Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.
|
|
- Karla Ševčíková
- před 8 lety
- Počet zobrazení:
Transkript
1 Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích
2 Cíle kurzu: seznámit posluchače s vybranými statistickými metodami, které jsou aplikovatelné v ekonomických discipĺınách a marketingu seznámit posluchače se statistickým programovacím prostředím R případně komerčním paketem STATISTICA. Důraz bude kladen na programovací prostředí R seznámit posluchače s možnostmi analýz a prezentací výsledků statistického zpracování dat.
3 Dílčí cíle: Dílčí cíl spočívá v seznámení posluchače s vybranými moderními statistickými postupy a metodami. Seznámit posluchače s podmínkami použitelnosti jednotlivých metod. Naučit posluchače správně interpretovat získané výsledky. Upozornit na přednosti i nedostatky představovaných metod. Na různých problémech pak ukázat, v kterých situacích přicházejí tyto metody a postupy v úvahu a za jakých předpokladů jsou efektivně využitelné. Naučit posluchače využívat v základní míře software STATIS- TICA a programovací prostředí R.
4 Organizace studia Přednáška - nepovinná dotace: 3 hodiny / týden Cvičení - povinné dotace: 1 hodina / týden Na přednášce budou zpravidla zadány úkoly pro následující cvičení. Důraz bude kladen především na samostudium!!!
5 Vyučující Ing. Michael Rost, Ph.D.
6 Povinná literatura Ke studiu budete potřebovat skriptum: Pro zopakování se bude hodit skriptum: ČERMÁKOVÁ, A., STŘELEČEK, F.: Statistika I., JU ZF v Českých Budějovicích, České Budějovice 1995, ISBN účast na přednáškách... literatura...
7 Potřebné www stránky rost
8 Rámcová osnova základního kurzu 1 To co tu probíhá právě ted. 2 Úvod do programovacího prostředí R. Instalace, syntax a příkazová řádka, objekty, základní příkazy, grafika, import dat do R atd. 3 Některé aspekty statistického uvažování + základní východiska a doporučení. Jak se to provede v R. 4 5 Analýza kategoriálních dat. Kontingenční tabulky. Testy o nezávislosti. Asociace proměnných.
9 Rámcová osnova základního kurzu 6 Logistická regrese, proč tak složitě, GLM, metoda maximální věrohodnosti, motivační příklad. 7 Úvod do vícerozměrné statistiky, matice dat, základní charakteristiky souboru, vizualizace vícerozměrných dat, míry podobnosti a nepodobnosti dat. 8 Analýza hlavních komponent (PCA) - redukce dimenzionality problému, formulace problému, vlastní čísla a vlastní vektory, podstata metody PCA, interpretace, určení optimálního počtu hlavních komponent - latentních proměnných, interpretace modelu. Alternativy a návaznosti metody Zadání samostatné práce + test
10 Rámcová osnova základního kurzu Segmentace trhu, pojem shluku, metody shlukové analýzy, algoritmy, výhody a nevýhody jednotlivých metod. 12 Diskriminační analýza, podstata metody, lineární diskriminační analýza, Boxův test, Fisherův přístup Pěstujeme stromy aneb metodologie C&RT (Regresní a klasifikační stromy). Podstata metody, štěpící kritérium - nečistota uzlu, růst a prořezávání stromů, motivační příklad. 14 Závěr kurzu. Prostor pro vaše dotazy, aneb co vás opravdu zajímá? Vaše hodnocení, diskuse k průběhu semestru...
11 Práce v semestru V průběhu semestru bude zadána samostatná práce. Problémy k řešení budou zadány na www stránkách přednášejícího, tj. rost/zapocty
12 Zkouška Zkouška je písemná. V průběhu písemné zkoušky je k dispozici počítač s nainstalovaným software STATISTICA a R. K dispozici má posluchač rovněž kapesní kalkulátor. Jiné pomůcky nejsou povoleny. Zadání písemné části obsahuje 6 příkladů dle dané varianty testu. Posluchači kurzu musí kompletně vyřešit nadpoloviční většinu příkladů.
