prášil

Fotosyntéza. Ondřej Prášil Fotosyntéza 2 Ondřej Prášil prasil@alga.cz 384-340430 Obsah přednášky membrány a organely světlo termodynamika historie Fotosyntetické membrány Electron tomography Cells contain ~100 chlorosomes appressed

Více

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence) Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)

Více

Co vás dnes čeká: Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková

Co vás dnes čeká: Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková Co vás dnes čeká: Přednáška 2: Specifika rostlinné buňky trocha opakování vakuola buněčná stěna plastidy Fotosyntetické struktury plastidy struktura, typy fotosyntetické pigmenty a jejich lokalizace Sluneční

Více

LI-6400; Gazometrická stanovení fotosyntetických parametrů

LI-6400; Gazometrická stanovení fotosyntetických parametrů LI-6400; Gazometrická stanovení fotosyntetických parametrů 20. dubna 2018 Tato úloha by Vás měla seznámit s gazometrickými metodami stanovení fotosyntetické aktivity rostlin, potažmo s přístrojem LI-6400XT,

Více

Energetický metabolismus rostlin

Energetický metabolismus rostlin Energetický metabolismus rostlin Sylabus - témata (Fischer, Šantrůček) 1. Základy energetiky v živých systémech Formy energie a základní principy přeměny energií; změny volné energie, rovnovážná konstanta,

Více

Vodní režim rostlin. Regulace výměny plynů otevřeností průduchů. fotosyntézy Efektivita využití vody Globální změna klimatu Antitranspiranty

Vodní režim rostlin. Regulace výměny plynů otevřeností průduchů. fotosyntézy Efektivita využití vody Globální změna klimatu Antitranspiranty Vodní režim rostlin Regulace výměny plynů otevřeností průduchů Stomatální limitace rychlosti transpirace a rychlosti fotosyntézy Efektivita využití vody Globální změna klimatu Antitranspiranty Regulace

Více

Využití fluorescence sinic a řas při hodnocení kvality vod. RNDr. Štěpán Zezulka, PhD.

Využití fluorescence sinic a řas při hodnocení kvality vod. RNDr. Štěpán Zezulka, PhD. Využití fluorescence sinic a řas při hodnocení kvality vod RNDr. Štěpán Zezulka, PhD. Kvalita vod Přehrady zdroje pitné vody Umělé i přírodní nádrže pro rekreaci Řeky, potoky, rybníky Odpadní vody Kvalita

Více

B METABOLICKÉ PROCESY

B METABOLICKÉ PROCESY B METABOLICKÉ PROCESY Poznávání neuvěřitelně velkého množství chemických sloučenin a reakcí při přeměnách látek v živých buňkách je hlavní náplní vědního oboru biochemie. Pro rostlinného fyziologa jsou

Více

Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké

Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké Fotosyntéza Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké rostliny. Zelené rostliny patří mezi autotrofy

Více

LI-6400; Gazometrická stanovení fotosyntetických parametrů

LI-6400; Gazometrická stanovení fotosyntetických parametrů LI-6400; Gazometrická stanovení fotosyntetických parametrů 19. dubna 2011 Úvod List fixuje ve fotosyntéze CO 2, který proudí z vnější atmosféry. Současně ale uvolňuje CO 2 při respiračních pochodech. Na

Více

Energetický metabolismus rostlin

Energetický metabolismus rostlin Energetický metabolismus rostlin Sylabus - témata (Fischer, Duchoslav) 1. Energie v živých systémech Formy energie a základní principy přeměny energií; změny volné energie, rovnovážná konstanta, spřažení

Více

FOTOSYNTÉZA Správná odpověď:

FOTOSYNTÉZA Správná odpověď: FOTOSYNTÉZA Správná odpověď: 1. Mezi asimilační barviva patří 1. chlorofyly, a) 1, 2, 4 2. antokyany b) 1, 3, 4 3. karoteny c) pouze 1 4. xantofyly d) 1, 2, 3, 4 2. V temnostní fázi fotosyntézy dochází

Více

ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY

ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY s názvem ZAŘÍZENÍ PRO ANALÝZU FOTOSYNTÉZY CEITEC MU vyhotovené podle 156 zákona č. 137/2006 Sb., o veřejných zakázkách, v platném znění (dále jen Zákon o VZ) 1. ODŮVODNĚNÍ ÚČELNOSTI

