Statistické metody uţívané při ověřování platnosti hypotéz

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Statistické metody uţívané při ověřování platnosti hypotéz"

Transkript

1 Statistické metody uţívané při ověřování platnosti hypotéz

2 Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech,

3 Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy výzkumné otázky v kvalitativních šetřeních) statistické hypotézy nulové hypotézy alternativní hypotézy

4 Pracovní, věcná hypotéza dokázaná verifikací H: Pachateli trestných činů bývají většinou mladiství z rozvrácených (nefunkčních) rodin. Zdůvodnění hypotézy: Proč se to domnívám? Co mne k tomu vedlo nějaký jiný výzkum, autor, tradice, mé zkušenosti? Kolik to je většinou (více jak 50%)? Kdo je to mladistvý respondent? Jaká rodina bude považována za rozvrácenou? Původní nebo současná...

5 Nulová hypotéza H : Mezi pachateli trestných činů nejsou rozdíly co se týká funkčnosti jejich rodiny.

6 Hypotéza alternativní Ha: Mezi pachateli trestných činů a funkčností jejich rodin je statisticky významná závislost.

7 Příklady formulací hypotéz Pracovní H Statistická H alternativní Mezi pohlavím a fyzickou zdatností existuje statisticky významný vztah, souvislost. Nulová H Lidé, kteří často sledují televizi, málo čtou. Ţáci na 1.stupni ZŠ mají rádi matematiku. V kouření cigaret nejsou statisticky významné rozdíly mezi pohlavím.

8 Souvislost vazba mezi jevy statistické testy významnosti Těsnost vztahu korelace

9 Hladina významnosti pravděpodobnost, že nastane Ho symbol - alfa dvě hladiny významnosti 0,01 na 99 % předpokládám vztah z Ho 0,05 na 95 % předpokládám vztah z Ho

10 Druhy statistických testů významnosti parametrické X neparametrické jednostranné X oboustranné

11 Postup při ověřování hypotéz Formulace nulové a statistické hypotézy Volba hladiny významnosti Volba vhodného testového kritéria Výpočet testového kritéria Nalezení příslušné kritické hodnoty Porovnání výsledek testu s kritickou hodnotou - závěr

12 Interpretace výsledku testu významnosti vypočítaná hodnota test. kritéria hodnota kritická nastává situace, kterou jsme očekávali jen s velmi malou pravděpodobností (na 5% nebo 1%), usuzujeme z toho, že výsledky nejsou náhodné a stojí za tím působení určitého vlivu, Ho na zvolené hladině významnosti odmítáme a přijímáme HA, tvrdíme, že výsledek výzkumu je statisticky významný (signifikantní) vypočítaná hodnota test. kritéria < hodnota kritická tento výsledek jsme očekávali s velkou jistotou (na 95% nebo 99%), dosažené výsledky mohou být náhodné, nemusí za tím stát působení nějakého vlivu, Ho na zvolené hladině významnosti nezamítáme, to však neznamená, že je hypotéza správná, konstatujeme, že výsledek není statisticky významný.

13 Volba testového kritéria závisí na tom, zda porovnáváme závislost mezi jevy při : Nominálním měření - testy dobré shody chí-kvadrát různé varianty - Fischerův kombinatorický test Ordinálním měření Znaménkový test Wilcoxonův test U test Manna a Whitneyho U test pro velmi malé výběry (četnosti ve srovnávaných skupinách jsou menší než 8) U test pro větší skupiny (četnosti ve srovnávaných skupinách jsou do 20) U test při velkých četnostech Kolmogorovův Smirnovův test Kruskalův Wallisův test (je zobecněním U testu) Metrickém (intervalovém nebo poměrovém) měření Funkční a statistická závislost mezi jevy Regresní a korelační analýza Pearsonův koeficient korelace Bodová biseriální korelace Biseriální korelace Tetrachordický koeficient korelace Studentův t test Fisherův Snedecorův F - test Párový t test Princip analýzy rozptylu Jednoduchá analýza rozptylu, Duncanův test Dvoufaktorová analýza rozptylu

14 Příklad č.1 Test dobré shody chí-kvadrát ² V různých denních dobách byl sledován počet zákazníků přicházejících do obchodu. Lze na základě těchto dat učinit závěr, že zákazníci přicházejí v průběhu dne rovnoměrně? Doba Počet

15 1. Formulujeme hypotézy H : Zákazníci přicházejí v průběhu dne rovnoměrně (rozdíly jsou způsobeny náhodou). Ha: Zákazníci v průběhu dne do prodejny rovnoměrně nepřicházejí. Existuje mezi dobou a počtem zákazníků statisticky významná závislost.

