Statistické metody uţívané při ověřování platnosti hypotéz

Rozměr: px
Začít zobrazení ze stránky:

Download "Statistické metody uţívané při ověřování platnosti hypotéz"

Transkript

1 Statistické metody uţívané při ověřování platnosti hypotéz

2 Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech,

3 Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy výzkumné otázky v kvalitativních šetřeních) statistické hypotézy nulové hypotézy alternativní hypotézy

4 Pracovní, věcná hypotéza dokázaná verifikací H: Pachateli trestných činů bývají většinou mladiství z rozvrácených (nefunkčních) rodin. Zdůvodnění hypotézy: Proč se to domnívám? Co mne k tomu vedlo nějaký jiný výzkum, autor, tradice, mé zkušenosti? Kolik to je většinou (více jak 50%)? Kdo je to mladistvý respondent? Jaká rodina bude považována za rozvrácenou? Původní nebo současná...

5 Nulová hypotéza H : Mezi pachateli trestných činů nejsou rozdíly co se týká funkčnosti jejich rodiny.

6 Hypotéza alternativní Ha: Mezi pachateli trestných činů a funkčností jejich rodin je statisticky významná závislost.

7 Příklady formulací hypotéz Pracovní H Statistická H alternativní Mezi pohlavím a fyzickou zdatností existuje statisticky významný vztah, souvislost. Nulová H Lidé, kteří často sledují televizi, málo čtou. Ţáci na 1.stupni ZŠ mají rádi matematiku. V kouření cigaret nejsou statisticky významné rozdíly mezi pohlavím.

8 Souvislost vazba mezi jevy statistické testy významnosti Těsnost vztahu korelace

9 Hladina významnosti pravděpodobnost, že nastane Ho symbol - alfa dvě hladiny významnosti 0,01 na 99 % předpokládám vztah z Ho 0,05 na 95 % předpokládám vztah z Ho

10 Druhy statistických testů významnosti parametrické X neparametrické jednostranné X oboustranné

11 Postup při ověřování hypotéz Formulace nulové a statistické hypotézy Volba hladiny významnosti Volba vhodného testového kritéria Výpočet testového kritéria Nalezení příslušné kritické hodnoty Porovnání výsledek testu s kritickou hodnotou - závěr

12 Interpretace výsledku testu významnosti vypočítaná hodnota test. kritéria hodnota kritická nastává situace, kterou jsme očekávali jen s velmi malou pravděpodobností (na 5% nebo 1%), usuzujeme z toho, že výsledky nejsou náhodné a stojí za tím působení určitého vlivu, Ho na zvolené hladině významnosti odmítáme a přijímáme HA, tvrdíme, že výsledek výzkumu je statisticky významný (signifikantní) vypočítaná hodnota test. kritéria < hodnota kritická tento výsledek jsme očekávali s velkou jistotou (na 95% nebo 99%), dosažené výsledky mohou být náhodné, nemusí za tím stát působení nějakého vlivu, Ho na zvolené hladině významnosti nezamítáme, to však neznamená, že je hypotéza správná, konstatujeme, že výsledek není statisticky významný.

13 Volba testového kritéria závisí na tom, zda porovnáváme závislost mezi jevy při : Nominálním měření - testy dobré shody chí-kvadrát různé varianty - Fischerův kombinatorický test Ordinálním měření Znaménkový test Wilcoxonův test U test Manna a Whitneyho U test pro velmi malé výběry (četnosti ve srovnávaných skupinách jsou menší než 8) U test pro větší skupiny (četnosti ve srovnávaných skupinách jsou do 20) U test při velkých četnostech Kolmogorovův Smirnovův test Kruskalův Wallisův test (je zobecněním U testu) Metrickém (intervalovém nebo poměrovém) měření Funkční a statistická závislost mezi jevy Regresní a korelační analýza Pearsonův koeficient korelace Bodová biseriální korelace Biseriální korelace Tetrachordický koeficient korelace Studentův t test Fisherův Snedecorův F - test Párový t test Princip analýzy rozptylu Jednoduchá analýza rozptylu, Duncanův test Dvoufaktorová analýza rozptylu

14 Příklad č.1 Test dobré shody chí-kvadrát ² V různých denních dobách byl sledován počet zákazníků přicházejících do obchodu. Lze na základě těchto dat učinit závěr, že zákazníci přicházejí v průběhu dne rovnoměrně? Doba Počet

15 1. Formulujeme hypotézy H : Zákazníci přicházejí v průběhu dne rovnoměrně (rozdíly jsou způsobeny náhodou). Ha: Zákazníci v průběhu dne do prodejny rovnoměrně nepřicházejí. Existuje mezi dobou a počtem zákazníků statisticky významná závislost.