Ing. Michael Rost, Ph.D.
Statistika úvodní přednáška Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Cíle základního kurzu: seznámit posluchače se základy počtu pravděpodobnosti, seznámit posluchače s aspekty
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (AKADEMIE)
V rámci projektu OPVK CZ.1.07/2.2.00/28.0021 Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (AKADEMIE) se v roce 2015
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy
Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování
Pokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační
IBM SPSS Decision Trees
IBM Software IBM SPSS Decision Trees Jednoduše identifikujte skupiny a predikujte Stromově uspořádané postupné štěpení dat na homogenní podmnožiny je technika vhodná pro exploraci vztahů i pro tvorbu rozhodovacích
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
Přednáška 13 Redukce dimenzionality
Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /
STATISTICKÉ PROGRAMY
Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné STATISTICKÉ PROGRAMY VYUŽITÍ EXCELU A SPSS PRO VĚDECKO-VÝZKUMNOU ČINNOST Elena Mielcová, Radmila Stoklasová a Jaroslav Ramík Karviná
STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D.
STATISTIKA LS 2013 Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. Cvičící: Ing. Ondřej Grunt RNDr. Pavel Jahoda, Ph.D. Ing. Kateřina Janurová Mgr. Tereza
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz LITERATURA Holčík, J.: přednáškové prezentace Holčík, J.: Analýza a klasifikace signálů.
Informační a komunikační technologie
Dodatek č. Školního vzdělávacího programu Obchodní akademie Lysá nad Labem, obor 63-4-M/02 Obchodní akademie, platného od. 9. 202 - platnost dodatku je od. 9. 206 Informační a komunikační technologie je
Management informačních systémů. Název Information systems management Způsob ukončení * přednášek týdně
Identifikační karta modulu v. 4 Kód modulu Typ modulu profilující Jazyk výuky čeština v jazyce výuky Management informačních systémů česky Management informačních systémů anglicky Information systems management
Název předmětu: Školní rok: Forma studia: Studijní obory: Ročník: Semestr: Typ předmětu: Rozsah a zakončení předmětu:
Plán předmětu Název předmětu: Algoritmizace a programování (PAAPK) Školní rok: 2007/2008 Forma studia: Kombinovaná Studijní obory: DP, DI, PSDPI, OŽPD Ročník: I Semestr: II. (letní) Typ předmětu: povinný
Získávání znalostí z dat
Získávání znalostí z dat Informační a komunikační technologie ve zdravotnictví Získávání znalostí z dat Definice: proces netriviálního získávání implicitní, dříve neznámé a potencionálně užitečné informace
SYLABUS CESTOVNÍ RUCH A VOLNOČASOVÉ MODULU AKTIVITY DÍLČÍ ČÁST PODNIKÁNÍ V CESTOVNÍM RUCHU. Lenka Švajdová
SYLABUS MODULU CESTOVNÍ RUCH A VOLNOČASOVÉ AKTIVITY DÍLČÍ ČÁST PODNIKÁNÍ V CESTOVNÍM RUCHU Lenka Švajdová Ostrava 2011 Název: Cestovní ruch a volnočasové aktivity podnikání v cestovním ruchu Autoři: Lenka
Český svaz greenkeeperů. Mendelovou zemědělskou a lesnickou univerzitou v Brně. Golfovým klubem Hluboká nad Vltavou a Městem Hluboká nad Vltavou
Poskytovatel finanční podpory: JIHOČESKÝ KRAJ Sídlo: U Zimního stadionu 1952/2, 370 76 České Budějovice Jehož jménem jedná: RNDr. Jan Zahradník, hejtman kraje IČ: 70890650 a Příjemce finanční podpory:
Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod
PSY117/454 Statistická analýza dat v psychologii Přednáška 12 Vícerozměrné metody Schematický úvod Co je na slově statistika tak divného, že jeho vyslovení tak často způsobuje napjaté ticho? William Kruskal
Statistická analýza dat
Statistická analýza dat Jméno: Podpis: Cvičení Zkouška (písemná + ústní) 25 Celkem 50 Známka Pokyny k vypracování: doba řešení je 120min, jasně zodpovězte pokud možno všechny otázky ze zadání, pracujte
Statistické metody v marketingu. Ing. Michael Rost, Ph.D.
Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Úvodem Modelování vztahů mezi vysvětlující a vysvětlovanou (závisle) proměnnou patří mezi základní aktivity,
Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické
Československá psychologie 0009-062X Metodologické požadavky na výzkumné studie METODOLOGICKÉ POŽADAVKY NA VÝZKUMNÉ STUDIE Výzkumné studie mají přinášet nová konkrétní zjištění získaná specifickými výzkumnými
Semestrální projekt k závěrečné práci
Semestrální projekt k závěrečné práci Studijní opora pro kurz Rozpočtování staveb v rámci projektu Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu Michal Janšta 2013 České Budějovice
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
SYLABUS CESTOVNÍ RUCH A VOLNOČASOVÉ AKTIVITY MODULU DÍLČÍ ČÁST PODNIKÁNÍ VE VOLNOČASOVÝCH AKTIVITÁCH. Lenka Švajdová
SYLABUS MODULU CESTOVNÍ RUCH A VOLNOČASOVÉ AKTIVITY DÍLČÍ ČÁST PODNIKÁNÍ VE VOLNOČASOVÝCH AKTIVITÁCH Lenka Švajdová Ostrava 2011 Název: ruch a volnočasové aktivity podnikání ve volnočasových aktivitách
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní
INOVACE PŘEDMĚTŮ ICT. MODUL 11: PROGRAMOVÁNÍ WEBOVÝCH APLIKLACÍ Metodika
Vyšší odborná škola ekonomická a zdravotnická a Střední škola, Boskovice INOVACE PŘEDMĚTŮ ICT MODUL 11: PROGRAMOVÁNÍ WEBOVÝCH APLIKLACÍ Metodika Zpracoval: Jaroslav Kotlán srpen 2009s Úvod Modul Programování
1. ZÁVAZNÉ PŘEDMĚTY. Ekonomická teorie. Matematicko statistické metody v ekonomii 2. POVINNĚ VOLITELNÉ PŘEDMĚTY
SLEZSKÁ UNIVERZITA V OPAVĚ OBCHODNĚ PODNIKATELSKÁ FAKULTA V KARVINÉ ÚSTAV DOKTORSKÝCH STUDIÍ 1. ZÁVAZNÉ PŘEDMĚTY Ekonomická teorie Matematicko statistické metody v ekonomii 2. POVINNĚ VOLITELNÉ PŘEDMĚTY
InformatikaaVT(1) Cílem předmětu je: Žáci:
InformatikaaVT(1) Cílem předmětu je: seznámení žáků se základními pojmy informatiky a VT poskytnutí teoretických znalostí a praktických dovedností nezbytných při práci s informacemi azařízeními VT Žáci:
Hledání optimální polohy stanic a zastávek na tratích regionálního významu
Hledání optimální polohy stanic a zastávek na tratích regionálního významu Václav Novotný 31. 10. 2018 Anotace 1. Dopravní obsluha území tratěmi regionálního významu 2. Cíle výzkumu a algoritmus práce
Vícerozměrné statistické metody
Vícerozměrné statistické metody Podobnosti a vzdálenosti ve vícerozměrném prostoru, asociační matice II Jiří Jarkovský, Simona Littnerová Vícerozměrné statistické metody Práce s asociační maticí Vzdálenosti
Předmět: 1.1 Využití tabulkového procesu jako laboratorního deníku Přednášející: Doc. Ing. Stanislava Šimonová, Ph.D., Doc. Ing. Milan Javůrek, CSc.