16 2. Stanovíme hladinu významnosti máme možnost vybrat si buď 0,05 X 0,01 0,05 (tj. na 95 % předpokládáme, že nastane situace v H )

17 3. Volíme vhodné testové kritérium Výpočet testového kritéria ² ² = [(P O)² : O] - P.. pozorované četnosti (tzv. ni) - O.. očekávané četnosti podle Ho

18 4. Výpočet testového kritéria Mechanicky Přes statistické programy Excell, SPSS, NCSS, STATISTICA,...

19 Doba Pozorovaná četnost P Očekávaná četnost O

20 Doba Pozorovaná četnost P Očekávaná četnost O = 188

21 Doba Pozorovaná četnost P Očekávaná četnost O , , ,6 Ø , ,6 = 188 = 188

22 Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O , , ,6 Ø , ,6 = 188 = 188

23 Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O , ,6 Ø -1,6 2,56 0, , , ,6 = 188 = 188

24 Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,6-1,6 2,56 0,068 Ø ,6 2,4 5,76 0, ,6-10,6 112,36 2, ,6 1,4 1,96 0, ,6 8,4 70,56 1,877 = 188 = 188

25 Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,6-1,6 2,56 0,068 Ø ,6 2,4 5,76 0, ,6-10,6 112,36 2, ,6 1,4 1,96 0, ,6 8,4 70,56 1,877 = 188 = 188 = 0 (vždy!) = 5,138

26 5. Nalezení kritické hodnoty v tabulkách kritických hodnot stupně volnosti příslušný stupeň volnosti. 4 (5 řádků v tabulce, tj. 5 1 = 4) Kritická hodnota: ²0,05 (4) = 9,483 popř. ²0,01 (4) = 13,277

27 6. Porovnání vypočítané hodnoty s kritickou hodnotou z tabulek vypočítaná hodnota je 5,138 kritická hodnota z tabulek je pro hladinu význ. 0,05 a 4 stupně volnosti = 9,483 5,138 9,483

28 Závěr Ho nelze odmítnout, proto nelze ze zjištěných údajů vyvozovat, že by zákazníci v průběhu dne přicházeli nerovnoměrně. Na 0,05 hladině významnosti přijímáme Ho

29 Jak se to píše do DP?! Tento výpočet dát do příloh Postupujeme podle bodů, ale ve větách, jako souvislý text (v DP) stanoví se hypotézy Ho a HA + zdůvodní se zařadí se tabulka pozorovaných četností následně komentář s uvedením údajů o zvolené hladině významnosti, vypočítané hodnotě ², kritické hodnotě z tabulek, jejich porovnání závěr k příslušné hypotéze přijímám Ho nebo HA

30 Příklad č. 2 - Seskupení údajů Doba Počet Doba Počet

31 Postup podle bodů 1. Formulace hypotéz 2. Stanovení hladiny významnosti 3. Volba testového kritéria 4. Výpočet testového kritéria

32 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O

33 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O = 188

34 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,2 Ø ,8 = 188 = 188

35 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,2 Ø ,8 = 188 = ,2 148,84 1,

36 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,2-12,2 148,84 1, Ø ,8 12,2 148,84 1, = 188 = 188

37 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,2-12,2 148,84 1, Ø ,8 12,2 148,84 1, = 188 = 188 = 0 = 3,

38 5. Nalezení kritické hodnoty v tabulkách příslušný stupeň volnosti. 1 (2 řádky v tabulce, tj. 2 1 = 1) ² 0,05(1) = 3, Porovnání vypočítané a kritické hodnoty vypočítaná hodnota je 3, , ,841

39 Závěr Musíme opět přijmout H, že zákazníci v průběhu dne přicházejí rovnoměrně. Vhodným seskupením v tabulce lze docílit různých výsledků Takovéto sdružování je možné pouze v důsledku logického řešení problému a ne spekulací!