16 2. Stanovíme hladinu významnosti máme možnost vybrat si buď 0,05 X 0,01 0,05 (tj. na 95 % předpokládáme, že nastane situace v H )

17 3. Volíme vhodné testové kritérium Výpočet testového kritéria ² ² = [(P O)² : O] - P.. pozorované četnosti (tzv. ni) - O.. očekávané četnosti podle Ho

18 4. Výpočet testového kritéria Mechanicky Přes statistické programy Excell, SPSS, NCSS, STATISTICA,...

19 Doba Pozorovaná četnost P Očekávaná četnost O

20 Doba Pozorovaná četnost P Očekávaná četnost O = 188

21 Doba Pozorovaná četnost P Očekávaná četnost O , , ,6 Ø , ,6 = 188 = 188

22 Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O , , ,6 Ø , ,6 = 188 = 188

23 Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O , ,6 Ø -1,6 2,56 0, , , ,6 = 188 = 188

24 Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,6-1,6 2,56 0,068 Ø ,6 2,4 5,76 0, ,6-10,6 112,36 2, ,6 1,4 1,96 0, ,6 8,4 70,56 1,877 = 188 = 188

25 Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,6-1,6 2,56 0,068 Ø ,6 2,4 5,76 0, ,6-10,6 112,36 2, ,6 1,4 1,96 0, ,6 8,4 70,56 1,877 = 188 = 188 = 0 (vždy!) = 5,138

26 5. Nalezení kritické hodnoty v tabulkách kritických hodnot stupně volnosti příslušný stupeň volnosti. 4 (5 řádků v tabulce, tj. 5 1 = 4) Kritická hodnota: ²0,05 (4) = 9,483 popř. ²0,01 (4) = 13,277

27 6. Porovnání vypočítané hodnoty s kritickou hodnotou z tabulek vypočítaná hodnota je 5,138 kritická hodnota z tabulek je pro hladinu význ. 0,05 a 4 stupně volnosti = 9,483 5,138 9,483

28 Závěr Ho nelze odmítnout, proto nelze ze zjištěných údajů vyvozovat, že by zákazníci v průběhu dne přicházeli nerovnoměrně. Na 0,05 hladině významnosti přijímáme Ho

29 Jak se to píše do DP?! Tento výpočet dát do příloh Postupujeme podle bodů, ale ve větách, jako souvislý text (v DP) stanoví se hypotézy Ho a HA + zdůvodní se zařadí se tabulka pozorovaných četností následně komentář s uvedením údajů o zvolené hladině významnosti, vypočítané hodnotě ², kritické hodnotě z tabulek, jejich porovnání závěr k příslušné hypotéze přijímám Ho nebo HA

30 Příklad č. 2 - Seskupení údajů Doba Počet Doba Počet

31 Postup podle bodů 1. Formulace hypotéz 2. Stanovení hladiny významnosti 3. Volba testového kritéria 4. Výpočet testového kritéria

32 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O

33 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O = 188

34 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,2 Ø ,8 = 188 = 188

35 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,2 Ø ,8 = 188 = ,2 148,84 1,

36 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,2-12,2 148,84 1, Ø ,8 12,2 148,84 1, = 188 = 188

37 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,2-12,2 148,84 1, Ø ,8 12,2 148,84 1, = 188 = 188 = 0 = 3,

38 5. Nalezení kritické hodnoty v tabulkách příslušný stupeň volnosti. 1 (2 řádky v tabulce, tj. 2 1 = 1) ² 0,05(1) = 3, Porovnání vypočítané a kritické hodnoty vypočítaná hodnota je 3, , ,841

39 Závěr Musíme opět přijmout H, že zákazníci v průběhu dne přicházejí rovnoměrně. Vhodným seskupením v tabulce lze docílit různých výsledků Takovéto sdružování je možné pouze v důsledku logického řešení problému a ne spekulací!

