intenzitu příchodů zákazníků za čas t intenzitu obsluhy (průměrný počet obsloužených) za čas t

Rozměr: px
Začít zobrazení ze stránky:

Download "intenzitu příchodů zákazníků za čas t intenzitu obsluhy (průměrný počet obsloužených) za čas t"

Transkript

1 Ukázka - Systémy hromadné obsluhy Příklad: Pan Pumpička se rozhodl postavit samoobslužnou čerpací stanici u obce Česká Bříza. Na základě průzkumu ví, že by čerpací stanici mohlo průměrně navštívit 32, lidí za hodinu, s tím, že jeden stojan zvládne obsloužit 2 lidí za hodinu. Pan Pumpička by chtěl vypracovat rozbor kolik stojanů (všechny stojany mají stejnou nabídku) by měl postavit, aby pravděpodobnost, že je na pumpě méně aut než 5 byla výšší než 95%(prostor pro tvoření fronty je totiž jen pro 20 aut). Dále by chtěl, aby byl průměrný čas, který zákazník čeká ve frontě, menší něž minuta. Toto je klasická úloha teorie nazývající se Systémy hromadné obsluhy. Vytvoříme si matematický model této situace a úlohu vyřešíme nejprve obecně a následně i pro tento konkrétní příklad. Systémy hromadné obsluhy se analyzují podle několika základních kritérii, pro náš příklad předpokládejme následující: ) počet zákazníků je nekonečný, jedná se o takzvaný otevřený systém 2) zákazník je obsloužen v pořadí, v kterém přijel ( FIPO) 3) příjezd zákazníků probíhá takzvaným Poisonovým tokem. Pravděpodobnost, že za časový údaj t přijede právě k zákazníků je určena vzorcem: P (N =k )= (λ t)k e λ t k! kde λ je konstanta určující intenzitu příjezdů a N funkce označující počet zákazníků. 4) doba obsluhy má exponenciální rozdělení. Pravděpodobnost, že bude zákazník obsloužen v čase t je určena vzorcem: P =μ e μ t Systém s jednou obslužnou přepážkou Pro jednoduchost nejprve vytvoříme matematický model systému s jednou obslužnou přepážkou. Tento model se v literatuře vyskytuje pod označemím M/M/. Označme λ Označme μ intenzitu příchodů zákazníků za čas t intenzitu obsluhy (průměrný počet obsloužených) za čas t Analyzovat je možné pouze systémy, u kterých platí: λ <μ. Pokud by to tak nebylo, mohla by se vytvořit nekonečně dlouhá fronta. Nyní provedeme diskuzi událostí, které mohou v našem systému nastat: ) příchod nového zákazníka s pravděpodobností: P=λ Δt 2) ukončení obsluhy zákazníka s pravděpodobností: P=μ Δ t 3) žádná událost se nestane s pravděpodobností: P= (λ +μ)δ t kde Δ t je nějaký časový okamžik Schéma systému: v kolečkách je počet zákazníků v systému

2 označme vektor p p 2 p= p 3 (t ) jako vektor pravděpodobnosti jednotlivých stavů systému např. značí pravděpodobnost, že je v systému(ve frontě i obsluhovaných) právě n hostů v čase t ( λ )Δ t μ Δt 0 0 λ Δt (λ+μ)δt μ Δ t 0 P= 0 λ Δ t (λ+μ)δt μ Δ t 0 0 λ Δ t (λ +μ)δ t μ Δt λ Δt P (i,j)- matice pravděpodobností přechodů systému ze stavu i do stavu j v časovém intervalu Δ t dynamický vývoj systému je popsán vzorcem: p(t+δ t)=p p () Matici pravděpodobnosti přechodů upravíme do tvaru: P=I +(Δt) A Kde I je jednotková matice. Vztah () přepíšeme: p(t+δ t)= p+(δt) A p dále upravíme: p(t+δt) p =A p (Δ t) limitním přechodem Δ t 0 + dostáváme soustavu diferencionálních rovnic. p =A p (2) s počáteční podmínkou i=0 p i (t )= (3) Uvažujme, že řešíme takzvaný stacionární systém, to znamená systém, ve kterém pravděpodobnosti jednotlivýh jevů nezávisí na čase t. Většina,,rozumně se chovajícich systémů se do takového stavu po nějakém čase ustálí. Nás tedy budou zajímat pravděpodobnosti