40 Příklad č. 3 - Test dobré shody ² pro kontingenční tabulku Ověřte na 5 % hladině významnosti předpoklad, že podávání určitého léku zkracuje dobu léčení nemoci na základě získaných údajů u 174 pacientů: Do 7 dnů lék bralo 67 /nebralo 18 pacientů Mezi 7-10 dny bralo lék 22 / nebralo 25 Nad 10 dnů bralo lék 14 pacientů

41 Doba nemoci Lék brali Lék nebrali Do 7 dnů dnů nad 10 dnů 14

42 Řešení: 1. Vytvoření hypotéz Ho: Neexistuje vztah mezi dobou nemoci braním léků. HA: Rozdíly nejsou způsobeny náhodou a existuje závislost mezi dobu nemoci a braním léků. 2. Stanovení hladiny významnosti 3. Volba vhodného testového kritéria 4. Výpočet testového kritéria

43 Sestavení tzv. kontingenční tabulky Doba nemoci Lék brali Lék nebrali Do 7 dnů dnů nad 10 dnů

44 Doba nemoci Lék brali Lék nebrali Do 7 dnů dnů nad 10 dnů

45 Doba nemoci Lék brali Lék nebrali Do 7 dnů dnů nad 10 dnů

46 Doba nemoci Lék brali P Lék nebrali P Do 7 dnů dnů nad 10 dnů

47 Doba nemoci Lék brali P / O Lék nebrali P / 0 Do 7 dnů 67 / 50,32= (103.85): / dnů 22 / 25 / 47 nad 10 dnů 14 / 28 /

48 Doba nemoci Lék brali P / O Lék nebrali P / 0 Do 7 dnů 67 / 50,32 18 / 34, dnů 22 / 27,82 25 / 19,18 47 nad 10 dnů 14 / 24,86 28 / 17,

49 4. Výpočet testového kritéria Pro každé pole tabulky vypočteme podle vzorce hodnoty ² a sečteme je ² = (67-50,32)²:50,32 + (18-34,68)²:34, (22-27,82)²:27, = = 5,529+8,023+1,218+1,766+4,744+6,881= = 28,161

50 5. Nalezení kritické hodnoty z tabulek zvolená hladina významnosti 0,05 příslušný stupeň volnosti f =? f = (ř-1). (s-1)... ř = řádky s = sloupce f = (3-1). (2-1) = 2. 1 = 2 kritická hodnota z tabulek je ² 0,05 (2) = 5,991

51 6. Porovnání hodnot vypočítaná hodnota je 28,161 kritická hodnota z tabulek je ² 0,05 (2) = 5,991 28,161 5,991 Zamítáme H a přijímáme Ha

52 Příklad č. 4 Test dobré shody pro čtyřpolní tabulku Při silniční kontrole byly u náhodně vybraných 200 vozidel zjišťovány závady na osvětlení a pneumatikách. Posuďte zda existuje závislost mezi závadami na pneumatikách a osvětlení. Závady na pneumatikách Závady na osvětlení ANO NE ANO NE

53 Řešení 1. Formulujeme hypotézy: Ho: Mezi závadami pneumatik a osvětlením není žádná souvislost. HA: Mezi závadami pneumatik a osvětlením existuje souvislost. 2. Stanovíme hladinu významnosti 3. Volíme vhodné testové kritérium

54 4. Výpočet testového kritéria Vzorec pro výpočet: ²= n. (A.D-B.C)² : (A+B).(A+C).(B+D).(D+C)

