Simulace Obsluhy zákaznz. Zákazník požaduje obsluhu. Linka pracuje. Materiál. Linka je volná. Obslužný personál

Rozměr: px
Začít zobrazení ze stránky:

Download "Simulace Obsluhy zákaznz. Zákazník požaduje obsluhu. Linka pracuje. Materiál. Linka je volná. Obslužný personál"

Transkript

1 Modelování Petriho sítěmis Grafický popis a analýza systémů, ve kterých se vyskytují synchronizační, komunikační a zdroje sdílející procesy. Popis paralelních jevů a konfliktních závislostí Jednoduchost Přehlednost Modelování dynamiky procesů Typy Petriho sítí C/E (Condition/Event) Petriho sítě, P/T (Place/Transitions) Petriho sítě, P/T Petriho sítě s inhibičními hranami, P/T Petriho sítě s prioritami, TPN Časované (Timed) Petriho sítě, CPN Barevné (Coloured, barvené) Petriho sítě, HPN Hierarchické (Hierarchical) Petriho sítě, OOPN Objektové (Object Oriented) Petriho sítě. Základní pojmy Places (místa) obsahují stavovou informaci ve formě značek (token) Transitions (přechody) vyjadřují možné změny stavů (vzory možných událostí) Arcs (orientované hrany) určují logické vazby Zákazník požaduje obsluhu Simulace Obsluhy zákaznz kazníka Materiál Linka pracuje Linka je volná Obslužný personál 2

2 Grafický popis Petriho sítís je orientovaným bipartitních multigrafem Orientovaná hrana může spojit: místo s přechodem přechod s místem Orientovanou hranou nemůžeme spojit místo s místem přechod s přechodem 3 Synchronizace paralelních procesů 4 2

3 Synchronizace paralelních procesů Kritická sekce Střídání událostí Triviální deadlock 5 Pravidla pro uskutečnění přechodu Přítomnost značky v místě indikuje, že daný aspekt stavu je momentálně aktuální, resp. podmínka je splněna. Každý přechod má vstupní a výstupní místa tím je určeno, které aspekty podmiňují výskyt události a jaké skutečnosti jsou výskytem této události ovlivněny. Označme z(p) počet značek v místě p. Přechod může být uskutečněn, jsou li splněny všechny vstupní podmínky, tj. z(p i )> pro všechna vstupní místa p i daného přechodu. Uskutečnění přechodu: u všech vstupních míst ubereme jednu značku (z (p i ) = z(p i ) - ) a u všech výstupních míst přidáme jednu značku (z (p j ) = z(p j ) + ) 6 3

4 Ohodnocení hran a přechodp echodů Místo p je určeno kapacitou c(p) maximálního počtu značek. Přechod může být uskutečněn jen pokud (současně se splněním vstupních podmínek) není překročena kapacita výstupních podmínek. Počty odebíraných (umístěných) značek jsou specifikovány váhou hran. Přechod je uskutečněn jen pokud jsou vstupní hrany nasyceny, tj. pokud není počet značek ve vstupních místech daného přechodu menší než váhy příslušných hran Konfliktní přechody Dva současně proveditelné přechody jsou konfliktní, když provedení jednoho způsobí, že druhý přestane být proveditelný. Konfliktní přechody modelují soupeření o zdroje a vzájemnou výlučnost dvou událostí. Nezávislé přechody modelují asynchronnost a paralelismus. Nezávislé přechody Konfliktní přechody 8 4