3 , které ovšem nezávisí na čase t, tudíž jde pouze o pravděpodobnosti, což jsou pravděpodobnosti, že v systému bude n hostů (měřeno v kterémkoliv čase). To, že se p v čase nemění znamená, že p =0 pro t. Z naší diferenciální rovnice (2) se stává rovnice algebraická 0=A p. dostáváme : 0= λ +μ p 0=λ (λ +μ) p +μ p 2 0=λ p (λ+μ) p 2 +μ p 3 0=λ (λ +μ) +μ + Z první rovnice: p = λ μ zdá se, že obecné řešení pro n>0 má tvar =( λ μ )n důkaz provedeme matematickou indukcí ) pro n= a pro n=2 zřejmě platí 2)předpokládejme platnost vzorce pro n a n-, dokažme platnost pro n+ 0=λ (λ +μ) +μ + použijeme indukční předpoklad 0=λ ( λ μ )n (λ+μ)( λ μ )n +μ + 0= ( λn+ μ n ) +μ + a tedy + =( λ μ )n+ tudíž platí : =( λ μ )n dosazením do vztahu(3) dopočteme : ( λ μ ) i = = i=0 pi = i =0 ( λ μ ) i = i =0 λ μ = λ μ Pravděpodobnost, že v systému néní žádný zákazník = λ μ Pravděpodobnost, že v systému je právě n zákazníků =( λ μ )n ( λ μ ) pro n >0 Pravděpodobnost, že systém pracuje - U je stejná jako, že v systému není nula zákazníků tedy U = = μ λ tento vztah se také nazývá využitelnost systému

4 Střední hodnota počtu zákazníků v systému nechť N je náhodná veličina udávající počet zákazníků v systému pravděpodobnosti této náhodné veličiny máme již spočítány P (N =0)= = λ μ P (N =n)= =( λ μ )n ( λ μ ), pron>0 Z definice střední hodnoty: EN = n( λ μ )n ( λ μ )=( λ μ ) n( λ μ )n =( λ μ )( λ μ ) n( λ μ )(n ) =( λ μ )( λ μ )( ( μ λ )(n) ) ( λ μ )(n) ) =( λ μ )( λ μ )( λ ) =( λ μ )( λ μ ) μ ( λ = μ λ λ μ )2 EN =( λ μ )( λ μ )( protože platí λ μ < Střední hodnota počtu zákazníků ve frontě Nechť N f je náhodná veličina udávající počet zákazníků ve frontě. Pravděpodobnosti N f máme již také spočítány, jen si musíme uvědomit, že P (N f =n )= P( N =n) Pravděpodobnost, že je ve frontě n- zákazníků, je stejná jako, že je v systému n zákazníků (jeden je obsluhován). Střední hodnotu N f teď můžeme vypočítat pomocí pravděpodobností hodnot N =0 P( N =)+ P (N =2)+3 P (N =2)+ = n= (n ) P (N =n)= n = (n ) = n= Průměrný čas, který zákazník stráví v systému T =EN λ = na základě Littleova vztahu *, μ λ n n= Průměrný čas, který zákazník stráví ve frontě T f = λ = λ znovu použit Littleův vztah (μ λ )μ Model s více obslužnými přepážkami M/M/ Označme λ intenzitu příchodů zákazníků za čas t Označme μ intenzitu obsluhy (průměrný počet obsloužených) za čas t Označme c počet obslužných přepážek, c Pozn. střední rychlost obsluhy je c μ =EN ( )=EN λ μ = λ 2 (μ λ )μ Analyzovat je možné pouze systémy, u kterých platí: λ <μ c. Pokud by to tak nebylo, mohla by se vytvořit nekonečně dlouhá fronta. Poznamenejme, že stále platí předpoklady -4 z úvodu. Nyní budeme postupovat podobně jako v systému s jednou přepážkou.