55 Závady na pneumatikách Závady na osvětlení ANO NE ANO 32 (A) 12 (B) NE 16 (C) 140 (D)

56 Závady na pneumatikách Závady na osvětlení ANO NE ANO 32 (A) 12 (B) A + B NE 16 (C) 140 (D) 44

57 Závady na pneumatikách Závady na osvětlení ANO NE ANO 32 (A) 12 (B) A + B 44 NE 16 (C) 140 (D) C + D 156

58 Závady na pneumatikách Závady na osvětlení ANO NE ANO 32 (A) 12 (B) A + B 44 NE 16 (C) 140 (D) C + D 156 n = 200

59 Závady na pneumatikách Závady na osvětlení ANO NE ANO 32 (A) 12 (B) A + B 44 NE 16 (C) 140 (D) C + D 156 A + C B + D n =

60 Výpočet: ²= n. (A.D-B.C)² : (A+B).(A+C).(B+D).(D+C) ² = 200.( )² : = = ,3672 = 73,431

61 5. Nalezení kritické hodnoty z tabulek zvolená hladina významnosti 0,05 příslušný stupeň volnosti f =? f = (ř-1). (s-1)... ř = řádky s = sloupce f = (2-1). (2-1) = 1. 1 = 1 kritická hodnota z tabulek je ² 0,05 (1) = 3,841

62 6. Porovnání a závěr vypočítaná hodnota je 73,431 kritická hodnota z tabulek je ² 0,05 (1) = 3,841 73,431 3,841 Odmítáme H a přijímáme Ha Stejný výsledek dostaneme i na hladině významnosti 0,01

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne.

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne. ! Cílem vysílání v rámci projektu ŠIK je také předávání praktických informací z oblasti rizikového chování. Vycházíme z přesvědčení, že člověk, který má dostatek pravdivých informací, má také větší "#$%&&%

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests),   : veličiny X, Y jsou nezávislé nij eij Testy dobré shody Máme dvě veličiny a předpokládáme, že jsou nezávislé (platí nulová hypotéza nezávislosti). Často chceme naopak prokázat jejich závislost. K tomu slouží: TESTY DOBRÉ SHODY (angl. goodness-of-fit

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

ZÁKLADY METODOLOGIE KLINICKÉHO VÝZKUMU A BIOSTATISTIKY. Tomáš Novák Psychiatrické centrum Praha

ZÁKLADY METODOLOGIE KLINICKÉHO VÝZKUMU A BIOSTATISTIKY. Tomáš Novák Psychiatrické centrum Praha ZÁKLADY METODOLOGIE KLINICKÉHO VÝZKUMU A BIOSTATISTIKY Tomáš Novák Psychiatrické centrum Praha Úkol 1 Senzitivita a specificita nového testu pro schizofrenii je shodně 90%. Prevalence onemocnění v populaci

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU

KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU RADEK KRPEC CZ.1.07/2.2.00/29.0006 OSTRAVA, ČERVEN 2013 Studijní opora je jedním z výstupu projektu ESF OP VK. Číslo Prioritní osy: 7.2 Oblast podpory: 7.2.2

Více

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické Československá psychologie 0009-062X Metodologické požadavky na výzkumné studie METODOLOGICKÉ POŽADAVKY NA VÝZKUMNÉ STUDIE Výzkumné studie mají přinášet nová konkrétní zjištění získaná specifickými výzkumnými

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Smysl a cíle vícerozměrné analýzy dat a modelování, vztah jednorozměrných a vícerozměrných statistických metod Jiří Jarkovský, Simona Littnerová Průběh výuky 13 přednášek

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

IV. CVIENÍ ZE STATISTIKY

IV. CVIENÍ ZE STATISTIKY IV. CVIENÍ ZE STATISTIKY Vážení studenti, úkolem dnešního cviení je nauit se analyzovat data kvantitativní povahy. K tomuto budeme opt používat program Excel 2007 MS Office. 1. Jak mžeme analyzovat kvantitativní

Více

Z metodologie známe dělení proměnných do několika skupin. Nejčastěji se užívá dělení dle S. Stevense. Nicméně nám postačí dělení jednodušší:

Z metodologie známe dělení proměnných do několika skupin. Nejčastěji se užívá dělení dle S. Stevense. Nicméně nám postačí dělení jednodušší: Slovo úvodem Ne všechno, co si řekneme v tomto kurzu, je pravda. Není to proto, že by mým záměrem bylo před posluchači něco tajit nebo je uvádět ve zmatek. Problematika testování statistických hypotéz

Více

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy.