5 Definice PT sítís PT síťs je uspořádan daná pětice PN=(P,T, I -, I +, z ) P = {p,p 2, p n } je konečná neprázdn zdná množina místm T ={t,t 2, t n } je konečná neprázdn zdná množina přechodp echodů množiny P, T jsou disjunktní I -, I +, jsou incidenční funkce P x T ->N z : P -> > N je počáte teční ohodnocení z ( ) ( ) ( ) = z p, z p2,, z pn Pokud je I - (p,t) >, vede orientovaná hrana z místa p do přechodu t. Počet odebraných žetonů v místě p uskutečněním přechodu t je roven I - (p,t). Pokud je I + (p,t) >, vede orientovaná hrana z přechodu t do místa p. Počet přidaných žetonů v místě p uskutečněním přechodu t je roven I + (p,t). ( ) ( ) ( Označme aktuální ohodnocení celé sítě vektorem ( ) ) ( z i = z i p, ( ) ) z i p, 2, z i ( p n ) Přechod t nazýváme aktivní (uskutečnitelný) v daném ohodnocení z (i), jestliže ( i) p P; z ( p) I ( p, t) ( ) ( ) Ohodnocení z (i) nazýváme dosažitelné z ohodnocení z (j), jestliže existuje posloupnost uskutečněných přechodů, které převádí z (i) do z (j). (ozn. z (i) - > z (j) ) 9 Struktura a vlastnosti Petriho sítís Petriho síť nazýváme bezpečnou nou, jestliže pro každé její ohodnocení platí: z(p). Petriho síť nazveme ohraničenou enou, jestliže Petriho síť nazýváme konzervativní, jestliže pro každý její stav platí, že celkový počet značek je konstantní. ( i ) ( j ) i; z p = k j Síť nazýváme živou, jestliže jsou živé všechny její přechody, tj., jestliže ke každému ohodnocení z existuje dosažitelné ohodnocení z, z ->z, které aktivuje daný přechod. z z ; z z ( ) k N ; z, p; z p k 2 ohraničen neohraničen ená, bezpečná, konzervativní ená síť síť síť 2 5

6 Konzervativnost sítěs Striktně konzervativní Konzervativní vzhledem k váhovému vektoru (2,,,2). Příklad + ( ) ( ) ( ) z = 3,,5, 4,, I p, t = I p, t = T T2 T3 T4 P P2 + C = P3 5, C = 5, C = 5 5 P4 P5 Po uskutečnění přechodu T přejde počáteční ohodnocení z do stavu 2 z = z + C = HPSim Po odpálení posloupnosti T, T, T, T2 je výsledné ohodnocení 3 2 ( 4) z = z + C =

7 Matice incidence Nechť má PN n míst P={p,p 2,..p n } a m přechodů T={t,t 2,..t m }. Zpětná incidenční matice C - typu n x m je definována ( ) c = I p, t, p P, t T ij i j i j analogicky dopředná incidenční matice C + ( ) + + c = I p, t, p P, t T ij i j i j Incidenční matice C = C + - C - Přechod t i je v daném ohodnocení z=(z,z 2,..z n ) aktivní, jestliže z j; z j c ji Uskutečněním přechodu t i přejde ohodnocení z v ohodnocení z z = z + Ce i ; Předpokládejme posloupnost odpálených přechodů ti, t, výpočet dosaženého stavu z (k) i,, t 2 i k je dán dosazením do předcházejícího vzorce k k ( k ) z = z + C eij ; eij = Ξ Parikův obraz posloupnosti přechodů j= j= Nutná podmínka dosažitelnosti: Je-li z značení dosažitelné ze značení z, potom existuje řešení Ξ rovnice z = z + CΞ 3 Př: : Napište matici incidence C Přechod T K se uskuteční v ohodnocení z, z ; z c i i ik T T T 2 T 3 T 4 T5 P 2 P C = ( I ( pn, tm )) = P2 P3 2 ( ) 2 z = C = C C = ( I ( pn, tm ) I ( pn, tm )) = Odpálení přechodu T: ( ) 2 z = z + C = + = + 4 7

8 P-invarianty Nechť C je matice incidence Petriho sítě. Nenulový vektor i P N n se nazývá P-invariant Petriho sítě, jestliže je řešením homogenní soustavy lineárních rovnic T C i = o Petriho síť má konzervativní komponentu právě tehdy, existuje-li nenulový P-invariant. Př: striktně konzervativní síť P C = P { (,, ); } i = k k N 5 P-invarianty konzervativní komponenty C = C i T P = o ip = {( u, u v, v, u) ; u, v N, u > v} Výhodnější zápis získáme pomocí bázových vektorů prostoru řešení. Volíme-li např. u=, v= dostáváme i P =(,,,), podobně volbou u=2, v= dostáváme i P2 =(2,,,2), což jsou nejmenší váhové vektory pro konzervativnost sítě. { (,,,) ( 2,,, 2 );, } i = k + l k l N P 6 8