5 Diskuze událostí: ) příchod nového zákazníka s pravděpodobností: P=λ Δt 2) ukončení obsluhy zákazníka s pravděpodobností: P=min(c,k) μ Δt, kde k je aktuální počet obsazených přepážek 3) nic se neděje s pravděpodobností: P= (λ +min (c, k) μ)δ t kde Δ t je nějaký časový okamžik Schéma systému: v kolečkách je počet zákazníků v systému Znovu označíme vektor p p 2 p= p 3 (t ) jako vektor pravděpodobností jednotlivých stavů systému Matice P nyní obecně vypadá: ( λ )Δ t μ Δt 0 0 λ Δt (λ+min(c,) μ)δt min(c,2) μ Δt 0 P= 0 λ Δt (λ+min(c,2) μ)δt min(c,3) μ Δt 0 λ Δ t (λ+min(c,3) μ)δtat λ Δ t Dynamický vývoj systému je znovu popsán vzorcem p(t+δ t)=p p Stejnými úpravami, jako v systému s jednou přepážkou, dojdeme ke tvaru

6 p = A p( t) s počáteční podmínkou p i (t )= i=0 Znovu budeme předpokládat stacionární systém, dostáváme algebraickou soustavu: 0= λ +μ p 0=λ (λ +min(c,) μ) p +min(c,2) μ p 2 0=λ p (λ+min(c,2) μ) p 2 +min(c,3) μ p 3 0=λ (λ +min(c,n) μ) +min(c,n+) μ + Z první rovnice: p = λ μ nyní řešení rozdělíme na dvě části pro 0<n c : postupným dosazováním podobně jako v případě systému s jednou přepážkou odhadneme vztah = n! ( λ μ )n a znovu jej dokážeme indukcí ) vztah zřejmě platí pro n= a n=2 2)předpokládejme, že vztah platí pro n a n- a dokažme, že pak platí pro n+ 0=λ (λ +n μ) +(n+) μ + použijeme indukční předpoklad 0=λ (n )! ( λ )n μ p0 (λ +n μ) n! ( μ λ )n +(n+) μ + 0= n! ( λ n+ μ ) +(n+) μ n+ + = (n+)! ( λ )n+ μ p0 pro c<n : systém můžeme nahradit systémem s jednou přepážkou a intenzitou obsluhy c μ (musíme si ale uvědomit, že začínáme ve stavu c) =( λ )n c pc =( λ )n c c μ c μ c! ( λ μ )c =( λ μ )n (c! c n c ) pro vyjádření p c jsme využili vztah odvozený výše dopočítáme znovu pomocí podmínky c = pn = n =0 sečteme sumu + ( λ μ )n (c! c n c ) = cc celkem tedy = c c! c pn = ( ( λ c μ )n = cc c! ( λ n! ( λ μ )n + c! ( λ μ )c μ c μ c λ pi = i=0 n! ( λ μ )n + n =c c μ )c ( λ μ ) n (c! c n c ) ) ( λ c μ )n c = c! ( λ μ )c ( λ c μ )n = c! ( λ μ )c ( λ c μ )

7 Střední hodnota počtu zákazníků ve frontě Nechť N f je náhodná veličina udávající počet zákazníků ve frontě. Pravděpodobnosti N f máme již také spočítány, jen si musíme uvědomit, že P (N f =n c)= P( N =n) pravděpodobnost, že ve frontě je n-c zákazníků je stejná jako že je v systému n zákazníků (c zákazníků je obsluhováno) Střední hodnotu N f teď můžeme vypočítat pomocí, pravděpodobností hodnot N = (n c)( λ μ )n (c!c n c ) = c c! ( λ μ )c+ c c! ( μ λ )c+ ( ( λ c μ )n ) = c c! ( λ )c+ μ ( ( λ (n c)( λ c μ )n c = p0 c c! ( λ μ )c+ c c! ( λ )c+ (μ c) 2 μ (μ c λ ) = 2 n( λ c μ )n = )) = c μ = (c )! ( λ μ c μ )c (μ c λ ) 2 Střední hodnota počtu zákazníků v systému nechť N je náhodná veličina udávající počet zákazníků v systému EN dopočteme pomocí vztahu =EN λ μ, s kterým jsme se již setkali u odvození střední hodnoty počtu osob ve frontě u systému s jednou přepážkou. A tento vztah platí i v tomto případě. EN = (c )! ( λ μ c μ )c (μ c λ ) + λ 2 μ Průměrný čas, který zákazník stráví v systému T =EN na základě Littleova vztahu λ Průměrný čas, který zákazník stráví ve frontě T f = λ = λ znovu použit Littleův vztah (μ λ )μ Nyní vypracujeme příklad pana Pumpičky λ =20 μ=45 Je zřejmé, že bude potřeba postavit nejméně 3 stojany. Hodnoty pro 3 stojany: =0, pravděpodobnost, že na čerpací stanici nebude žádný zákazník je 2,7% EN =3, průměrný počet zákazníků na čerpací stanici (i ve frontě) je 3,2 =0,672 průměrný počet zákazníků čekajících ve frontě je 0,6 T =0,0256h průměrný čas zákazníků strávený na čerpací stanici (i ve frontě) je 6,5 minut T f =0,09h průměrný čas, který zákazník stráví ve frontě je,4 minut Pravděpodobnost, že je na čerpací stanici méně než 5 aut n=3 P= 0 4 n! ( λ μ )n + n=4 ( λ μ )n (c! c n c ) =0, ,526=0, Hodnoty pro 4 stojany: =0, pravděpodobnost, že na čerpací stanici nebude žádný zákazník je 5,9% EN =2, průměrný počet zákazníků na čerpací stanici( i ve frontě) je 2,7 =0, průměrný počet zákazníků čekajících ve frontě je 0,95 T =0,0863h průměrný čas zákazníků strávený na čerpací stanici (i ve frontě) je 5,8 minut