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Z pastí na daném území byla odhadnuta abundance několika druhů: myšice lesní 250, myšice křovinná 200, hraboš polní 150,

Více

Fiktivní průzkumné šetření

Fiktivní průzkumné šetření Univerzita Hradec Králové Pedagogická fakulta Katedra sociální pedagogiky Fiktivní průzkumné šetření Výzkumné metody a zpracování dat 2010 Jana Nováková Obsah 1. Úvod. str. XY 2. Průzkumné cíle a stanovení

Více

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra matematiky STATISTIKA V SPSS Jana Borůvková, Petra Horáčková, Miroslav Hanáček 2014 Jana Borůvková, Petra Horáčková, Miroslav Hanáček STATISTIKA V SPSS 1. vydání

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA. Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT. Jana Borůvková, Petra Horáčková, Miroslav Hanáček

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA. Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT. Jana Borůvková, Petra Horáčková, Miroslav Hanáček VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT Jana Borůvková, Petra Horáčková, Miroslav Hanáček 2013 Jana Borůvková, Petra Horáčková, Miroslav Hanáček STATISTICA

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Návod na statistický software PSPP část 2. Kontingenční tabulky

Návod na statistický software PSPP část 2. Kontingenční tabulky Návod na statistický software PSPP část 2. Kontingenční tabulky Jiří Šafr FHS UK poslední revize 31. srpna 2010 Logika kontingenčních tabulek... 2 Postup vytváření kontingenčních tabulek v PSPP (SPSS)....

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Masarykova univerzita Ekonomicko správní fakulta. Statistika II

Masarykova univerzita Ekonomicko správní fakulta. Statistika II Masarykova univerzita Ekonomicko správní fakulta Statistika II distanční studijní opora Marie Budíková Brno 2006 Tento projekt byl realizován za finanční podpory Evropské unie v rámci programu SOCRATES

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr Kurz SPSS: Jednoduchá analýza dat Jiří Šafr vytvořeno 29. 6. 2009 Dva základní typy statistiky 1. Popisná statistika: metody pro zjišťování a sumarizaci informací grfy, tabulky, popisné chrakteristiky

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76 1 / 76 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno. listopadu 007) 1(4) Mann-Whitney párový Wilcoxon párový znaménkový

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Pravděpodobnost, statistika a operační výzkum

Pravděpodobnost, statistika a operační výzkum Pravděpodobnost, statistika a operační výzkum RNDr. Břetislav Fajmon, Ph.D. Mgr. Jan Koláček, Ph.D. ÚSTAV MATEMATIKY Pravděpodobnost, statistika a operační výzkum 1 Obsah I Statistické metody 7 1 Odhad

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846 1 5 ANALÝZA ROZPTYLU Vzorová úloha 5.1 Zkrácený postup jednofaktorové analýzy rozptylu Na úloze B5.02 Porovnání nové metody v sedmi laboratořích ukážeme postup 16 jednofaktorové analýzy rozptylu. Kirchhoefer

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Projekt z předmětu Statistika

Projekt z předmětu Statistika Projekt z předmětu Téma: Typologie hráče české nejvyšší hokejové soutěže VŠB-TU Ostrava:Fakulta Elektrotechniky a informatiky jaro 2011 Martin Dočkal doc068 dockal.martin@gmail.com 1 Obsah 2 Zadání...