40 Příklad č. 3 - Test dobré shody ² pro kontingenční tabulku Ověřte na 5 % hladině významnosti předpoklad, že podávání určitého léku zkracuje dobu léčení nemoci na základě získaných údajů u 174 pacientů: Do 7 dnů lék bralo 67 /nebralo 18 pacientů Mezi 7-10 dny bralo lék 22 / nebralo 25 Nad 10 dnů bralo lék 14 pacientů

41 Doba nemoci Lék brali Lék nebrali Do 7 dnů dnů nad 10 dnů 14

42 Řešení: 1. Vytvoření hypotéz Ho: Neexistuje vztah mezi dobou nemoci braním léků. HA: Rozdíly nejsou způsobeny náhodou a existuje závislost mezi dobu nemoci a braním léků. 2. Stanovení hladiny významnosti 3. Volba vhodného testového kritéria 4. Výpočet testového kritéria

43 Sestavení tzv. kontingenční tabulky Doba nemoci Lék brali Lék nebrali Do 7 dnů dnů nad 10 dnů

44 Doba nemoci Lék brali Lék nebrali Do 7 dnů dnů nad 10 dnů

45 Doba nemoci Lék brali Lék nebrali Do 7 dnů dnů nad 10 dnů

46 Doba nemoci Lék brali P Lék nebrali P Do 7 dnů dnů nad 10 dnů

47 Doba nemoci Lék brali P / O Lék nebrali P / 0 Do 7 dnů 67 / 50,32= (103.85): / dnů 22 / 25 / 47 nad 10 dnů 14 / 28 /

48 Doba nemoci Lék brali P / O Lék nebrali P / 0 Do 7 dnů 67 / 50,32 18 / 34, dnů 22 / 27,82 25 / 19,18 47 nad 10 dnů 14 / 24,86 28 / 17,

49 4. Výpočet testového kritéria Pro každé pole tabulky vypočteme podle vzorce hodnoty ² a sečteme je ² = (67-50,32)²:50,32 + (18-34,68)²:34, (22-27,82)²:27, = = 5,529+8,023+1,218+1,766+4,744+6,881= = 28,161

50 5. Nalezení kritické hodnoty z tabulek zvolená hladina významnosti 0,05 příslušný stupeň volnosti f =? f = (ř-1). (s-1)... ř = řádky s = sloupce f = (3-1). (2-1) = 2. 1 = 2 kritická hodnota z tabulek je ² 0,05 (2) = 5,991

51 6. Porovnání hodnot vypočítaná hodnota je 28,161 kritická hodnota z tabulek je ² 0,05 (2) = 5,991 28,161 5,991 Zamítáme H a přijímáme Ha

52 Příklad č. 4 Test dobré shody pro čtyřpolní tabulku Při silniční kontrole byly u náhodně vybraných 200 vozidel zjišťovány závady na osvětlení a pneumatikách. Posuďte zda existuje závislost mezi závadami na pneumatikách a osvětlení. Závady na pneumatikách Závady na osvětlení ANO NE ANO NE

53 Řešení 1. Formulujeme hypotézy: Ho: Mezi závadami pneumatik a osvětlením není žádná souvislost. HA: Mezi závadami pneumatik a osvětlením existuje souvislost. 2. Stanovíme hladinu významnosti 3. Volíme vhodné testové kritérium

54 4. Výpočet testového kritéria Vzorec pro výpočet: ²= n. (A.D-B.C)² : (A+B).(A+C).(B+D).(D+C)

55 Závady na pneumatikách Závady na osvětlení ANO NE ANO 32 (A) 12 (B) NE 16 (C) 140 (D)

56 Závady na pneumatikách Závady na osvětlení ANO NE ANO 32 (A) 12 (B) A + B NE 16 (C) 140 (D) 44

57 Závady na pneumatikách Závady na osvětlení ANO NE ANO 32 (A) 12 (B) A + B 44 NE 16 (C) 140 (D) C + D 156

58 Závady na pneumatikách Závady na osvětlení ANO NE ANO 32 (A) 12 (B) A + B 44 NE 16 (C) 140 (D) C + D 156 n = 200

59 Závady na pneumatikách Závady na osvětlení ANO NE ANO 32 (A) 12 (B) A + B 44 NE 16 (C) 140 (D) C + D 156 A + C B + D n =

60 Výpočet: ²= n. (A.D-B.C)² : (A+B).(A+C).(B+D).(D+C) ² = 200.( )² : = = ,3672 = 73,431

61 5. Nalezení kritické hodnoty z tabulek zvolená hladina významnosti 0,05 příslušný stupeň volnosti f =? f = (ř-1). (s-1)... ř = řádky s = sloupce f = (2-1). (2-1) = 1. 1 = 1 kritická hodnota z tabulek je ² 0,05 (1) = 3,841

62 6. Porovnání a závěr vypočítaná hodnota je 73,431 kritická hodnota z tabulek je ² 0,05 (1) = 3,841 73,431 3,841 Odmítáme H a přijímáme Ha Stejný výsledek dostaneme i na hladině významnosti 0,01

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

IBM SPSS Exact Tests. Přesné analýzy malých datových souborů. Nejdůležitější. IBM SPSS Statistics