8 T f =0, h průměrný čas, který zákazník stráví ve frontě je 0,7 sekund Pravděpodobnost, že je na čerpací stanici méně než 5 aut 4 P= n! ( λ 4 μ )n + ( λ μ )n n=5 (c! c n c ) p =0,74+0,25=0,99 0 Mohli bychom pokračovat dále, ale všechny podmínky pana Pumpičky už jsou splněny. Pan pumpičky by měl tedy postavit 4 samoobslužné stojany. Zdroje: Prezentace Systémy hromadné obsluhy,petr Janeček FAV ZČU * Littleův vztah - článek a důkaz Petr Vacek 204

4EK201 Matematické modelování. 8. Modely hromadné obsluhy

4EK201 Matematické modelování. 8. Modely hromadné obsluhy 4EK201 Matematické modelování 8. Modely hromadné obsluhy 8. Modely hromadné obsluhy Systém, ve kterém dochází k realizaci obsluhy příchozích požadavků = systém hromadné obsluhy Vědní disciplína zkoumající

Více

Exponenciální modely hromadné obsluhy

Exponenciální modely hromadné obsluhy Exponenciální modely hromadné obsluhy Systém s čekáním a neohraničeným zdrojem požadavků Na základě předchozích informací je potřeba probrat, jaké informace jsou dostupné v počtu pravděpodobnosti řešícím

Více

1 Teorie hromadné obsluhy

1 Teorie hromadné obsluhy 1 Teorie hromadné obsluhy Teorie hromadné obsluhy zkoumá modely, v nichž do nějakého systému obsluhy, kerý může mít jeden či více linek obsluhy vstupují jednotky, které mají být těmito linkami obslouženy.

Více

Kendallova klasifikace

Kendallova klasifikace Kendallova klasifikace Délka obsluhy, frontový režim, Littleovy vzorce Parametry obsluhy Trvání obsluhy - většinou předpokládáme, že trvání obsluhy jsou nezávisl vislé náhodné proměnné, se stejným rozdělením

Více

4EK311 Operační výzkum. 8. Modely hromadné obsluhy

4EK311 Operační výzkum. 8. Modely hromadné obsluhy 4EK311 Operační výzkum 8. Modely hromadné obsluhy 8. Modely hromadné obsluhy Systém, ve kterém dochází k realizaci obsluhy příchozích požadavků = systém hromadné obsluhy Vědní disciplína zkoumající tyto

Více

Stochastické modely Informace k závěrečné zkoušce

Stochastické modely Informace k závěrečné zkoušce Stochastické modely Informace k závěrečné zkoušce Jan Zouhar Katedra ekonometrie, FIS VŠE v Praze, zouharj@vse.cz 10. února 2015 Průběh zkoušky. Zkouška je ústní s přípravou na potítku. Každý si vylosuje

Více

DMA Přednáška Rekurentní rovnice. takovou, že po dosazení odpovídajících členů do dané rovnice dostáváme pro všechna n n 0 + m pravdivý výrok.