Více

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII Tomáš Katrňák Fakulta sociálních studií Masarykova univerzita Brno SOCIOLOGIE A STATISTIKA nadindividuální společenské struktury podmiňují lidské chování (Durkheim)

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

Aplikovaná metodologie pro učitele I: kvantitativní přístup. Jan Lašek Jindra Vondroušová

Aplikovaná metodologie pro učitele I: kvantitativní přístup. Jan Lašek Jindra Vondroušová Aplikovaná metodologie pro učitele I: kvantitativní přístup Jan Lašek Jindra Vondroušová Autoři: Doc. PhDr. Jan Lašek, CSc., PhDr. Jindra Vondroušová, Ph.D. Název: Aplikovaná metodologie pro učitele I.:

Více

Přednáška 10. Analýza závislosti

Přednáška 10. Analýza závislosti Přednáška 10 Analýza závislosti Analýza závislosti dvou kategoriálních proměnných Analýza závislosti v kontingečních tabulkách Analýza závislosti v asociačních tabulkách Simpsonův paradox Analýza závislosti

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

META-ANALÝZA Z POHLEDU STATISTIKA. Medicína založená na důkazu - Modul 3B

META-ANALÝZA Z POHLEDU STATISTIKA. Medicína založená na důkazu - Modul 3B META-ANALÝZA Z POHLEDU STATISTIKA Medicína založená na důkazu - Modul 3B OBSAH: Úvodní definice... 2 Ověření homogenity pomocí Q statistiky... 3 Testování homogenity studií pomocí I 2 indexu... 6 Výpočet

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Spokojenost se životem

Spokojenost se životem SEMINÁRNÍ PRÁCE Spokojenost se životem (sekundárních analýza dat sociologického výzkumu Naše společnost 2007 ) Předmět: Analýza kvantitativních revize Šafr dat I. Jiří (18/2/2012) Vypracoval: ANONYMIZOVÁNO

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 2004.

ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 2004. ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 04 Marie Budíková Katedra aplikované matematiky, Přírodovědecká fakulta, Masarykova

Více

Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz

Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz Ukazka knihy z internetoveho knihkupectvi www.kosmas.cz RNDr. Marie Budíková, Dr., Mgr. Maria Králová, Ph.D., Doc. RNDr. Bohumil Maroš, CSc. Průvodce základními statistickými metodami Vydala Grada Publishing,

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Úvod. Struktura respondentů

Úvod. Struktura respondentů Výsledky pilotního průzkumu postojů studentů Policejní akademie ČR v Praze k problematice zálohování dat Ing. Bc. Marek Čandík, Ph.D. JUDr. Štěpán Kalamár, Ph.D. The results of the pilot survey of students

Více

IBM SPSS Complex Samples

IBM SPSS Complex Samples IBM Software IBM SPSS Complex Samples Analyzujte výsledky komplexních výběrových šetření korektním způsobem Korektní zpracování výzkumů založených na komplexních výběrových plánech není snadné. Statistické

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 7: Třídění druhého stupně. Kontingenční tabulky Co se dozvíte v tomto modulu? Co je třídění druhého stupně Jak vytvořit a interpretovat kontingenční

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Milan Bednařík; Miroslava Široká Statická analýza výsledků písemné kontrolní práce z fyziky Pokroky matematiky, fyziky a astronomie, Vol. 15 (1970), No. 3-4, 180--193

Více

Biostatistika a matematické metody epidemiologie - stručné studijní texty

Biostatistika a matematické metody epidemiologie - stručné studijní texty Biostatistika a matematické metody epidemiologie - stručné studijní texty Bohumír Procházka, SZÚ Praha 1 Co můžeme sledovat Pro charakteristiku nebo vlastnost, kterou chceme sledovat zvolíme termín jev.

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

ZÁKLADY STATISTIKY. You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.

ZÁKLADY STATISTIKY. You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf. ZÁKLADY STATISTIKY ZÁKLADY STATISTIKY 1 strana Obsah... 1 I. teoretická část Práce s daty v softwarovém prostředí Microsoft Office Excel a Statistika 6.0... 1 Abecední slovníček vybraných termínů používaných

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

. Filozofické problémy přírodních věd Teorie a zákon. Lukáš Richterek. lukas.richterek@upol.cz. Podklad k předmětu KEF/FPPV

. Filozofické problémy přírodních věd Teorie a zákon. Lukáš Richterek. lukas.richterek@upol.cz. Podklad k předmětu KEF/FPPV Filozofické problémy přírodních věd Teorie a zákon Lukáš Richterek Katedra experimentální fyziky PF UP, 17 listopadu 1192/12, 771 46 Olomouc lukasrichterek@upolcz Podklad k předmětu KEF/FPPV 2 / 10 Logické