9 T-invarianty Petriho síť nazveme reverzibilní, pokud ke každému dosažitelnému značení existuje posloupnost odpálených přechodů, ve které je počáteční značení aktivní Nechť C je matice incidence Petriho sítě. Nenulový vektor i T N n se nazývá T-invariant Petriho sítě, jestliže je řešením homogenní soustavy lineárních rovnic CiT = o Pokud je Petriho síť je reverzibilní, pak má nenulový invariant.. T-invariant je Parikův obraz posloupnosti, která přechody reprodukuje, tj. udává kolikrát je třeba provést každý přechod, abychom se vrátili k původnímu značení 7 T-invarianty Př. Reverzibilní sítě C = CiT = o i i2 = i 3 i4 { (,,, ) (,,, );, } i = k + l k l N T 8 9

10 T-invarianty Př. Reverzibilní sítě C = CiT 4 = o i i2 = i 3 i T { (,,, ) (,,, );, } i = k + l k l N 9 Přechodová funkce Stavový prostor množina dosažitelných značení Přechodová funkce funkce definovaná na stavovém prostoru určuje na základě přítomného stavu a aktivního přechodu příští stav sítě zadána buď tabulkou, nebo orientovaným grafem. 2

11 Stavový strom (graf pokrytí) Abstrakce přechodové funkce Petriho sítě. Orientovaný kořenový strom, jehož kořenem je počáteční značení. Jestliže v průběhu konstrukce stromu zjistíme, že jistá složka značení neomezeně roste, pak tuto složku označíme a nový vektor reprezentuje nekonečnou množinu značení, pro které tato složka nabývá libovolné nezáporné celočíselné hodnoty. Neomezená Petriho síť (,) t 2 (,2) t HPSim (, ) t 2 t (, ) (, ) (, ) 2 Matice přechodup Prvky matice jsou tvořeny pravděpodobnosti přechody systému z jednoho stavu do druhého,5,5,5,5 P =,5,5,5,5,5,5 a = a P HPSim 22

12 Síť s omezenou kapacitou místm 23 Inhibitory negativní testovací hrany Rozlišujeme 3 typy hran : normáln lní inhibitory tester Přechod spojený s místem inhibitorem je uskutečněn jen pokud je počet značek v místě menší než váha inhibitoru. Počet značek ve vstupním místě se nemění. PT (places-transitions) sítě s inhibitory jsou s teoretického hlediska schopny modelovat vše, co je možné vyjádřit algoritmem

13 Inhibitory, Petriho sítěs s prioritami T má vyšší prioritu než T2 Petriho sítě s inhibičními hranami mohou být převedeny na ekvivalentní sítě s prioritami. 25 Booleovské operace Př: Úplný systém logických funkcí {nega, AND, OR},{NAND},{NOR} neg.a AND OR NAND NOR A B A A B A B (A B) (A B) 26 3

14 Stochastické časové Petriho sítěs (Stochastic Petri Nets) Přechody ve SPN představují jednotlivé události(akce). typy přechodů:. Okamžit ité 2. se zpožděním (doba zpoždění je náhodná veličina) SPN = (P, T, I -, I +, G, z ) P, T,, I -, I +, z PT Petriho síť G exponenciální funkce přiřazené přechodům 27 Dining Philosophers HPSim 28 4