DMA Přednáška Rekurentní rovnice. takovou, že po dosazení odpovídajících členů do dané rovnice dostáváme pro všechna n n 0 + m pravdivý výrok. DMA Přednáška Rekurentní rovnice Rekurentní rovnice či rekurzivní rovnice pro posloupnost {a n } je vztah a n+1 = G(a n, a n 1,..., a n m ), n n 0 + m, kde G je nějaká funkce m + 1 proměnných. Jejím řešením

Více

Teorie front. Systém hromadné obsluhy

Teorie front. Systém hromadné obsluhy Teorie front Pokouší se analyzovat a řešit procesy, ve kterých se vyskytují proudy objektů procházejících určitými zařízeními, od nichž vyžadují obsluhu. Vlivem omezené kapacity obsluhy může docházet k

Více

Stochastické procesy - pokračování

Stochastické procesy - pokračování Stochastické procesy - pokračování Úvodní pojmy: Stochastické procesy jsou to procesy (funkce) jejichž hodnoty jsou náhodné veličiny závislé na parametru t stav systému souhrn vlastností a charakteristik,

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 4

Pravděpodobnost a statistika (BI-PST) Cvičení č. 4 Pravděpodobnost a statistika (BI-PST) Cvičení č. 4 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015

Více

SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY. Michal Dorda. VŠB - TU Ostrava, Fakulta strojní, Institut dopravy

SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY. Michal Dorda. VŠB - TU Ostrava, Fakulta strojní, Institut dopravy SIMULACE SPOLEHLIVOSTI SYSTÉMŮ HROMADNÉ OBSLUHY Michal Dorda VŠB - TU Ostrava Fakulta strojní Institut dopravy 1 Úvod V běžné technické praxi se velice často setkáváme s tzv. systémy hromadné obsluhy aniž

Více

Principy indukce a rekurentní rovnice

Principy indukce a rekurentní rovnice Principy indukce a rekurentní rovnice Jiří Velebil: X01DML 22. října 2010: Indukce 1/15 Příklad Místností rozměru n budeme rozumět šachovnici rozměru 2 n 2 n, ze které je jedno (libovolné) pole vyjmuto.

Více

A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti

A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti Vojta Vonásek vonasek@labe.felk.cvut.cz České vysoké učení technické v Praze Fakulta elektrotechnická Katedra kybernetiky Markovovy

Více

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu [M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:

Více

Téma: Modální analýza a volné kmitání slabě tlumených lineárních kmitavých soustav

Téma: Modální analýza a volné kmitání slabě tlumených lineárních kmitavých soustav Téma: Modální analýza a volné kmitání slabě tlumených lineárních kmitavých soustav Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Volné kmitání konzervativních(netlumených) soustav je popsáno maticovou pohybovou

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ107/2200/280141 Soustavy lineárních rovnic Michal Botur Přednáška 4 KAG/DLA1M: Lineární

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D.

Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D. Algoritmizace diskrétních simulačních modelů Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Při programování simulačních modelů lze hlavní dílčí problémy shrnout do následujících bodů: 1) Zachycení statických

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů,

Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, Rekurentní jevy Značení. (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, kde každý má tutéž konečnou nebo spočetnou množinu výsledků E, E,...}. Pak E j,..., E jn } značí

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

13. Lineární procesy

13. Lineární procesy . Lineární procesy. Lineární procesy Našim cílem je studovat lineární (iterované) procesy. Každý takový proces je zadán čtvercovou maticí A Mat k k (R). Dále víme, že systém se v čase t n nachází ve stavu

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Bakalářská práce Nejslabší! Máte padáka! Strategie ukládání

Bakalářská práce Nejslabší! Máte padáka! Strategie ukládání Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Bakalářská práce Nejslabší! Máte padáka! Strategie ukládání Plzeň 2015 Jiří Šebek Prohlášení Prohlašuji, že jsem bakalářskou práci

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

Kapitola 12: Soustavy diferenciálních rovnic 1. řádu

Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Základní pojmy Definice: Rovnice tvaru = f(t, x, y) = g(t, x, y), t I nazýváme soustavou dvou diferenciálních rovnic 1. řádu. Řešením soustavy rozumíme

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +, Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,

Více

Diferenciální rovnice 3

Diferenciální rovnice 3 Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty

Více

IV120 Spojité a hybridní systémy. Jana Fabriková

IV120 Spojité a hybridní systémy. Jana Fabriková IV120 Spojité a hybridní systémy Základní pojmy teorie řízení David Šafránek Jiří Barnat Jana Fabriková Problém řízení IV120 Základní pojmy teorie řízení str. 2/25 Mějme dynamický systém S definovaný stavovou