Více

Úvod do statistiky (interaktivní učební text) - Řešené příklady. Martina Litschmannová

Úvod do statistiky (interaktivní učební text) - Řešené příklady. Martina Litschmannová Vysoká škola báňská Technická univerzita Ostrava Západočeská univerzita v Plzni Úvod do statistiky (interaktivní učební text) - Řešené příklady Martina Litschmannová 1. strana ze 159 1 Explorační analýza

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

INTERVALOVÉ ODHADY A TESTOVÁNÍ HYPOTÉZ INTERVALOVÉ ODHADY INTERVALOVÉ ODHADY PRO JEDEN PARAMETER

INTERVALOVÉ ODHADY A TESTOVÁNÍ HYPOTÉZ INTERVALOVÉ ODHADY INTERVALOVÉ ODHADY PRO JEDEN PARAMETER INTERVALOVÉ ODHADY A TESTOVÁNÍ HYPOTÉZ INTERVALOVÉ ODHADY INTERVALOVÉ ODHADY PRO JEDEN PARAMETER 1. Podnik Canard chce za účelem snížení odchylek od předem stanovených (režijních) nákladů v jednotlivých

Více

Biomedicínská statistika

Biomedicínská statistika Biomedicínská statistika IV. ZÁKLADY STATISTIKY V PROSTØEDÍ R Karel Zvára Biomedicínská statistika IV. Jana Zvárová (editor) Základy statistiky v prostředí R Karel Zvára Recenzovali: prof. RNDr. Jiří Anděl,

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK

Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK Sbírka příkladů k procvičení VMZDP, VMZDH, VMZDK 1. Na základě údajů uvedených v tabulce rozhodněte, zda existuje závislost mezi roky a počtem firem ve Šluknovském výběžku, které zaměstnávaly osoby zdravotně

Více

Analýza spokojenosti zákazníka v prodejně Albert v Olomouci. Stanislava Johnová

Analýza spokojenosti zákazníka v prodejně Albert v Olomouci. Stanislava Johnová Analýza spokojenosti zákazníka v prodejně Albert v Olomouci Stanislava Johnová Bakalářská práce 2012 ABSTRAKT Cílem bakalářské práce je zpracování a vyhodnocení konkrétního marketingového výzkumu Analýza

Více

Dítě v předškolním věku a naplňování klíčových kompetencí pohledem pedagogů a v porovnání s předškolním kurikulem Jarmila Hořejší

Dítě v předškolním věku a naplňování klíčových kompetencí pohledem pedagogů a v porovnání s předškolním kurikulem Jarmila Hořejší Téma disertační práce: Dítě v předškolním věku a naplňování klíčových kompetencí pohledem pedagogů a v porovnání s předškolním kurikulem Jarmila Hořejší Obsah 1. Hlavní cíl 2. Návaznost dizertační práce

Více

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ V následujícím textu se podíváme na to, co dělat, když jsou porušeny některé GM předpoklady. Nejprve si připomeňme, o jaké předpoklady

Více

Matematická Statistika. Ivan Nagy, Jitka Kratochvílová

Matematická Statistika. Ivan Nagy, Jitka Kratochvílová Texty k přednáškám Matematická Statistika Ivan Nagy, Jitka Kratochvílová Obsah 1 Náhodný výběr 4 1.1 Pojem náhodného výběru (Sripta str. 68).................... 4 1.2 Charakteristiky výběru (Sripta str.

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Analýza kvantitativních dat: 1. Popisné statistiky a testování hypotéz

Analýza kvantitativních dat: 1. Popisné statistiky a testování hypotéz UK FHS Historická sociologie (LS 2010) Analýza kvantitativních dat: 1. Popisné statistiky a testování hypotéz Jiří Šafr jiri.safr(zavináč)seznam.cz vytvořeno 29. 6. 2009, poslední aktualizace 25. 5. 2010

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více