Předmět: 1.1 Využití tabulkového procesu jako laboratorního deníku Přednášející: Doc. Ing. Stanislava Šimonová, Ph.D., Doc. Ing. Milan Javůrek, CSc. Zadání: Do příštího soustředění předložte ke klasifikaci
PRŮVODCE STUDIEM PRO PREZENČNÍ FORMU STUDIA MODULU CESTOVNÍ RUCH A VOLNOČASOVÉ OČASOVÉ AKTIVITY DÍLČÍ ČÁST PODNIKÁNÍ VE VOLNOČASOVÝCH AKTIVITÁCH
PRŮVODCE STUDIEM PRO PREZENČNÍ FORMU STUDIA MODULU CESTOVNÍ RUCH A VOLNOČASOVÉ OČASOVÉ AKTIVITY DÍLČÍ ČÁST PODNIKÁNÍ VE VOLNOČASOVÝCH AKTIVITÁCH Lenka Švajdová Ostrava 2011 Název: Cestovní ruch a volnočasové
Pokročilé neparametrické metody. Klára Kubošová
Klára Kubošová Další typy stromů CHAID, PRIM, MARS CHAID - Chi-squared Automatic Interaction Detector G.V.Kass (1980) nebinární strom pro kategoriální proměnné. Jako kriteriální statistika pro větvení
4EK201 Matematické modelování. 11. Ekonometrie
4EK201 Matematické modelování 11. Ekonometrie 11. Ekonometrie Ekonometrie Interdisciplinární vědní disciplína Zkoumá vztahy mezi ekonomickými veličinami Mikroekonomickými i makroekonomickými Ekonomie ekonomické
Diskriminační analýza hodnocení rozdílů mezi 2 nebo více skupinami objektů charakterizovanými více znaky
Diskriminační analýza hodnocení rozdílů mezi 2 nebo více skupinami objektů charakterizovanými více znaky Interpretují rozdíly mezi předem stanovenými třídami Cílem je klasifikace objektů do skupin Hledáme
MATLAB Úvod. Úvod do Matlabu. Miloslav Čapek
MATLAB Úvod Úvod do Matlabu Miloslav Čapek Proč se na FELu učit Matlab? Matlab je světový standard pro výuku v technických oborech využívá ho více než 3500 univerzit licence vlastní tisíce velkých firem
Proces marketingového výzkumu - jednotlivé fáze, význam, stručná charakteristika. Výběr a formulace výzkumného problému. Vztahy mezi proměnnými.
Proces marketingového výzkumu - jednotlivé fáze, význam, stručná charakteristika. Výběr a formulace výzkumného problému. Projekt. Jednotky analýzy. Proměnné. Vztahy mezi proměnnými. Téma č. 2 Cíle marketingového
Manažerská informatika databázové aplikace
3MA383 Manažerská informatika databázové aplikace Česky Anglicky Německy Forma výuky Úroveň studia Manažerská informatika databázové aplikace Management Information Technology atabases Application Managementinformatik
PRŮVODCE STUDIEM PRO PREZENČNÍ FORMU STUDIA MODULU CESTOVNÍ RUCH A VOLNOČASOVÉ OČASOVÉ AKTIVITY DÍLČÍ ČÁST PODNIKÁNÍ V CESTOVNÍM RUCHU.