15 Stavový graf Spojitý stochastický proces zdiskretizujeme postupujeme v diskrétních krocích dt. Krok simulace dt zvolíme dostatečně malý (ms) tak, abychom mohli předpokládat, že za interval délky dt nastane nejvýš jedna událost. P3 T3 P z =(,,) z =(,,) T4 z 2 =(,,) T2 P2 T Ze stavu z mohou po jednom kroku dt nastat 3 možnosti: z (spuštěn přechod T) z 2 (spuštěn přechod T4) z (ani pro jeden z přechodů T, T2) 29 Markovův řetězec stochastické Petriho sítěs Nechť jsou všechny přechody dány s exponenciálním rozdělením zpoždění. Pak stavový prostor (množina všech možných ohodnocení) z i tvoří Markovovský řetězec se spojitým časem- CTMC. Infinitezimální generátor Q: Intenzita výstupu q ij ze stavu z i do stavu z j je součtem intenzit všech přechodů, jejichž odpálením přejde stav z i do stavu z j. Analýzou Markovova řetězce můžeme vypočítat charakteristiky systému popsaného SPN. - Nechť je π stabilizovaný stav, tj πq = ; π = j Pak pravděpodobnost, že ohodnocení míst SPN je z dané podmnožiny stavů B. P[ B] = ( j z ) B π j j 3 5

16 Časová past 3 Barevné Petriho sítěs Rozlišujeme různé typy žetonů a různé módy odpalů přechodů 32 6

17 Barevné Petriho sítěs Podmínkou efektivního zavedení barevných Petriho sítí je, aby se přechody chovaly v různých módech podobně. Pro popis odpalu přechodu zavedeme lokální proměnné, incidenční funkce zapisujeme k příslušným hranám C a a b b a a b b = ; Cb = a a b b a x x x x x y y x 33 Převod barevné Petriho sítěs na P/T P T síťs Pro umístění různých barevných typů žetonů vytvoř zvláštní místa. Nechť např.v místě p je možný výskyt barev a, b, c. Pak z jednoho místa p vytvoříme tři místa pa,pb,pc. Pro každý mód odpálení přechodu vytvoř zvláštní přechod. Je-li např.možné odpálit přechod t v módu x a y, vytvoříme dva přechody tx, ty. Vytvoř nové incidenční funkce tak aby odpovídaly původním módům. Nastav počáteční ohodnocení sítě. 34 7

18 Dining philosophers hl(f) = h+h2, hl(f2) = h2+h3, hl(f3) = h3+h4, hl(f4) = h4+h 35 Simulace systémů hromadné obsluhy Simulace systému M/M//3 FIFO, dva typy zákazníků s různou délkou obsluhy T vstup zákazníků prvního typu, T5 vstup druhého typu. Zákazníci prvního typu se řadí do hornířady P, P2, P3, zákazníci druhého typu se řadí do spodnířady P2, P22, P

19 Frontové Petriho sítěs Barevné GSPN se dvěma typy míst Obyčejná místa Frontová místa (fronta + zásobník obsloužených zákazníků). Zákazníci (žetony) z fronty nemohou být použity pro odpal následujících přechodů. Nejprve musí proběhnou obsluha podle předepsaného rozdělení délky obsluhy, žeton je přemístěn z frontové části do zásobníku a teprve žetony ze zásobníku mohou být použity pro odpal výstupních přechodů dle zpětných incidenčních funkcí 37 Systém m se ztrátami, tami, Systém m s prioritami 38 9

PETRIHO SÍTĚ STOCHASTICKÉ PETRIHO SÍTĚ. Modelování Petriho sítěmi

PETRIHO SÍTĚ STOCHASTICKÉ PETRIHO SÍTĚ. Modelování Petriho sítěmi HPSim PETRIHO SÍTĚ STOCHASTICKÉ PETRIHO SÍTĚ 1962 - Carl Adam Petri formalismus pro popis souběžných synchronních distribučních systémů Modelování Petriho sítěmi Grafický popis a analýza systémů, ve kterých

Více

Analýza Petriho sítí. Analýza Petriho sítí p.1/28

Analýza Petriho sítí. Analýza Petriho sítí p.1/28 Analýza Petriho sítí Analýza Petriho sítí p.1/28 1. Základní pojmy Základní problémy analýzy bezpečnost (safeness) omezenost (boundness) konzervativnost (conservation) živost (liveness) Definice 1: Místo

Více

Úvod do Petriho sítí. Ing. Michal Dorda, Ph.D.