Více

1 Řešení soustav lineárních rovnic

1 Řešení soustav lineárních rovnic 1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty

Více

2. LIMITA A SPOJITOST FUNKCE

2. LIMITA A SPOJITOST FUNKCE . LIMITA A SPOJITOST FUNKCE Průvodce studiem Funkce y = je definována pro ( ) (>. Z grafu funkce (obr. 3) a z tabulky (a) je vidět že čím více se hodnoty blíží k -3 tím více se funkční hodnoty blíží ke

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule

8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule Cíle Ve výkladu o funkcích dvou proměnných jsme se seznámili také s jejich diferenciálem prvního řádu, který je pro funkci F(x, y) vyjádřen výrazem df dx + dy. Nyní budeme hledat odpověd na otázku, zda

Více

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky řešeny numericky řešeny numericky Břetislav Fajmon, UMAT FEKT, VUT Brno Na minulé přednášce jsme viděli některé klasické metody a přístupy pro řešení diferenciálních rovnic: stručně řečeno, rovnice obsahující

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

13. cvičení z PSI ledna 2017

13. cvičení z PSI ledna 2017 cvičení z PSI - 7 ledna 07 Asymptotické pravděpodobnosti stavů Najděte asymptotické pravděpodobnosti stavů Markovova řetězce s maticí přechodu / / / 0 P / / 0 / 0 0 0 0 0 0 jestliže počáteční stav je Řešení:

Více

3. ANTAGONISTICKÉ HRY

3. ANTAGONISTICKÉ HRY 3. ANTAGONISTICKÉ HRY ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,

Více

4. Aplikace matematiky v ekonomii

4. Aplikace matematiky v ekonomii 4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =

Více

Kvantitativní metody v rozhodování. Marta Doubková

Kvantitativní metody v rozhodování. Marta Doubková Kvantitativní metody v rozhodování Marta Doubková Seminární práce 28 OBSAH 1 LINEÁRNÍ PROGRAMOVÁNÍ KAPACITNÍ ÚLOHA... 3 2 DISTRIBUČNÍ ÚLOHA... 7 3 ANALÝZA KRITICKÉ CESTY METODA CPM... 13 4 MODEL HROMADNÉ

Více

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I

CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I Informačné a automatizačné technológie v riadení kvality produkcie Vernár,.-4. 9. 005 CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I KÜNZEL GUNNAR Abstrakt Příspěvek uvádí základní definice, fyzikální interpretaci

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

ROVNICE NA ČASOVÝCH ŠKÁLÁCH A NÁHODNÉ PROCESY. Michal Friesl

ROVNICE NA ČASOVÝCH ŠKÁLÁCH A NÁHODNÉ PROCESY. Michal Friesl Robust 14, Jetřichovice ROVNICE NA ČASOVÝCH ŠKÁLÁCH A NÁHODNÉ PROCESY Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Robust 14, Jetřichovice ÚVOD Úvod Analýzníkům

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

cv3.tex. Vzorec pro úplnou pravděpodobnost

cv3.tex. Vzorec pro úplnou pravděpodobnost 3 cvičení - pravděpodobnost 2102018 18cv3tex n i=1 Vzorec pro úplnou pravděpodobnost Systém náhodných jevů nazýváme úplným, jestliže pro něj platí: B i = 1 a pro i k je B i B k = 0 Jestliže je (Ω, A, P

Více

Obsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b,

Obsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b, Obsah Lineární rovnice Definice 77 Uvažujme číselné těleso T a prvky a 1,, a n, b T Úloha určit všechny n-tice (x 1,, x n ) T n, pro něž platí n a i x i = a 1 x 1 + + a n x n = b, i=1 se nazývá lineární

Více

3. Podmíněná pravděpodobnost a Bayesův vzorec

3. Podmíněná pravděpodobnost a Bayesův vzorec 3. Podmíněná pravděpodobnost a Bayesův vzorec Poznámka: V některých úlohách řešíme situaci, kdy zkoumáme pravděpodobnost náhodného jevu za dalších omezujících podmínek. Nejčastěji má omezující podmínka