Více

Roční průběh základních fluorescenčních parametrů dvou stálezelených rostlin

Roční průběh základních fluorescenčních parametrů dvou stálezelených rostlin Jihočeská univerzita v Českých Budějovicích Biologická fakulta Roční průběh základních fluorescenčních parametrů dvou stálezelených rostlin Silvie Svidenská Vedoucí práce: Mgr. Julie Soukupová, Ph.D. České

Více

6. Tzv. holocenní klimatické optimum s maximálním rozvojem lesa bylo typické pro a) preboreál b) atlantik c) subrecent

6. Tzv. holocenní klimatické optimum s maximálním rozvojem lesa bylo typické pro a) preboreál b) atlantik c) subrecent 1. Ekologie zabývající se studiem populací se nazývá a) synekologie b) autekologie c) demekologie 2. Plocha lesa na planetě dle statistiky ročně: a) stoupá cca o 11 mil. ha b) klesá cca o 16 mil. ha c)

Více

2. ČÁST - METABOLICKÉ PROCESY

2. ČÁST - METABOLICKÉ PROCESY Učební text k přednášce Bi4060 na přírodovědecké fakultě MU v Brně. Určeno pouze ke studijním účelům. Autor textu Jan Gloser. 2. ČÁST - METABOLICKÉ PROCESY Poznávání neuvěřitelně velkého množství chemických

Více

LI-6400; Gazometrická stanovení fotosyntetických parametrů

LI-6400; Gazometrická stanovení fotosyntetických parametrů LI-6400; Gazometrická stanovení fotosyntetických parametrů May 2019 Tato úloha by Vás měla seznámit s gazometrickými metodami stanovení fotosyntetické aktivity rostlin, potažmo s přístrojem LI-6400XT,

Více

LI-6400; Gazometrická stanovení fotosyntetických parametrů

LI-6400; Gazometrická stanovení fotosyntetických parametrů LI-6400; Gazometrická stanovení fotosyntetických parametrů 18. dubna 2008 Tato úloha by Vás měla seznámit s gazometrickými metodami stanovení fotosyntetické aktivity rostlin potažmo s přístrojem LI-6400,

Více

Ekosystém. tok energie toky prvků biogeochemické cykly

Ekosystém. tok energie toky prvků biogeochemické cykly Ekosystém tok energie toky prvků biogeochemické cykly Ekosystém se sestává z abiotického prostředí a biotické složky (společenstva) a jejich vzájemných interakcí. Ekosystém si geograficky můžeme definovat

Více

6. FYZIOLOGICKÉ STRÁNKY FOTOSYNTÉZY.

6. FYZIOLOGICKÉ STRÁNKY FOTOSYNTÉZY. . 6.1 ZÁVISLOST RYCHLOSTI FOTOSYNTÉZY NA VNĚJŠÍCH FAKTORECH Závislost rychlosti fotosyntézy na vnějších faktorech je výslednicí závislostí jednotlivých dílčích pochodů, které jsme ve fotosyntéze rozlišili

Více

2. ČÁST - METABOLICKÉ PROCESY

2. ČÁST - METABOLICKÉ PROCESY Učební text k přednášce Bi4060 na přírodovědecké fakultě MU v Brně. Určeno pouze ke studijním účelům. Autor textu Jan Gloser. 2. ČÁST - METABOLICKÉ PROCESY Poznávání neuvěřitelně velkého množství chemických

Více

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940

Více

Fotosyntézu lze schematicky vyjádřit: hv CO H 2 O (CH 2 O)+ O 2 + H 2 O. Rozčlenění pochodů v chloroplastu na membránové a enzymové:

Fotosyntézu lze schematicky vyjádřit: hv CO H 2 O (CH 2 O)+ O 2 + H 2 O. Rozčlenění pochodů v chloroplastu na membránové a enzymové: Fotosyntéza Fotosyntézu lze schematicky vyjádřit: hv CO 2 + 2 H 2 O (CH 2 O)+ O 2 + H 2 O Rozčlenění pochodů v chloroplastu na membránové a enzymové: Kde všude jsou fotosyntetické organismy? 2013 Yoon

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA BIOFYZIKY BAKALÁŘSKÁ PRÁCE Fotoinhibice lišejníků studovaná pomocí rychlého fluorescenčního indukčního jevu Vypracovala: Lenka Řiháková Studijní

Více

Předmět: KBB/BB1P; KBB/BUBIO

Předmět: KBB/BB1P; KBB/BUBIO Předmět: KBB/BB1P; KBB/BUBIO Energie z mitochondrií a chloroplastů Cíl přednášky: seznámit posluchače se základními principy získávání energie v mitochondriích a chloroplastech Klíčová slova: mitochondrie,