Úvod do Petriho sítí. Ing. Michal Dorda, Ph.D. Úvod do Petriho sítí Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Petriho sítě (Petri Nets, PN) představují matematický nástroj pro modelování a simulaci diskrétních systémů (např. systémů hromadné obsluhy

Více

zpravidla předpokládá, že hodnoty intenzity poruch a oprav jsou konstantní.

zpravidla předpokládá, že hodnoty intenzity poruch a oprav jsou konstantní. Pohotovost a vliv jednotlivých složek na číselné hodnoty pohotovosti Systém se může nacházet v mnoha různých stavech. V praxi se nejčastěji vyskytují případy, kdy systém (nebo prvek) je charakterizován

Více

Obsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b,

Obsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b, Obsah Lineární rovnice Definice 77 Uvažujme číselné těleso T a prvky a 1,, a n, b T Úloha určit všechny n-tice (x 1,, x n ) T n, pro něž platí n a i x i = a 1 x 1 + + a n x n = b, i=1 se nazývá lineární

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

13. cvičení z PSI ledna 2017

13. cvičení z PSI ledna 2017 cvičení z PSI - 7 ledna 07 Asymptotické pravděpodobnosti stavů Najděte asymptotické pravděpodobnosti stavů Markovova řetězce s maticí přechodu / / / 0 P / / 0 / 0 0 0 0 0 0 jestliže počáteční stav je Řešení:

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

Osnova přednášky. Informační a řídicí systémy I. Úvod do Petriho sítí. Doporučená literatura. Úvod

Osnova přednášky. Informační a řídicí systémy I. Úvod do Petriho sítí. Doporučená literatura. Úvod Osnova přednášky Informační a řídicí systémy I. Úvod do Petriho sítí Pavel Balda ZČU v Plzni, FAV, KKY Úvod, historie Povolení (enabling) a provedení (firing) přechodu Příklady modelů Vlastnosti Metody

Více

Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.

Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. 6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje

Více

Úvod do Petriho sítí. TIN Úvod do Petriho sítí p.1/37

Úvod do Petriho sítí. TIN Úvod do Petriho sítí p.1/37 Úvod do Petriho sítí TIN Úvod do Petriho sítí p.1/37 Petriho sítě Motivace: modely diskrétních systémů modely paralelních systémů modely distribuovaných systémů Využití: návrh syntéza analýza verifikace

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D.

Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D. Algoritmizace diskrétních simulačních modelů Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Při programování simulačních modelů lze hlavní dílčí problémy shrnout do následujících bodů: 1) Zachycení statických

Více

3. Grafy a matice. Definice 3.2. Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A =

3. Grafy a matice. Definice 3.2. Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A = 3 Grafy a matice Definice 32 Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A = A 11 A 12 0 A 22 kde A 11 a A 22 jsou čtvercové matice řádu alespoň 1 a 0 je nulová matice, anebo lze-li

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních

Více

Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest

Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem

Více

intenzitu příchodů zákazníků za čas t intenzitu obsluhy (průměrný počet obsloužených) za čas t

intenzitu příchodů zákazníků za čas t intenzitu obsluhy (průměrný počet obsloužených) za čas t Ukázka - Systémy hromadné obsluhy Příklad: Pan Pumpička se rozhodl postavit samoobslužnou čerpací stanici u obce Česká Bříza. Na základě průzkumu ví, že by čerpací stanici mohlo průměrně navštívit 32,

Více

Markl: Petriho sítě s prioritami /nnpn43.doc/ Strana 1

Markl: Petriho sítě s prioritami /nnpn43.doc/ Strana 1 Markl: Petriho sítě s prioritami /nnpn43.doc/ Strana 1 4.3. Petriho sítě s prioritami Zavedení prioritních úrovní v PN-systémech zvětšuje jejich popisnou sílu a poskytuje více možností při návrhu systému.