Více

FREDHOLMOVA ALTERNATIVA

FREDHOLMOVA ALTERNATIVA FREDHOLMOVA ALTERNATIVA Pavel Jirásek 1 Abstrakt. V tomto článku se snažíme shrnout dosavadní výsledky týkající se Fredholmovy alternativy (FA). Postupně zmíníme FA na prostorech konečné dimenze, FA pro

Více

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

2. kapitola: Euklidovské prostory

2. kapitola: Euklidovské prostory 2. kapitola: Euklidovské prostory 2.1 Definice. Euklidovským n-rozměrným prostorem rozumíme neprázdnou množinu E n spolu s vektorovým prostorem V n a přiřazením, které každému bodu a z E n a každému vektoru

Více

Lineární algebra : Vlastní čísla, vektory a diagonalizace

Lineární algebra : Vlastní čísla, vektory a diagonalizace Lineární algebra : Vlastní čísla, vektory a diagonalizace (14. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 21. dubna 2014, 19:37 1 2 14.1 Vlastní čísla a vlastní vektory Nechť je

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Literatura: O. Zindulka: Matematika 3 (kapitola 4, kapitola 5)

Literatura: O. Zindulka: Matematika 3 (kapitola 4, kapitola 5) Předmět: MA03 Opakování: formulace okrajové úlohy (OÚ), skalární součin funkcí, ortogonalita funkcí Nová látka: vlastní čísla a vlastní funkce OÚ ortogonalita vlastních funkcí řešitelnost OÚ Literatura:

Více

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární

Více

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice 9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Teorie hromadné obsluhy (Queuing Theory)

Teorie hromadné obsluhy (Queuing Theory) Teorie hromadné obsluhy (Queuing Theory) Mgr. Šárka Voráčová, Ph.D. Katedra aplikované matematiky voracova @ fd.cvut.cz http://www.fd.cvut.cz/department/k611/pedagog/k611tho.html Literatura Š. Voráčová,

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro 7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,

Více

y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1

y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1 ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což

Více

Obecná úloha lineárního programování

Obecná úloha lineárního programování Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné

Více

1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!

1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3! Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k

Více

1/10. Kapitola 12: Soustavy lineárních algebraických rovnic

1/10. Kapitola 12: Soustavy lineárních algebraických rovnic 1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 10. přednáška Diferenciální počet funkcí více proměnných (II) Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci

Více

Teorie hromadné obsluhy (Queuing Theory)

Teorie hromadné obsluhy (Queuing Theory) Teorie hromadné obsluhy (Queuing Theory) Mgr. Šárka Voráčov ová, Ph.D. Katedra aplikované matematiky voracova @ fd.cvut..cvut.czcz http://www.fd fd.cvut.cz/department/k611/pedagog/k611tho. /department/k611/pedagog/k611tho.html

Více

Časové řady, typy trendových funkcí a odhady trendů

Časové řady, typy trendových funkcí a odhady trendů Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces

Více

Časové řady, typy trendových funkcí a odhady trendů

Časové řady, typy trendových funkcí a odhady trendů Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové

Více

Přednáška 6, 6. listopadu 2013

Přednáška 6, 6. listopadu 2013 Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)

12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ. Semestrální práce. Z předmětu Teorie hromadné obsluhy (THRO) Jan Čáslava.

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ. Semestrální práce. Z předmětu Teorie hromadné obsluhy (THRO) Jan Čáslava. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ Semestrální práce Z předmětu Teorie hromadné obsluhy (THRO) Jan Čáslava Skupina 1 57 Simulace fiktivní čerpací stanice 2011 1 Obsah 1. Popis situace...

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Antonín Sadil Elementární metody řešení diferenčních rovnic

Antonín Sadil Elementární metody řešení diferenčních rovnic Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Antonín Sadil Elementární metody řešení diferenčních rovnic Katedra matematické analýzy Vedoucí bakalářské práce: RNDr Robert Černý,

Více

Podobnost matic. Definice 8.6. Dány matice A, B M n (C). Jestliže existuje regulární matice P M n (C) tak,

Podobnost matic. Definice 8.6. Dány matice A, B M n (C). Jestliže existuje regulární matice P M n (C) tak, Podobnost matic Definice 84 Dány matice A, B M n (C) Jestliže existuje regulární matice P M n (C) tak, že B = P 1 AP, pak říkáme, že matice B je podobná matici A a píšeme A B Takto zavedená binární relace

Více