Více

Faktory počasí v ekologii - úvod

Faktory počasí v ekologii - úvod Faktory počasí v ekologii - úvod Jakub Brom Laboratoř aplikované ekologie ZF JU Z ekologického hlediska nás zajímá, jak působí faktory počasí na organismy a zpětně, jak organismy působí na změnu těchto

Více

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

Vodní režim rostlin. Mechanizmy pohybu průduchů. Obecné charakteristiky Reakce průduchů na světlo

Vodní režim rostlin. Mechanizmy pohybu průduchů. Obecné charakteristiky Reakce průduchů na světlo Vodní režim rostlin Mechanizmy pohybu průduchů Obecné charakteristiky Reakce průduchů na světlo Reakce průduchů na vodní stres Reakce průduchů na vlhkost vzduchu Reakce průduchů na CO 2 Reakce průduchů

Více

Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa

Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa 8. Dýchací řetězec a fotosyntéza Obtížnost A Pomocí následující tabulky charakterizujte jednotlivé složky mitochondriálního dýchacího řetězce. SLOŽKA Pořadí v dýchacím řetězci 1) Molekulový typ 2) Charakteristika

Více

Fluorescence, fotosyntéza a stress: jak to spolu souvisí?

Fluorescence, fotosyntéza a stress: jak to spolu souvisí? tun. Fluorescence, fotosyntéza a stress: jak to spolu souvisí? Mgr. Julie Soukupová, hd. Ústav systémové biologie a ekologie AVČR, Ústav fyzikální biologie JU HTTsoukupova@greentech.czTTH a RNDr. Karel

Více

Umělá fotosyntéza. Michael Hagelberg. Tomáš Polívka, Ústav fyzikální biologie

Umělá fotosyntéza. Michael Hagelberg. Tomáš Polívka, Ústav fyzikální biologie Umělá fotosyntéza Michael Hagelberg Tomáš Polívka, Ústav fyzikální biologie Energetické požadavky společnosti Energetický rozdíl 14 TW, 2050 33 TW, 2100 Alternativy Fosilní paliva Jaderné štěpení Obnovitelné

Více

Zobrazování účinků herbicidu na fotosyntézu mapováním chlorofylové fluorescence listů vyšších rostlin.

Zobrazování účinků herbicidu na fotosyntézu mapováním chlorofylové fluorescence listů vyšších rostlin. Zobrazování účinků herbicidu na fotosyntézu mapováním chlorofylové fluorescence listů vyšších rostlin. Všechny děje spjaté s primárními reakcemi fotosyntézy se odehrávají na matrici tylakoidálních váčků,

Více

Využití fluorescence chlorofylu ke sledování fyziologického stavu vegetace

Využití fluorescence chlorofylu ke sledování fyziologického stavu vegetace Přírodovědecká fakulta Univerzity Karlovy v Praze Katedra fyziologie rostlin Eliška Hlízová Využití fluorescence chlorofylu ke sledování fyziologického stavu vegetace Bakalářská práce Praha, 2008 Školitel:

Více

35.Fotosyntéza. AZ Smart Marie Poštová

35.Fotosyntéza. AZ Smart Marie Poštová 35.Fotosyntéza AZ Smart Marie Poštová m.postova@gmail.com Fotosyntéza - úvod Syntéza glukosy redukcí CO 2 : chlorofyl + slun.zareni 6 CO 2 + 12H 2 O C 6 H 12 O 6 + 6O 2 + 6H 2 O (Kyslík vzniká fotolýzou

Více

Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů.

Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů. Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů. Šárka Gregorová, 2013 Poznámka: protože se tyhle dvě státnicové otázky z velké

Více

7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state )

7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state ) 7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state ) Steady-state měření Excitujeme kontinuálním světlem, měříme intenzitu emise (počet emitovaných fotonů) Obvykle nedetekujeme všechny

Více

ON-LINE KVANTIFIKACE SINIC V SUROVÉ VODĚ

ON-LINE KVANTIFIKACE SINIC V SUROVÉ VODĚ ON-LINE KVANTIFIKACE SINIC V SUROVÉ VODĚ Mgr. ZLATICA NOVOTNÁ Doc. Ing. BLAHOSLAV MARŠÁLEK, CSc. Ing. MARTIN TRTÍLEK Ing. TOMÁŠ RATAJ CENTRUM PRO CYANOBAKTERIE A JEJICH TOXINY, BÚ AVČR Photon System Instrument,