IBM SPSS Exact Tests. Přesné analýzy malých datových souborů. Nejdůležitější. IBM SPSS Statistics IBM Software IBM SPSS Exact Tests Přesné analýzy malých datových souborů Při rozhodování o existenci vztahu mezi proměnnými v kontingenčních tabulkách a při používání neparametrických ů analytici zpravidla

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Testování hypotéz. 4. přednáška 6. 3. 2010

Testování hypotéz. 4. přednáška 6. 3. 2010 Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo

Více

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza)

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza) ZX510 Pokročilé statistické metody geografického výzkumu Téma: Měření síly asociace mezi proměnnými (korelační analýza) Měření síly asociace (korelace) mezi proměnnými Vztah mezi dvěma proměnnými existuje,

Více

Cvičení 9: Neparametrické úlohy o mediánech

Cvičení 9: Neparametrické úlohy o mediánech Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Jednoduchá

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests),   : veličiny X, Y jsou nezávislé nij eij Testy dobré shody Máme dvě veličiny a předpokládáme, že jsou nezávislé (platí nulová hypotéza nezávislosti). Často chceme naopak prokázat jejich závislost. K tomu slouží: TESTY DOBRÉ SHODY (angl. goodness-of-fit

Více

T E O R I E C H Y B A V Y R O V N Á V A C Í P O

T E O R I E C H Y B A V Y R O V N Á V A C Í P O ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu T E O R I E C H Y B A V Y R O V N Á V A C Í P O Č E T 2 č. úlohy 6 název úlohy T

Více

ZÁKLADY METODOLOGIE KLINICKÉHO VÝZKUMU A BIOSTATISTIKY. Tomáš Novák Psychiatrické centrum Praha

ZÁKLADY METODOLOGIE KLINICKÉHO VÝZKUMU A BIOSTATISTIKY. Tomáš Novák Psychiatrické centrum Praha ZÁKLADY METODOLOGIE KLINICKÉHO VÝZKUMU A BIOSTATISTIKY Tomáš Novák Psychiatrické centrum Praha Úkol 1 Senzitivita a specificita nového testu pro schizofrenii je shodně 90%. Prevalence onemocnění v populaci

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne.

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne. ! Cílem vysílání v rámci projektu ŠIK je také předávání praktických informací z oblasti rizikového chování. Vycházíme z přesvědčení, že člověk, který má dostatek pravdivých informací, má také větší "#$%&&%

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

1.1 Úvod... 1 1.2 Data... 1. 3 Statistická analýza dotazníkových dat 8. Literatura 10

1.1 Úvod... 1 1.2 Data... 1. 3 Statistická analýza dotazníkových dat 8. Literatura 10 MÍRY STATISTICKÉ VAZBY, VÝBĚROVÁ ŠETŘENÍ, STATISTICKÁ ANALÝZA DOTAZNÍKOVÝCH DAT Obsah 1 Statistická data 1 1.1 Úvod.......................................... 1 1. Data...........................................

Více

MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO

MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO RNDr. Jana Hrubá Katedra matematických metod v ekonomice (K151) Institut inovace vzdělávání (K167) Ekonomická fakulta

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU

KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU RADEK KRPEC CZ.1.07/2.2.00/29.0006 OSTRAVA, ČERVEN 2013 Studijní opora je jedním z výstupu projektu ESF OP VK. Číslo Prioritní osy: 7.2 Oblast podpory: 7.2.2

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra matematiky STATISTIKA V SPSS Jana Borůvková, Petra Horáčková, Miroslav Hanáček 2014 Jana Borůvková, Petra Horáčková, Miroslav Hanáček STATISTIKA V SPSS 1. vydání

Více

12. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

12. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 1. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ Průvodce studiem Navážeme na předchozí kapitolu 11 a vysvětlíme některé statistické testy. Předpokládané znalosti Pojmy z předchozích kapitol. Cíle Cílem této kapitoly

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg.

Více

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy.

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Z pastí na daném území byla odhadnuta abundance několika druhů: myšice lesní 250, myšice křovinná 200, hraboš polní 150,

Více

Marketingový výzkum 6. Analýza dat Grafy Závěrečná zpráva

Marketingový výzkum 6. Analýza dat Grafy Závěrečná zpráva Marketingový výzkum 6 Analýza dat Grafy Závěrečná zpráva Analýza dat 1. Deskriptivní statistika výběr vhodných měřítek 2.Induktivní statistika - měření a testování závislostí Na výběr statistické metody

Více

STATISTICA Téma 7. Testy na základě více než 2 výběrů

STATISTICA Téma 7. Testy na základě více než 2 výběrů STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Smysl a cíle vícerozměrné analýzy dat a modelování, vztah jednorozměrných a vícerozměrných statistických metod Jiří Jarkovský, Simona Littnerová Průběh výuky 13 přednášek