PRŮVODCE STUDIEM PRO PREZENČNÍ FORMU STUDIA MODULU CESTOVNÍ RUCH A VOLNOČASOVÉ OČASOVÉ AKTIVITY DÍLČÍ ČÁST PODNIKÁNÍ V CESTOVNÍM RUCHU Lenka Švajdová Ostrava 2011 Název: Cestovní ruch a volnočasové aktivity
SYLABUS MODULU LOGISTIKA A JAKOST
SYLABUS MODULU LOGISTIKA A JAKOST Doc. Dr. Ing. Miroslav Merenda Ostrava 2011 Název: Logistika a jakost Autoři: Doc. Dr. Ing. Miroslav merenda Vydání: první, 2011 Počet stran: 20 Tisk: Vysoká škola podnikání,
Interkulturní marketing a komunikace (N_IMaK) LS 10
Interkulturní marketing a komunikace (N_IMaK) LS 10 Magisterské studium Garant předmětu:. doc. Ing. Anna Klosová, CSc. Vyučující:.. doc. Ing. Anna Klosová, CSc. PhDr. Marie Hamplová Typ studijního předmětu:
Univerzita Pardubice 8. licenční studium chemometrie
Univerzita Pardubice 8. licenční studium chemometrie Statistické zpracování dat při managementu jakosti Semestrální práce Metody s latentními proměnnými a klasifikační metody Ing. Jan Balcárek, Ph.D. vedoucí
Obsah. Předmluva 13. O autorovi 15. Poděkování 16. O odborných korektorech 17. Úvod 19
Předmluva 13 O autorovi 15 Poděkování 16 O odborných korektorech 17 Úvod 19 Co kniha popisuje 19 Co budete potřebovat 20 Komu je kniha určena 20 Styly 21 Zpětná vazba od čtenářů 22 Errata 22 KAPITOLA 1
Klasifikační metody pro genetická data: regularizace a robustnost
Odd medicínské informatiky a biostatistiky Ústav informatiky AV ČR, vvi Práce vznikla za finanční podpory Nadačního fondu Neuron na podporu vědy Klasifikační metody pro genetická data Regularizovaná klasifikační
SYLABUS IT V. Jiří Kubica. Ostrava 2011
P MODULU SYLABUS IT V DÍLČÍ ČÁST PROGRAMOVÁNÍ BUSINESS APLIKACÍ PODNIKU Bronislav Heryán Jiří Kubica Ostrava 20 : Autoři: Vydání: Počet stran: Tisk: Vydala: Sylabus modulu IT v podniku Programování business
Přínos k rozvoji klíčových kompetencí:
Střední škola hospodářská a lesnická, Frýdlant, Bělíkova 1387, příspěvková organizace Název modulu Informační a komunikační Kód modulu ICT-M-4/1-5 technologie Délka modulu 60 hodin Platnost 1.09.2010 Typ
Předměty. Algoritmizace a programování Seminář z programování. Verze pro akademický rok 2012/2013. Verze pro akademický rok 2012/2013
Předměty Algoritmizace a programování Seminář z programování Verze pro akademický rok 2012/2013 Verze pro akademický rok 2012/2013 1 Přednášky Jiřina Královcová MTI, přízemí budovy A Tel: 48 53 53 521
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
ALGORITMIZACE A PROGRAMOVÁNÍ
Metodický list č. 1 Algoritmus a jeho implementace počítačovým programem Základním cílem tohoto tematického celku je vysvětlení pojmů algoritmus a programová implementace algoritmu. Dále je cílem seznámení
Pokročilejší metody: výběr. Začínáme otázkami na povahu vysvětlované proměnné a končíme otázkami na povahu vysvětlujících proměnných
Výběr metody Jak vybrat správnou statistickou metodu pro moje data a pro otázku, kterou si kladu Neexistuje žádná náhražka za zkušenost nejlepší metoda, jak vědět co dělat, je použít stejnou správnou metodu
MANAŽERSKÉ PROPOČTY, kód: 238 1712
CÍL, PRAVIDLA A PROGRAM KURZU: MANAŽERSKÉ PROPOČTY, kód: 238 1712 Ústav: Ú 12138 - Řízení a ekonomika podniku, Fakulta strojní, Karlovo náměstí 13 Obor: Bak. - VES Semestr: 8. Rozsah: 2+2; z+zk Kredity:
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace. Maturitní otázky z předmětu INFORMATIKA A VÝPOČETNÍ TECHNIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu INFORMATIKA A VÝPOČETNÍ TECHNIKA 1. Algoritmus a jeho vlastnosti algoritmus a jeho vlastnosti, formy zápisu algoritmu
Vícerozměrné statistické metody
Vícerozměrné statistické metody Ordinační analýzy principy redukce dimenzionality Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Ordinační analýza a její cíle Cíle ordinační analýzy
Počítačové kurzy buildit
Počítačové kurzy buildit Kurz MS Windows - základy 1 590 Kč principy systému Windows, ovládání systému, práce s aplikacemi a okny, správa souborů a složek, multitasking, práce se schránkou Uživatelům,
PRŮVODCE STUDIEM PRO PREZENČNÍ FORMU STUDIA MODULU LOGISTIKA A JAKOST
PRŮVODCE STUDIEM PRO PREZENČNÍ FORMU STUDIA MODULU LOGISTIKA A JAKOST Doc. Dr. Ing. Miroslav Merenda Ostrava 2011 Název: Logistika a jakost Autoři: Doc. Dr. Ing. Miroslav Merenda Vydání: první, 2011 Počet
Sylabus pro denní formu výuky bc. oboru adiktologie
Název předmětu: Základy práva Číslo předmětu: B01270 Typ předmětu, dotace: povinný, 30 hodin, 2+0 Zakončení předmětů: zápočet Ročník: 1. Semestr: zimní Vyučující: JUDr. Michaela Štefunková, Ph.D. Kontakt:
Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.
Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Shluková analýza Shluková analýza je souhrnným názvem pro celou řadu výpočetních algoritmů, jejichž cílem
Informatika. tercie. Mgr. Kateřina Macová 1
Informatika tercie Mgr. Kateřina Macová 1 Provozní řád učebny informatiky Žáci smí být v učebně výhradně za přítomnosti vyučujícího. Do učebny smí vstoupit a učebnu smí opustit pouze na pokyn vyučujícího.
FINANCE PODNIKU A FINANČNÍ PLÁNOVÁNÍ 2
Anotace: Cíle předmětu FINANCE PODNIKU A FINANČNÍ PLÁNOVÁNÍ 2 (Verze 04/05) Předmět navazuje na předmět Podnikové finance a finanční plánování 1, kde se student seznámil se základy podnikového financování
Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup
Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009
MULTIMEDIÁLNÍ A HYPERMEDIÁLNÍ SYSTÉMY
MULTIMEDIÁLNÍ A HYPERMEDIÁLNÍ SYSTÉMY 1) Úvod do problematiky Petr Lobaz, 18. 2. 2004 ORGANIZACE PŘ EDMĚ TU POŽADAVKY KE ZKOUŠCE vypracování semestrální práce (max. 70 bodů) napsání testu (max. 30 bodů)
Vzdělávací obsah vyučovacího předmětu
V.9.3. Vzdělávací obsah vyučovacího předmětu Vzdělávací oblast: Inormatika a informační a komunikační technologie Vyučovací předmět: Informatika Ročník: 1. ročník + kvinta chápe a používá základní termíny
Manažerská ekonomika KM IT
KVANTITATIVNÍ METODY INFORMAČNÍ TECHNOLOGIE (zkouška č. 3) Cíl předmětu Získat základní znalosti v oblasti práce s ekonomickými ukazateli a daty, osvojit si znalosti finanční a pojistné matematiky, zvládnout
1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
3 INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE UČEBNÍ OSNOVY
3 INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE UČEBNÍ OSNOVY 3. 1 Informační a komunikační technologie Časová dotace 4. ročník 1 hodina 5. ročník 1 hodina Celková dotace na 1. stupni je 2 hodiny. 6. ročník 1 hodina
Speciální numerické metody 4. ročník bakalářského studia. Cvičení: Ing. Petr Lehner Přednášky: doc. Ing. Martin Krejsa, Ph.D.