Více

ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH

ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH ZPRÁVA O UKONČENÍ PROJEKTU Projekt Název projektu: Změna optických vlastností listů révy vinné v závisloti na obsahu fenolických látek

Více

EKOLOGIE LESA 27.1.2014. Primární produkce lesních ekosystémů funkce abiotických faktorů

EKOLOGIE LESA 27.1.2014. Primární produkce lesních ekosystémů funkce abiotických faktorů EKOLOGIE LESA Pracovní sešit do cvičení č. 4: Primární produkce lesních ekosystémů funkce abiotických faktorů Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018

Více

1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu

1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu Test pro přijímací řízení magisterské studium Biochemie 2018 1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

Fotosyntézu lze schematicky vyjádřit: hv CO2 + 2 H2O (CH2O)+ O2 + H2O. Rozčlenění pochodů v chloroplastu na membránové a enzymové:

Fotosyntézu lze schematicky vyjádřit: hv CO2 + 2 H2O (CH2O)+ O2 + H2O. Rozčlenění pochodů v chloroplastu na membránové a enzymové: Fotosyntéza Fotosyntézu lze schematicky vyjádřit: hv CO2 + 2 H2O (CH2O)+ O2 + H2O Rozčlenění pochodů v chloroplastu na membránové a enzymové: Kde všude jsou fotosyntetické organismy? Yoon et al. (2006)

Více

II. Rostlina a energie

II. Rostlina a energie 1 II. Rostlina a energie 2. Energie, přeměna látek, sluneční záření Živé organismy mají vysoký stupeň uspořádanosti a univerzálně spějí k rovnovážnému stavu. Životní procesy je nutné udržovat stálým dodáváním

Více

Systémy pro využití sluneční energie

Systémy pro využití sluneční energie Systémy pro využití sluneční energie Slunce vyzáří na Zemi celosvětovou roční potřebu energie přibližně během tří hodin Se slunečním zářením jsou spojeny biomasa pohyb vzduchu koloběh vody Energie

Více

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku

5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku 5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování

Více

Dýchací řetězec. Viz též přednášky prof. Kodíčka (snímky a blány v levém sloupci)

Dýchací řetězec. Viz též přednášky prof. Kodíčka (snímky a blány v levém sloupci) Dýchací řetězec Viz též přednášky prof. Kodíčka (snímky a blány v levém sloupci) Odbourávání glukosy (včetně substrátových fosforylací) C 6 H 12 O 6 + 6O 2 -->6 CO 2 + 6H 2 O + 38 ATP Dýchací

Více

DYNAMIKA PROMĚNLIVOSTI KONVERZNÍHO FAKTORU ZA TYPICKÝCH DNŮ

DYNAMIKA PROMĚNLIVOSTI KONVERZNÍHO FAKTORU ZA TYPICKÝCH DNŮ DYNAMIKA PROMĚNLIVOSTI KONVERZNÍHO FAKTORU ZA TYPICKÝCH DNŮ Marcela Mašková, Jaroslav Rožnovský Ústav krajinné ekologie, Vysoká škola zemědělská Brno ÚVOD Základem existence a produkční aktivity rostlin

Více

LÁTKOVÝ A ENERGETICKÝ METABOLISMUS

LÁTKOVÝ A ENERGETICKÝ METABOLISMUS LÁTKOVÝ A ENERGETICKÝ METABOLISMUS Metabolismus = neustálý příjem, přeměna a výdej látek = probíhá po celou dobu života rostliny Dva typy procesů : ANABOLICKÉ KATABOLICKÉ ANABOLISMUS - energie se spotřebovává

Více

Spektrometrické metody. Reflexní a fotoakustická spektroskopie

Spektrometrické metody. Reflexní a fotoakustická spektroskopie Spektrometrické metody Reflexní a fotoakustická spektroskopie odraz elektromagnetického záření - souvislost absorpce a reflexe Kubelka-Munk funkce fotoakustická spektroskopie Měření odrazivosti elmg záření

Více

Eva Benešová. Dýchací řetězec

Eva Benešová. Dýchací řetězec Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ

Více

Dominantní FL ječmene jarního

Dominantní FL ječmene jarního Materová Zuzana SGS OU Hlavní cíl prezentace Kvantitativní vyhodnocení vlivu dopadající radiace na obsah volných FL v listech ječmene jarního srovnání napříč experimenty KFY (-) Podmínka srovnatelnosti

Více