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické Československá psychologie 0009-062X Metodologické požadavky na výzkumné studie METODOLOGICKÉ POŽADAVKY NA VÝZKUMNÉ STUDIE Výzkumné studie mají přinášet nová konkrétní zjištění získaná specifickými výzkumnými

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Aktivita A 0803. Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení

Aktivita A 0803. Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení Aktivita A 0803 Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení 1/62 Aktivita A0803 Zmapování a analýza disparit mezi regiony NUTS 3 ve fyzické dostupnosti bydlení Datum

Více

Fiktivní průzkumné šetření

Fiktivní průzkumné šetření Univerzita Hradec Králové Pedagogická fakulta Katedra sociální pedagogiky Fiktivní průzkumné šetření Výzkumné metody a zpracování dat 2010 Jana Nováková Obsah 1. Úvod. str. XY 2. Průzkumné cíle a stanovení

Více

Cvičení ze statistiky - 3. Filip Děchtěrenko

Cvičení ze statistiky - 3. Filip Děchtěrenko Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 10 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 10.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěma, případně

Více

Spokojenost se životem

Spokojenost se životem SEMINÁRNÍ PRÁCE Spokojenost se životem (sekundárních analýza dat sociologického výzkumu Naše společnost 2007 ) Předmět: Analýza kvantitativních revize Šafr dat I. Jiří (18/2/2012) Vypracoval: ANONYMIZOVÁNO

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

Z metodologie známe dělení proměnných do několika skupin. Nejčastěji se užívá dělení dle S. Stevense. Nicméně nám postačí dělení jednodušší:

Z metodologie známe dělení proměnných do několika skupin. Nejčastěji se užívá dělení dle S. Stevense. Nicméně nám postačí dělení jednodušší: Slovo úvodem Ne všechno, co si řekneme v tomto kurzu, je pravda. Není to proto, že by mým záměrem bylo před posluchači něco tajit nebo je uvádět ve zmatek. Problematika testování statistických hypotéz

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

IV. CVIENÍ ZE STATISTIKY

IV. CVIENÍ ZE STATISTIKY IV. CVIENÍ ZE STATISTIKY Vážení studenti, úkolem dnešního cviení je nauit se analyzovat data kvantitativní povahy. K tomuto budeme opt používat program Excel 2007 MS Office. 1. Jak mžeme analyzovat kvantitativní

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA. Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT. Jana Borůvková, Petra Horáčková, Miroslav Hanáček

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA. Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT. Jana Borůvková, Petra Horáčková, Miroslav Hanáček VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT Jana Borůvková, Petra Horáčková, Miroslav Hanáček 2013 Jana Borůvková, Petra Horáčková, Miroslav Hanáček STATISTICA

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

Testování hypotéz a jeho metodika 2 Jasnovidec?... 4 Pojmy... 6 Postup... 7 Chyby... 8

Testování hypotéz a jeho metodika 2 Jasnovidec?... 4 Pojmy... 6 Postup... 7 Chyby... 8 Testování hypotéz Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

Masarykova univerzita Ekonomicko správní fakulta. Statistika II

Masarykova univerzita Ekonomicko správní fakulta. Statistika II Masarykova univerzita Ekonomicko správní fakulta Statistika II distanční studijní opora Marie Budíková Brno 2006 Tento projekt byl realizován za finanční podpory Evropské unie v rámci programu SOCRATES

Více

Návod na statistický software PSPP část 2. Kontingenční tabulky

Návod na statistický software PSPP část 2. Kontingenční tabulky Návod na statistický software PSPP část 2. Kontingenční tabulky Jiří Šafr FHS UK poslední revize 31. srpna 2010 Logika kontingenčních tabulek... 2 Postup vytváření kontingenčních tabulek v PSPP (SPSS)....

Více

Pravděpodobnost, statistika a operační výzkum

Pravděpodobnost, statistika a operační výzkum Pravděpodobnost, statistika a operační výzkum RNDr. Břetislav Fajmon, Ph.D. Mgr. Jan Koláček, Ph.D. ÚSTAV MATEMATIKY Pravděpodobnost, statistika a operační výzkum 1 Obsah I Statistické metody 7 1 Odhad

Více

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno. listopadu 007) 1(4) Mann-Whitney párový Wilcoxon párový znaménkový

Více

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ HELENA KOUTKOVÁ PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA MODUL GA03 M4 ZÁKLADY TESTOVÁNÍ HYPOTÉZ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU

Více