Více

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

4. Aplikace matematiky v ekonomii

4. Aplikace matematiky v ekonomii 4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

5 Orientované grafy, Toky v sítích

5 Orientované grafy, Toky v sítích Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost

Více

PETRIHO SÍTĚ MONIKA KOCHANÍČKOVÁ KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO

PETRIHO SÍTĚ MONIKA KOCHANÍČKOVÁ KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO PETRIHO SÍTĚ MONIKA KOCHANÍČKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Více

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y

Více

SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY. Michal Dorda. VŠB - TU Ostrava, Fakulta strojní, Institut dopravy

SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY. Michal Dorda. VŠB - TU Ostrava, Fakulta strojní, Institut dopravy SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY Michal Dorda VŠB - TU Ostrava Fakulta strojní Institut dopravy 1 Úvod V běžné technické praxi se velice často setkáváme s tzv. systémy hromadné obsluhy aniž

Více

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo 0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový

Více

Kendallova klasifikace

Kendallova klasifikace Kendallova klasifikace Délka obsluhy, frontový režim, Littleovy vzorce Parametry obsluhy Trvání obsluhy - většinou předpokládáme, že trvání obsluhy jsou nezávisl vislé náhodné proměnné, se stejným rozdělením

Více

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy

Více

Soustava m lineárních rovnic o n neznámých je systém

Soustava m lineárních rovnic o n neznámých je systém 1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou

Více

MODELOVÁNÍ UZAVŘENÝCH OBSLUŽNÝCH LOGISTICKÝCH SYSTÉMŮ PETRIHO SÍTĚMI

MODELOVÁNÍ UZAVŘENÝCH OBSLUŽNÝCH LOGISTICKÝCH SYSTÉMŮ PETRIHO SÍTĚMI MODELOVÁNÍ UZAVŘENÝCH OBSLUŽNÝCH LOGISTICKÝCH SYSTÉMŮ PETRIHO SÍTĚMI MODELLING OF CLOSED LOGISTICS SERVICE SYSTEMS USING PETRI NETS Ing. Michal Dorda, Ph.D. Institut dopravy, Fakulta strojní, VŠB Technická

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule. Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,

Více

Exponenciální modely hromadné obsluhy

Exponenciální modely hromadné obsluhy Exponenciální modely hromadné obsluhy Systém s čekáním a neohraničeným zdrojem požadavků Na základě předchozích informací je potřeba probrat, jaké informace jsou dostupné v počtu pravděpodobnosti řešícím

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti

A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti Vojta Vonásek vonasek@labe.felk.cvut.cz České vysoké učení technické v Praze Fakulta elektrotechnická Katedra kybernetiky Markovovy

Více

Model Checking pro Timed Automata. Jiří Vyskočil 2011

Model Checking pro Timed Automata. Jiří Vyskočil 2011 Model Checking pro Timed Automata Jiří Vyskočil 2011 Časově kritické systémy korektnost fungování vestavěným a distribuovaných systémů závisí na: správném výsledku výpočtu správném načasování prováděných

Více

2.3. Strukturní analýza P/T sítí

2.3. Strukturní analýza P/T sítí Markl: Strukturní analýza P/T sítí /nnpn3.doc/ Strana 1.3. Strukturní analýza P/T sítí Odhlédneme-li u PN-systémů od počátečního značení, získáme bipartitní orientovaný multigraf, který popisuje statickou

Více

1 Řešení soustav lineárních rovnic

1 Řešení soustav lineárních rovnic 1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Apriorní rozdělení. Jan Kracík.

Apriorní rozdělení. Jan Kracík. Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Stochastické procesy - pokračování

Stochastické procesy - pokračování Stochastické procesy - pokračování Úvodní pojmy: Stochastické procesy jsou to procesy (funkce) jejichž hodnoty jsou náhodné veličiny závislé na parametru t stav systému souhrn vlastností a charakteristik,

Více

Operační výzkum. Síťová analýza. Metoda CPM.

Operační výzkum. Síťová analýza. Metoda CPM. Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

a způsoby jejího popisu Ing. Michael Rost, Ph.D.

a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost, náhodná veličina a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost Pokud je jev A vázán na uskutečnění jevu B, pak tento jev nazýváme jevem podmíněným

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

DMA Přednáška Rekurentní rovnice. takovou, že po dosazení odpovídajících členů do dané rovnice dostáváme pro všechna n n 0 + m pravdivý výrok.