Speciální numerické metody 4. ročník bakalářského studia Cvičení: Ing. Petr Lehner Přednášky: doc. Ing. Martin Krejsa, Ph.D. 1 Základní informace o cvičení Předmět: 228-0210/01 Speciální numerické metody
Úvod. Programovací paradigmata
.. Úvod. Programovací paradigmata Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Cíl: programování efektivně a bezpečně Programovací techniky
REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB
62 REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB BEZOUŠKA VLADISLAV Abstrakt: Text se zabývá jednoduchým řešením metody nejmenších čtverců v prostředí Matlab pro obecné víceparametrové aproximační funkce. Celý postup
VEŘEJNÁ EKONOMIKA Úvod do veřejné ekonomie a veřejné ekonomiky
VEŘEJNÁ EKONOMIKA Úvod do veřejné ekonomie a veřejné ekonomiky Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu
Praktické využití Mathematica CalcCenter. Ing. Petr Kubín, Ph.D. xkubin@fel.cvut.cz www.powerwiki.cz Katedra elektroenergetiky, ČVUT v Praze, FEL
Praktické využití Mathematica CalcCenter Ing. Petr Kubín, Ph.D. xkubin@fel.cvut.cz www.powerwiki.cz Katedra elektroenergetiky, ČVUT v Praze, FEL Obsah Popis Pojetí Vlastnosti Obecná charakteristika Ovladače
PB029 Elektronická příprava dokumentů
PB029 Elektronická příprava dokumentů 1. demopřednáška, seznámení se software Vít Novotný witiko@mail.muni.cz 20. září 2018 Obsah prezentace Informace pro podzim 2018 Seznámení s použitým software TEX
Úvod do vícerozměrných metod. Statistické metody a zpracování dat. Faktorová a komponentní analýza (Úvod do vícerozměrných metod)
Úvod do vícerozměrných metod Statistické metody a zpracování dat Faktorová a komponentní analýza (Úvod do vícerozměrných metod) Petr Dobrovolný O řadě jevů či procesů máme k dispozici ne jeden statistický
Přehled literatury a skript na LETNÍ semestr 2017/ ročník BC.
KS Jičín - ČZU PEF Praha Přehled literatury a skript na LETNÍ semestr 2017/2018 1. ročník BC. Základy veřejné správy - 9. 2. a 10. 2. 2018 doc. PhDr. Čmejrek, CSc. Čmejrek, Jaroslav Čopík, Jan: Veřejná
Jemný úvod do statistických metod v netržním oceňování
Jemný úvod do statistických metod v netržním oceňování Ing. Jan Brůha PhD. Karlova univerzita Struktura prezentací První prezentace Cíle, možnosti a omezení Nástroje: metodologie a software CVM (open ended)
SYLABUS MODUL BUSINESS MODELOVÁNÍ. Doc. RNDr. Vladimír Krajčík, Ph.D.
SYLABUS MODUL BUSINESS MODELOVÁNÍ Doc. RNDr. Vladimír Krajčík, Ph.D. Ostrava 20 : Business modelování Autoři: Doc. RNDr. Vladimír Krajčík, Ph.D. Vydání: první, 20 Počet stran: Tisk: Vysoká škola podnikání,
Statistické vyhodnocení zkoušek betonového kompozitu
Statistické vyhodnocení zkoušek betonového kompozitu Thákurova 7, 166 29 Praha 6 Dejvice Česká republika Program přednášek a cvičení Výuka: Středa 10:00-11:40, C -204 Přednášky a cvičení: Statistické vyhodnocení
Předmluva S o u h rn... 89
Obsah Předmluva... 17 1 Ú v o d... 2 1 1.1 Empirický výzkum a jeho etap y... 23 1.2 Význam teorie pro v ý zk u m... 27 1.2.1 Konstrukty a jejich operacionalizace... 27 1.2.2 Role teorie ve v ý zk u m u...