DMA Přednáška Rekurentní rovnice. takovou, že po dosazení odpovídajících členů do dané rovnice dostáváme pro všechna n n 0 + m pravdivý výrok. DMA Přednáška Rekurentní rovnice Rekurentní rovnice či rekurzivní rovnice pro posloupnost {a n } je vztah a n+1 = G(a n, a n 1,..., a n m ), n n 0 + m, kde G je nějaká funkce m + 1 proměnných. Jejím řešením

Více

Úvod do teorie grafů

Úvod do teorie grafů Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí

Více

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, [161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p

Více

Základy algoritmizace. Pattern matching

Základy algoritmizace. Pattern matching Základy algoritmizace Pattern matching 1 Pattern matching Úloha nalézt v nějakém textu výskyty zadaných textových vzorků patří v počítačové praxi k nejfrekventovanějším. Algoritmy, které ji řeší se používají

Více

Markovovy řetězce se spojitým časem CTMC (Continuous time Markov Chain)

Markovovy řetězce se spojitým časem CTMC (Continuous time Markov Chain) Markovovy řetězce se soitým časem CTMC (Continuous time Markov Chain) 3 5 1 4 Markovovy rocesy X Diskrétní stavový rostor Soitý obor arametru t { } S e1, e,, en t R t 0 0 t 1 t t 3 t Proces e Markovův

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,

Více

Náhodné vektory a matice

Náhodné vektory a matice Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

KMA Písemná část přijímací zkoušky - MFS 2o16

KMA Písemná část přijímací zkoušky - MFS 2o16 JMÉNO a PŘÍJMENÍ KMA Písemná část přijímací zkoušky - MFS 2o16 verze 1 / 28. 6. 2016 Pokyny k vypracování: Za každý správně vyřešený příklad lze získat 2 body. U zaškrtávacích otázek, je vždy správná právě

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

Pravděpodobnost a její vlastnosti

Pravděpodobnost a její vlastnosti Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů,

Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, Rekurentní jevy Značení. (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, kde každý má tutéž konečnou nebo spočetnou množinu výsledků E, E,...}. Pak E j,..., E jn } značí

Více

[1] samoopravné kódy: terminologie, princip

[1] samoopravné kódy: terminologie, princip [1] Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód Samoopravné kódy, k čemu to je [2] Data jsou uložena (nebo posílána do linky) kodérem podle určitého pravidla

Více

Lineární algebra Petriho sítí

Lineární algebra Petriho sítí ) Notace Lineární algebra Petriho sítí Definice: Neznaená PN je taková tveice Q = P Pre Post kde P = {P P n } je množina míst (konená nenulová) = { m } je množina pechod (konená nenulová) Pre: P {} vstupní

Více

2 Hlavní charakteristiky v analýze přežití

2 Hlavní charakteristiky v analýze přežití 2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

1/10. Kapitola 12: Soustavy lineárních algebraických rovnic

1/10. Kapitola 12: Soustavy lineárních algebraických rovnic 1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11

Více

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X Náhodný vektor Náhodný vektor zatím jsme sledovali jednu náhodnou veličinu, její rozdělení a charakteristiky často potřebujeme vyšetřovat vzájemný vztah několika náhodných veličin musíme sledovat jejich

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

Principy indukce a rekurentní rovnice

Principy indukce a rekurentní rovnice Principy indukce a rekurentní rovnice Jiří Velebil: X01DML 22. října 2010: Indukce 1/15 Příklad Místností rozměru n budeme rozumět šachovnici rozměru 2 n 2 n, ze které je jedno (libovolné) pole vyjmuto.

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Soustavy lineárních rovnic a determinanty

Soustavy lineárních rovnic a determinanty Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

TGH02 - teorie grafů, základní pojmy

TGH02 - teorie grafů, základní pojmy TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 28. února 2017 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms)

Více