Firemní kultura a interní komunikace N_FKIK 2010/ 2011
Firemní kultura a interní komunikace N_FKIK 2010/ 2011 Magisterské studium Garant předmětu: doc. Dr. Zdeněk Cecava, CSc. Vyučující:.. doc. Dr. Z. Cecava, CSc. (PH, KL) PhDr. L. Vajner (PH) Ing. V. Kunz,
4EK311 Operační výzkum. 1. Úvod do operačního výzkumu
4EK311 Operační výzkum 1. Úvod do operačního výzkumu Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka Garant kurzu:
Základy veřejných financí
Základy veřejných financí Vyučující: Ing. Miroslav Červenka, Ing. Jan Mertl, Ph.D. Typ studijního předmětu: povinný Doporučený roč./sem.: 1/2 Rozsah studijního předmětu: PS: 2/-/- KS: 8 Způsob zakončení:
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Statistické metody a zpracování dat. IX Faktorová a komponentní analýza (Úvod do vícerozměrných metod) Petr Dobrovolný
Statistické metody a zpracování dat IX Faktorová a komponentní analýza (Úvod do vícerozměrných metod) Petr Dobrovolný Úvod do vícerozměrných metod O řadě jevů či procesů máme k dispozici ne jeden statistický
IBM SPSS Modeler Professional
IBM SPSS Modeler Professional 16 IBM SPSS Software IBM SPSS Modeler Professional Včasné rozhodnutí díky přesným informacím Metodami data miningu získáte detailní přehled o svém současném stavu i jasnější
Algoritmizace, základy programování, VY_32_INOVACE_PRG_ALGO_01
Anotace sady: Algoritmizace, základy programování, VY_32_INOVACE_PRG_ALGO_01 Autor: Blanka Sadovská Klíčová slova: Algoritmus, proměnná, diagram Stupeň a typ vzdělávání: gymnaziální vzdělávání, 3. ročník
OCEŇOVÁNÍ SLOŽEK PODNIKÁNÍ
PRŮVODCE STUDIEM PRO PREZENČNÍ FORMU STUDIA MODULU OCEŇOVÁNÍ SLOŽEK PODNIKÁNÍ KAMILA BEŇOVÁ Ostrava 2011 1 Název: Oceňování složek podnikání Autoři: Kamila Beňová Vydání: první, 2011 Počet stran: 7 Tisk:
K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami. Josef Keder
K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami Josef Keder Motivace Předpověď budoucí úrovně znečištění ovzduší s předstihem v řádu alespoň několika hodin má význam
E-LEARNINGOVÁ OPORA PŘEDMĚTU PROGRAMOVÉ VYBAVENÍ ORDINACE ZUBNÍHO LÉKAŘE Kateřina Langová, Jana Zapletalová, Jiří Mazura
E-LEARNINGOVÁ OPORA PŘEDMĚTU PROGRAMOVÉ VYBAVENÍ ORDINACE ZUBNÍHO LÉKAŘE Kateřina Langová, Jana Zapletalová, Jiří Mazura Anotace Příspěvek popisuje novou koncepci výuky předmětu Programové vybavení ordinace
Profilová část maturitní zkoušky 2013/2014
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA
Vysoká škola finanční a správní, o.p.s. KMK ML Public Relations 1
Public Relations 1 B_PR_1 Bakalářské studium Garant předmětu: Ing. Vilém Kunz, Ph.D. Vyučující:.. Mgr. M. Kykalová (PH) Ing. T. Dvořáková (PH) Ing. P. Klička (KL) Ing. V. Kunz, Ph.D. (MO) Typ studijního
Otázky ke státní závěrečné zkoušce
Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního
Studentské hodnocení výuky
Studentské hodnocení výuky Obecné otázky Jan Kříž, David Hurný, Markéta Martínková Studentská komora Akademického senátu PřF studijní proděkanka Proč dělat SHV 1. Vyžaduje to legislativa 2. Zvýšení kvality
Osnova učiva. Cíle učiva. Učivo o dlouhodobém majetku. Didaktické zpracování učiva pro střední školy
Učivo o dlouhodobém majetku Didaktické zpracování učiva pro střední školy Osnova učiva 1. Zařazení učiva 2. Cíle učiva 3. Struktura učiva 4. Metodické zpracování učiva týkající se podstaty dlouhodobého
Asociační i jiná. Pravidla. (Ch )
Asociační i jiná Pravidla (Ch. 14 +...) Učení bez učitele Nemáme cílovou třídu Y, G; máme N pozorování což jsou p-dimenzionální vektory se sdruženou pravděpodobností chceme odvozovat vlastnosti. Pro málo
Strojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
Eva Fišerová a Karel Hron. Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci.
Ortogonální regrese pro 3-složkové kompoziční data využitím lineárních modelů Eva Fišerová a Karel Hron Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci