VLIV ROZPOUŠTĚDLA NA KINETIKU HYDROGENACE ALKYLANTHRACHINONŮ

Rozměr: px
Začít zobrazení ze stránky:

Download "VLIV ROZPOUŠTĚDLA NA KINETIKU HYDROGENACE ALKYLANTHRACHINONŮ"

Transkript

1 VLIV ROZPOUŠTĚDLA NA KINETIKU HYDROGENACE ALKYLANTHRACHINONŮ 1. Úvod Většina technicky prováděných chemických reakcí je nějakým způsobem katalyzována. Katalyzátor zvýší rychlost žádané reakce a tím i selektivitu. Je ho však nutné od reakční směsi oddělit a vrátit do procesu. Separace katalyzátoru je nejsnadnější pokud se nachází v odlišném skupenském stavu než reaktanty. Proto jsou nejčastěji používány heterogenní katalyzátory (v pevném skupenství). Reaktanty mohou být v plynném nebo kapalném skupenství. Heterogenně katalyzovaná reakce je obyčejně v plynné fázi podstatně rychlejší oproti kapalné. Pokud je jeden reaktant v plynném a druhý v kapalném stavu a použit heterogenní katalyzátor je takový systém trojfázový. Toto reakční uspořádání je komplikováno transportními jevy, avšak není nijak vzácné. Při výrobě farmak a chemických specialit je často substrátem relativně velká molekula, jejíž zplynění za reakčních podmínek je nemožné. Příkladem třífázového reakčního systému je heterogenně katalyzovaná hydrogenace v kapalné fázi. Často je hydrogenovaný substrát za reakčních podmínek v pevném stavu. Je nutné jej rozpustit, aby byl umožněn styk hydrogenované molekuly s aktivním místem katalyzátoru, což je nutná podmínka uskutečnění katalyzovaného děje. Z řady důvodů je žádoucí, aby koncentrace substrátu v rozpouštědle byla dosti vysoká. Proto jedním z kritérií pro výběr rozpouštědla je rozpustnost substrátu. Vhodné rozpouštědlo musí kromě substrátu rovněž rozpouštět i produkt. Při některých reakcích se však rozpustnost těchto dvou látek významně liší. Pak je účelné použít směsné rozpouštědlo, obsahující složky rozpouštějící jak surovinu, tak produkt reakce. Rozpouštědlo, jako součást reakčního systému, by se v průběhu procesu nemělo přeměňovat (reagovat) a také by nemělo negativně působit na aktivitu katalyzátoru. Je však známo, že rozpouštědla mohou i značně ovlivnit kinetiku vlastní katalytické reakce. Proto znalost vlivu rozpouštědla na rychlost a selektivitu katalyzované reakce je potřebná při studiu každého systému s rozpuštěným substrátem. 2. Modelový reakční systém Jedním z rozšířených procesů (výroba peroxidu vodíku), při němž je nutné všechny výše uvedené aspekty zohlednit, je hydrogenace 2-ethyl-9,10-anthrachinonu na 2-ethyl-9,10-dihydroxyanthracen (rovnice).

2 O O + H2 katal. + O2 - H2O2 OH OH Reakce probíhá dostatečnou rychlostí při C. S rostoucí reakční teplotou se zhoršuje selektivita. Dochází k hydrogenaci aromatického jádra, především v polohách 5,6,7,8- a k nežádoucí hydrogenolýze C-O vazby 2-ethyl-9,10-dihydroxyanthracenu (2-ethyl-9,10-anthrahydrochinonu) v polohách 9- nebo 10-. Při uvedené reakční teplotě by reaktanty byly v pevném skupenství. Při zvýšení teploty, které by umožnilo hydrogenaci v tavenině by se zhoršovala selektivita. Proto je nutné provádět hydrogenaci v roztoku. Vhodným rozpouštědlem alkylanthrachinonu jsou alkylbenzeny (xylen, etylbenzen apod.). Tato rozpouštědla však téměř nerozpouštějí hydrogenací vznikající 2-alkyl-9,10-dihydroxyanthracen. Tuto polární látku dobře rozpouštějí polární rozpouštědla (např. alkoholy), které naopak nerozpouštějí alkylanthrachinon. V tomto případě je vhodné použít dvou či více komponentní rozpouštědlový systém. Předmětem této práce je proměření vlivu koncentrace jednotlivých složek rozpouštědlového systému na kinetiku uvedené reakce. Složky rozpouštědlového systému a jejich koncentrace budou zadány vždy až vedoucím práce při jejím zahájení. 3. Aparatua a metodika měření Princip aparatury pro kinetické měření je popsán ve skriptech Laboratoř oboru organické technologie v kapitole , str Aparatura se skládá z temperovaného reaktoru a plynoměrné byrety, umožňující sledovat časovou závislost spotřeby H 2 při konstantním tlaku. Čidlem regulátoru, udržujícího konstantní tlak H 2 v aparatuře, je kontaktní U manometr naplněný elektrolytem a otevřený do atmosféry. Aparatura je opatřena malou promývačkou, sloužící ke kontrole přetlaku v aparatuře. Kapalina, vypuštěná z černé byrety je shromažďována v dolním zásobníku, odkud je možno ji přečerpat do horního zásobníku pomocí vývěvy. V aparatuře jsou použity teflonové ventily, které již při jemném dotažení dokonale uzavírají danou cestu. Každý student by si měl vyzkoušet něžné zacházení s těmito ventily např. uzavíráním ventilu přívodu H 2 do aparatury, kontrolovaném intenzitou bublání H 2 v promývačce (popsáno níže). Při přípravě aparatury k měření se nejprve zapne termostat a nastaví požadovaná teplota. Ustálení teploty v termostatu, které trvá několik desítek minut, se kontroluje odečtením teploty na rtuťovém teploměru. Termostat temperuje plášť reaktoru a tím udržuje konstantní reakční teplotu. Regulátor udržující konstantní tlak H 2 v aparatuře, jehož akčním členem je solenoidový ventil, se zapíná přepínačem, umístěným pod relé. Jsou zde dva přepínače regulačního obvodu s polohami

3 vypnuto měření a měření - zkrat. Polohou vypnuto se vypíná regulační obvod, polohami měření na obou přepínačích je zajištěno udržování konstantního tlaku H 2 v v aparatuře, polohou zkrat na pravém přepínači se trvale otvírá solenoidový ventil (používá se při plnění byret kapalinou). Vodík je k aparatuře přiváděn kapilárním rozvodem od bomby s membránovým redukčním ventilem. Po otevření ventilu bomby H 2 se zkontroluje, zda výstupní tlak z membránového redukčního ventilu je nastaven v rozmezí kpa, případně se na tento tlak upraví. Kapilární rozvod je ukončen jehlovým ventilem, dále je H 2 veden hadičkou z PVC k teflonovému ventilu, který uzavírá měřící část aparatury. Před otevřením tohoto ventil je nutné vždy otevřít kohout promývačky, mít uzavřený reaktor a ventil kontaktního U manometru, aby nedošlo k vyfouknutí elektrolytu. Jestliže by k tomu došlo, je potřebné elektrolyt doplnit např. vodným roztokem NaCl. Po krátkém promytí aparatury vodíkem se jim naplní měřící byrety. Výše popsaným způsobem se otevře solenoidový ventil a s pomocí třícestného kohoutu se měřící byrety naplní až po horní okraj uzavírací kapalinou. Pak se ukončí otevření solenoidového ventilu a kapalina se z byret vypouští nejvýše takovou rychlostí, aby H 2 ještě probublával v promývačce. Hladina kapaliny v byretě se takto nastaví na hodnotu 100 ml. Katalyzátor se navažuje na analytických vahách na lodičce v množství, které zajistí dobře měřitelný průběh reakce. Navážka se pohybuje v intervalu mg. Při sypání do reaktoru je nutné zabezpečit, aby suchý katalyzátor nepřišel do kontaktu s vodíko vzduchovou směsí, protože i za normální teploty se vodík na katalyzátoru spaluje. V důsledku přehřátí by se katalyzátor deaktivoval. Aby k tomu nedošlo při záměně vzduchové atmosféry vodíkovou, katalyzátor v reaktoru se smočí 2 ml rozpouštědla. Dříve než bude substrát hydrogenován, je nutné katalyzátor zaktivovat, aby se v průběhu měření jeho aktivita již neměnila. Aktivace katalyzátoru se provádí obdobně jako vlastní hydrogenace. Reaktor se uzavře, septem se zavede injekční jehla o průměru 0,8mm těsně nad hladinu kapalné fáze v reaktoru. Do aparatury se přivádí H 2, což je kontrolováno pomocí promývačky. Uzavřením cesty k promývačce pomocí třícestného kohoutu vodík protéká reaktorem a jehlou do atmosféry (asi 2 minuty). Tím se dosáhne záměny vzduchové atmosféry v reaktoru za vodíkovou. Promývání aparatury vodíkem se ukončí otevřením kohoutu promývačky, zazátkováním jehly reaktoru a uzavřením přívodu H 2 do aparatury. Otevřením ventilu, oddělujícího kontaktní U manometr, uzavřením kohoutu promývačky a ventilu, umožňujícího odtok kapaliny do spodního zásobníku, otevřením kohoutu v dolní části byrety a přepnutím obou přepínačů do polohy měření je aparatura připravena k měření. Odstartování aktivace nebo hydrogenace se provádí spuštěním míchání. Doba aktivace činí asi 20 minut (dokud je pozorovatelná spotřeba H2). Po jejím ukončení je zapsána spotřeba H2 na aktivaci katalyzátoru a byreta doplněna vodíkem na 100 ml (U manometr opět uzavřen). I nadále se nechá aparaturou protékat vodík, otevře se reaktor a vsype přesně navážené množství substrátu. Kalibrovanou pipetou se do reaktoru přidá zbývající množství rozpouštědla tak, aby se spláchl veškerý substrát i zaktivovaný katalyzátor ze stěn. Příprava aparatury k měření je stejná jako před aktivací katalyzátoru. Z navážky substrátu se vypočte množství H 2, potřebné na 100% hydrogenaci. Tento údaj umožní rozvrhnout četnost zaznamenávání času a odpovídající spotřeby H 2. Počet experimentálních bodů v časové závislosti spotřeby H 2 by měl být vyšší než 20. Sledování průběhu hydrogenace se provádí do cca 80%ní konverze substrátu. Z hlediska

4 co nejpřesnějšího záznamu průběhu hydrogenace je nutné zaznamenat okamžik otevření solenoidového ventilu (slyšitelný zvuk) a stav hladiny v měřící byretě po uzavření solenoidového ventilu. Po ukončení měření se vypne přepínač regulátoru konstantního tlaku H 2 (z polohy měření do polohy vypnuto ), uzavře se ventil U manometru, otevře se reaktor a za míchání se reakční směs odsaje do promývací lahve s odpadním rozpouštědlem. Reaktor včetně odnímatelné horní části se důkladně omyje lihem, rovněž tak veškeré použité nádobí. Pokud se nepokračuje dále v měření a nikdo jiný v laboratoři neodebírá H 2 z rozvodu, uzavře se také bomba H 2 a vypne se termostat. 4. Použité chemikálie Substrát: 2-ethyl-9,10-anthrachinon 2-ethyl -5,6,7,8-tetrahydro-9,10-anthrachinon Hydrogenační katalyzátor: 2% Pd/Al 2 O 3 SiO 2 Nepolární rozpouštědlo: Polární rozpouštědlo: bude zadáno bude zadáno 5. Zpracování výsledků a) Za ověřeného předpokladu vysoké selektivity hydrogenace chinonové struktury na hydrochinonovou lze ze spotřeby vodíku a známé počáteční koncentrace spočítat koncentraci substrátu v každém experimentálním bodě (uveďte do tabulky). Znázorněte graficky závislost koncentrace substrátu (mol/l) na čase (s) pro zadané rozpouštědlové systémy. b) Průběh reakce lze jednoduše popsat mocninovou rychlostní rovnicí s řádem k substrátu a a k vodíku b. r = - (dc Substrát / dt) = k r * C a Substrát * C b H2 [mol*s -1 *l -1 ] (2) Rychlost katalyzované reakce závisí na koncentraci katalyzátoru, tedy podílu navážky katalyzátoru a reakčního objemu m kat. / V r. Je proto účelné rychlost vztáhnout na jednotkovou koncentraci katalyzátoru. Za předpokladu, že reakce probíhá v kinetické oblasti, že změnou rozpouštědla nedojde k významné změně koncentrace vodíku v kapalné fázi a ke změně řádu vůči koncentraci vodíku, je C b H2 za reakčního uspořádání konstantní. Součinem této konstantní hodnoty s rychlostní konstantou k r a konstantním reakčním objemem V r vznikne nová konstanta, dále označovaná k. Rovnici (2) lze pak zapsat ve tvaru: r = - (dc Substrát / dt) * (V r / m kat. ) = (k / m kat. ) * C a Substrátu [mol*s -1 *g -1 kat.] (3) Pomocí rovnice (3) lze určit parametry mocninového modelu. K výpočtu derivací použijte dvoubodový vzorec (4) r i = - [(C i+1 C i ) / (t i+1 t i )] * [V r / m kat. ] (4)

5 Logaritmováním rovnice (3) získáte lineární rovnici (5) ln r = ln (k / m kat. ) + a * ln C Substrátu (5) Z rovnice (5) určete metodou nejmenších čtverců řád reakce a. Kriticky zhodnoťte experimentální data a případné odlehlé body vyřaďte (často jimi jsou první 1-2 experimentální údaje). Vypočítejte konstantu k ze známé navážky katalyzátoru m kat. a uveďte její rozměr. c) Interpretace vlivu rozpouštědla na rychlost hydrogenace je při proměnném řádu reakce problematická. Jednou možností porovnání rozpouštědlových systémů je využití technologického parametru rychlosti v průmyslovém reaktoru. V tomto konkrétním případě je známo, že hydrogenace antrachinonů se provádí v průtočném ideálně míchaném reaktoru při konverzích %. Je proto účelné porovnávat jednotlivé rozpouštědlové systémy při této konverzi. Vypočítejte reakční rychlost hydrogenace při 50 a 70 %ní konverzi substrátu s počáteční koncentrací 0,5 mol/l. V závěrečné tabulce uveďte název a koncentraci nepolární složky rozpouštědlového systému, název a koncentraci polární složky (složek), konstantu k, řád reakce a, rychlost hydrogenace při 50 a 70 %ní konverzi.

LABORATOŘ OBORU I. Testování katalyzátorů pro přípravu prekurzorů vonných látek. Umístění práce:

LABORATOŘ OBORU I. Testování katalyzátorů pro přípravu prekurzorů vonných látek. Umístění práce: LABORATOŘ OBORU I F Testování katalyzátorů pro přípravu prekurzorů vonných látek Vedoucí práce: Umístění práce: Ing. Eva Vrbková F07, F08 1 ÚVOD Hydrogenace je uplatňována v nejrůznějších odvětvích chemických

Více

Autokláv reaktor pro promíchávané vícefázové reakce

Autokláv reaktor pro promíchávané vícefázové reakce Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.

Více

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné

Více

Heterogenně katalyzovaná hydrogenace při syntéze léčiv

Heterogenně katalyzovaná hydrogenace při syntéze léčiv R Laboratoř oboru I Výroba léčiv (N111049) a rganická technologie (N111025) Návod Heterogenně katalyzovaná hydrogenace při syntéze léčiv Vedoucí práce: Ing. Dana Bílková Studijní program: Studijní obor:

Více

LABORATOŘ OBORU. Hydrogenace na heterogenizovaných katalyzátorech. Umístění práce:

LABORATOŘ OBORU. Hydrogenace na heterogenizovaných katalyzátorech. Umístění práce: LABORATOŘ OBORU F Hydrogenace na heterogenizovaných katalyzátorech Vedoucí práce: Umístění práce: Ing. Maria Kotova F07, F08 1 ÚVOD Hydrogenace je uplatňována v nejrůznějších odvětvích chemických výrob.

Více

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Roman Snop

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Roman Snop Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru Roman Snop Charakteristika Zkrápěné reaktory jsou nejvhodněji aplikovatelné na provoz heterogenně katalyzovaných reakcí. Nacházejí uplatnění

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

kde k c(no 2) = 2, m 6 mol 2 s 1. Jaká je hodnota rychlostní konstanty v rychlostní rovnici ? V [k = 1, m 6 mol 2 s 1 ]

kde k c(no 2) = 2, m 6 mol 2 s 1. Jaká je hodnota rychlostní konstanty v rychlostní rovnici ? V [k = 1, m 6 mol 2 s 1 ] KINETIKA JEDNODUCHÝCH REAKCÍ Různé vyjádření reakční rychlosti a rychlostní konstanty 1 Rychlost reakce, rychlosti přírůstku a úbytku jednotlivých složek Rozklad kyseliny dusité je popsán stechiometrickou

Více

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6 3. SIMULTÁNNÍ REAKCE Úloha 3-1 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 3-2 Protisměrné reakce oboustranně prvého řádu, výpočet času... 2 Úloha 3-3 Protisměrné reakce oboustranně

Více

10. Chemické reaktory

10. Chemické reaktory 10. Chemické reaktory V každé chemické technologii je základní/nejvýznamnější zařízení pro provedení chemické reakce chemický reaktor. Celý technologický proces se skládá v podstatě ze tří typů zařízení:

Více

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Předmět: Vícefázové reaktory Jméno: Veronika Sedláková

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Předmět: Vícefázové reaktory Jméno: Veronika Sedláková Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru Předmět: Vícefázové reaktory Jméno: Veronika Sedláková 3-fázové reakce Autoklávy (diskontinuální) Trubkové reaktory (kontinuální) Probublávané

Více

9. Chemické reakce Kinetika

9. Chemické reakce Kinetika Základní pojmy Kinetické rovnice pro celistvé řády Katalýza Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti reakční mechanismus elementární reakce a molekularita reakce reakční rychlost

Více

VYUŽITÍ UV ZÁŘENÍ A OZONIZACE PŘI ODSTRAŇOVÁNÍ LÉČIV

VYUŽITÍ UV ZÁŘENÍ A OZONIZACE PŘI ODSTRAŇOVÁNÍ LÉČIV VYUŽITÍ UV ZÁŘENÍ A OZONIZACE PŘI ODSTRAŇOVÁNÍ LÉČIV JIŘÍ PALARČÍK Univerzita Pardubice Fakulta chemicko-technologická Ústav environmentálního a chemického inženýrství Centralizovaný rozvojový projekt

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Rychlost chemické reakce A B. time. rychlost = - [A] t. [B] t. rychlost = Reakční rychlost a stechiometrie A + B C; R C = R A = R B A + 2B 3C;

Rychlost chemické reakce A B. time. rychlost = - [A] t. [B] t. rychlost = Reakční rychlost a stechiometrie A + B C; R C = R A = R B A + 2B 3C; Rychlost chemické reakce A B time rychlost = - [A] t rychlost = [B] t Reakční rychlost a stechiometrie A + B C; R C = R A = R B A + 2B 3C; 1 1 R A = RB = R 2 3 C Př.: Určete rychlost rozkladu HI v následující

Více

Rozpustnost s. Rozpouštění = opakem krystalizace Veličina udávající hmotnost rozpuštěné látky v daném objemu popř. v hmotnosti nasyceného roztoku.

Rozpustnost s. Rozpouštění = opakem krystalizace Veličina udávající hmotnost rozpuštěné látky v daném objemu popř. v hmotnosti nasyceného roztoku. Rozpustnost 1 Rozpustnost s Rozpouštění = opakem krystalizace Veličina udávající hmotnost rozpuštěné látky v daném objemu popř. v hmotnosti nasyceného roztoku. NASYCENÝ = při určité t a p se již více látky

Více

Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku

Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku Teorie První termodynamický zákon je definován du dq dw (1) kde du je totální diferenciál vnitřní energie a dq a dw jsou neúplné

Více

1 Tlaková ztráta při toku plynu výplní

1 Tlaková ztráta při toku plynu výplní I Základní vztahy a definice 1 Tlaková ztráta při toku plynu výplní Proudění plynu (nebo kapaliny) nehybnou vrstvou částic má řadu aplikací v chemické technoloii. Částice tvořící vrstvu mohou být kuličky,

Více

Fentonova oxidace ve zkrápěném reaktoru za kontinuálního a periodického nástřiku

Fentonova oxidace ve zkrápěném reaktoru za kontinuálního a periodického nástřiku Fentonova oxidace ve zkrápěném reaktoru za kontinuálního a periodického nástřiku Autor: Uhlíř David Ročník: 5. Školitel: doc.ing. Vratislav Tukač, CSc. Ústav organické technologie 2005 Úvod Odpadní vody

Více

Dovednosti/Schopnosti. - orientuje se v ČL, který vychází z Evropského lékopisu;

Dovednosti/Schopnosti. - orientuje se v ČL, který vychází z Evropského lékopisu; Jednotka učení 4a: Stanovení obsahu Ibuprofenu 1. diferencování pracovního úkolu Handlungswissen Charakteristika pracovní činnosti Pracovní postup 2. HINTERFRAGEN 3. PŘIŘAZENÍ... Sachwissen Charakteristika

Více

CHEMIE. Pracovní list č. 5 - žákovská verze Téma: Vliv teploty na rychlost chemické reakce, teplota tání karboxylových kyselin. Mgr.

CHEMIE. Pracovní list č. 5 - žákovská verze Téma: Vliv teploty na rychlost chemické reakce, teplota tání karboxylových kyselin. Mgr. www.projektsako.cz CHEMIE Pracovní list č. 5 - žákovská verze Téma: Vliv teploty na rychlost chemické reakce, teplota tání karboxylových kyselin Lektor: Mgr. Lenka Horutová Projekt: Student a konkurenceschopnost

Více

PŘENOS KYSLÍKU V BIOTECHNOLOGII. Úvod. Limitace metabolismu kyslíkem

PŘENOS KYSLÍKU V BIOTECHNOLOGII. Úvod. Limitace metabolismu kyslíkem PŘENOS KYSLÍKU V BIOTECHNOLOGII Při aerobních procesech katalyzovaných buňkami nebo enzymy je nutné zabezpečit dostatečný přívod kyslíku do fermentačního média reaktoru (fermentoru). U některých organismů

Více

ÚSTAV ORGANICKÉ TECHNOLOGIE

ÚSTAV ORGANICKÉ TECHNOLOGIE LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) J Katalytická oxidace fenolu ve vodách Vedoucí práce: Doc. Ing. Vratislav Tukač, CSc. Umístění práce: S27 1 Ústav organické technologie, VŠCHT Praha

Více

Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru. Petr Svačina

Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru. Petr Svačina Výzkum vlivu přenosových jevů na chování reaktoru se zkrápěným ložem katalyzátoru Petr Svačina I. Vliv difuze vodíku tekoucím filmem kapaliny na průběh katalytické hydrogenace ve zkrápěných reaktorech

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Příprava roztoků a měření ph autor: ing. Alena Dvořáková vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

Stanovení měrného tepla pevných látek

Stanovení měrného tepla pevných látek 61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,

Více

Využití faktorového plánování v oblasti chemických specialit

Využití faktorového plánování v oblasti chemických specialit LABORATOŘ OBORU I T Využití faktorového plánování v oblasti chemických specialit Vedoucí práce: Ing. Eliška Vyskočilová, Ph.D. Umístění práce: FO7 1 ÚVOD Faktorové plánování je optimalizační metoda, hojně

Více

Stanovení fotokatalytické aktivity vzorků FN1, FN2, FN3 a P25 dle metodiky ISO :2013

Stanovení fotokatalytické aktivity vzorků FN1, FN2, FN3 a P25 dle metodiky ISO :2013 Stanovení fotokatalytické aktivity vzorků FN, FN2, FN3 a P25 dle metodiky ISO 2297-4:23 Vypracováno za základě objednávky č. VSCHT 7-2-5 pro Advanced Materials-JTJ s.r.o. Vypracovali: Ing. Michal Baudys

Více

Směsi, roztoky. Disperzní soustavy, roztoky, koncentrace

Směsi, roztoky. Disperzní soustavy, roztoky, koncentrace Směsi, roztoky Disperzní soustavy, roztoky, koncentrace 1 Směsi Směs je soustava, která obsahuje dvě nebo více chemických látek. Mezi složkami směsi nedochází k chemickým reakcím. Fyzikální vlastnosti

Více

Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha

Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha Teorie transportu plynů a par polymerními membránami Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha Úvod Teorie transportu Difuze v polymerních membránách Propustnost polymerních membrán

Více

Kolik energie by se uvolnilo, kdyby spalování ethanolu probíhalo při teplotě o 20 vyšší? Je tato energie menší nebo větší než při teplotě 37 C?

Kolik energie by se uvolnilo, kdyby spalování ethanolu probíhalo při teplotě o 20 vyšší? Je tato energie menší nebo větší než při teplotě 37 C? TERMOCHEMIE Reakční entalpie při izotermním průběhu reakce, rozsah reakce 1 Kolik tepla se uvolní (nebo spotřebuje) při výrobě 2,2 kg acetaldehydu C 2 H 5 OH(g) = CH 3 CHO(g) + H 2 (g) (a) při teplotě

Více

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi 1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4

Více

Automatické měření veličin

Automatické měření veličin Měření veličin a řízení procesů Automatické měření veličin» Čidla» termočlánky, tlakové senzory, automatické váhy, konduktometry» mají určitou dynamickou charakteristiku» Analyzátory» periodický odběr

Více

215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI

215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI 215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI ÚVOD Rektifikace je nejčastěji používaným procesem pro separaci organických látek. Je široce využívána jak v chemické laboratoři, tak i v průmyslu.

Více

2. KINETICKÁ ANALÝZA HOMOGENNÍCH REAKCÍ

2. KINETICKÁ ANALÝZA HOMOGENNÍCH REAKCÍ 2. KINETICKÁ ANALÝZA HOMOGENNÍCH REAKCÍ Úloha 2-1 Řád reakce a rychlostní konstanta integrální metodou stupeň přeměny... 2 Úloha 2-2 Řád reakce a rychlostní konstanta integrální metodou... 2 Úloha 2-3

Více

Laboratorní cvičení z kinetiky chemických reakcí

Laboratorní cvičení z kinetiky chemických reakcí Laboratorní cvičení z kinetiky chemických reakcí LABORATORNÍ CVIČENÍ 1. Téma: Ovlivňování průběhu reakce změnou koncentrace látek. podmínek průběhu reakce. Jednou z nich je změna koncentrace výchozích

Více

Bezpečnost chemických výrob N111001

Bezpečnost chemických výrob N111001 Bezpečnost chemických výrob N111001 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Specifická rizika chemických reakcí Reaktivita látek Laboratorní měření reaktivity Reaktory s

Více

Úloha č. 9 Stanovení hydroxidu a uhličitanu vedle sebe dle Winklera

Úloha č. 9 Stanovení hydroxidu a uhličitanu vedle sebe dle Winklera Úloha č. 9 Stanovení hydroxidu a uhličitanu vedle sebe dle Winklera Princip Jde o klasickou metodu kvantitativní chemické analýzy. Uhličitan vedle hydroxidu se stanoví ve dvou alikvotních podílech zásobního

Více

Bezpečnost chemických výrob N111001

Bezpečnost chemických výrob N111001 Bezpečnost chemických výrob N111001 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Základní pojmy z regulace a řízení procesů Účel regulace Základní pojmy Dynamické modely regulačních

Více

Specifikace přístrojů pro laboratoř katalyzátorů

Specifikace přístrojů pro laboratoř katalyzátorů Specifikace přístrojů pro laboratoř katalyzátorů Uchazeč použije části odpovídající jeho nabídce. V tabulkách do sloupců doplní podle povahy parametru buď ANO/NE (případně jiný slovní údaj) nebo konkrétní

Více

na stabilitu adsorbovaného komplexu

na stabilitu adsorbovaného komplexu Vliv velikosti částic aktivního kovu na stabilitu adsorbovaného komplexu Jiří Švrček Ing. Petr Kačer, Ph.D. Ing. David Karhánek Ústav organické technologie VŠCHT Praha Hydrogenace Základní proces chemického

Více

Průtokové metody (Kontinuální měření v proudu kapaliny)

Průtokové metody (Kontinuální měření v proudu kapaliny) Průtokové metody (Kontinuální měření v proudu kapaliny) 1. Přímé měření: analyzovaná kapalina většinou odvětvena + vhodný detektor 2. Kapalinová chromatografie (HPLC) Stanovení po předchozí separaci 3.

Více

DeltaSol TECHNICKÁ DATA

DeltaSol TECHNICKÁ DATA TECHNICKÁ DATA IP30/DIN40050 Provozní teplota: 0 až +40 C Rozměry: 150 x 102 x 52 mm Instalace: na stěnu, na izolaci nádrže Zobrazení: LCD Nastavení: T: 2...11 K (nastavitelná hodnota) hystereze: 1,0 K

Více

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala ÚPRAVA VODY V ENERGETICE Ing. Jiří Tomčala Úvod Voda je v elektrárnách po palivu nejdůležitější surovinou Její množství v provozních systémech elektráren je mnohonásobně větší než množství spotřebovaného

Více

2. Úloha difúze v heterogenní katalýze

2. Úloha difúze v heterogenní katalýze 2. Úloha difúze v heterogenní katalýze Vnitřní difúze při nerovnoměrné radiální distribuci aktivní složky v částici katalyzátoru Kateřina Horáčková Příčina radiálního aktivitního profilu v katalyzátorové

Více

Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4.

Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4. Vyučovací předmět - Chemie Vzdělávací obor - Člověk a příroda Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4. ročník - seminář

Více

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK a/ PNEUMATICKÉHO PROPORCIONÁLNÍHO VYSÍLAČE b/ PNEUMATICKÉHO P a PI REGULÁTORU c/ PNEUMATICKÉHO a SOLENOIDOVÉHO VENTILU ad a/ Cejchování

Více

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ Zadání: 1. Stanovte oxygenační kapacitu a procento využití kyslíku v čisté vodě pro provzdušňovací porézní element instalovaný v plexi válci následujících rozměrů:

Více

A:Cejchování termočlánku na bod tání čistého kovu B:Měření teploty termočlánkem C:Cejchování termoelektrického snímače KET/MNV (9.

A:Cejchování termočlánku na bod tání čistého kovu B:Měření teploty termočlánkem C:Cejchování termoelektrického snímače KET/MNV (9. A:Cejchování termočlánku na bod tání čistého kovu B:Měření teploty termočlánkem C:Cejchování termoelektrického snímače KET/MNV (9. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P A: Cejchování

Více

Selektivní dvoufázová hydrogenace kyseliny sorbové. Radka Malá

Selektivní dvoufázová hydrogenace kyseliny sorbové. Radka Malá Selektivní dvoufázová hydrogenace kyseliny sorbové Radka Malá Úvod Listové alkoholy: vonné látky využívané v parfumářském průmyslu příprava: složité syntézy, drahé suroviny Kyselina sorbová (kyselina trans,trans-hexa-2,4-dienová):

Více

Ch - Rozlišování látek

Ch - Rozlišování látek Ch - Rozlišování látek Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

ÚSTAV ORGANICKÉ TECHNOLOGIE

ÚSTAV ORGANICKÉ TECHNOLOGIE LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) F Imobilizace na alumosilikátové materiály Vedoucí práce: Ing. Eliška Leitmannová, Ph.D. Umístění práce: laboratoř F07, F08 1 Úvod Imobilizace aktivních

Více

JODOMETRICKÉ STANOVENÍ ROZPUŠTĚNÉHO KYSLÍKU

JODOMETRICKÉ STANOVENÍ ROZPUŠTĚNÉHO KYSLÍKU JODOMETRICKÉ STANOVENÍ ROZPUŠTĚNÉHO KYSLÍKU (dle Winklera v Alsterbergově modifikaci) Cílem je stanovení rozpuštěného kyslíku v pitné vodě z vodovodního řádu. Protokol musí osahovat veškeré potřebné hodnoty

Více

Zapojení teploměrů. Zadání. Schéma zapojení

Zapojení teploměrů. Zadání. Schéma zapojení Zapojení teploměrů V této úloze je potřeba zapojit elektrickou pícku a zahřát na požadovanou teplotu, dále zapojit dané teploměry dle zadání a porovnávat jejich dynamické vlastnosti, tj. jejich přechodové

Více

Úloha 1-39 Teplotní závislost rychlostní konstanty, reakce druhého řádu... 11

Úloha 1-39 Teplotní závislost rychlostní konstanty, reakce druhého řádu... 11 1. ZÁKLADNÍ POJMY Úloha 1-1 Různé vyjádření reakční rychlosti rychlosti přírůstku a úbytku jednotlivých složek... 2 Úloha 1-2 Různé vyjádření reakční rychlosti změna celkového látkového množství... 2 Úloha

Více

ELEKTROCHEMIE 419.0002

ELEKTROCHEMIE 419.0002 ELEKTROCHEMIE 419.0002 LABORATORNÍ PRÁCE Z ELEKTROCHEMIE NÁVODY PRO VYUČUJÍCÍHO Miguel Angel Gomez Crespo Mario Redondo Ciércoles Francouzský překlad : Alain Vadon Český překlad: Jaromír Kekule ELEKTROCHEMIE

Více

Chemie - 5. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP.

Chemie - 5. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP. očekávané výstupy RVP témata / učivo Chemie - 5. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.2., 2.1., 2.2., 2.4., 3.3. 1. Přeměny chemických soustav chemická

Více

FYZIKÁLNÍ CHEMIE I: 1. ČÁST KCH/P401

FYZIKÁLNÍ CHEMIE I: 1. ČÁST KCH/P401 Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 1. ČÁST KCH/P401 Magda Škvorová Ústí nad Labem 2013 Obor: Toxikologie a analýza škodlivin, Chemie (dvouoborová) Klíčová

Více

4 STANOVENÍ KINEMATICKÉ A DYNAMICKÉ VISKOZITY OVOCNÉHO DŽUSU

4 STANOVENÍ KINEMATICKÉ A DYNAMICKÉ VISKOZITY OVOCNÉHO DŽUSU Laboratorní cvičení z předmětu Reologie potravin a kosmetických prostředků 4 STANOVENÍ KINEMATICKÉ A DYNAMICKÉ VISKOZITY OVOCNÉHO DŽUSU (KAPILÁRNÍ VISKOZIMETR UBBELOHDE) 1. TEORIE: Ve všech kapalných látkách

Více

13/sv. 8 (85/503/EHS) Tato směrnice je určena členským státům.

13/sv. 8 (85/503/EHS) Tato směrnice je určena členským státům. 62 31985L0503 L 308/12 ÚŘEDNÍ VĚSTNÍK EVROPSKÝCH SPOLEČENSTVÍ 20.11.1985 PRVNÍ SMĚRNICE KOMISE ze dne 25. října 1985 o metodách pro analýzu potravinářských kaseinů a kaseinátů (85/503/EHS) KOMISE EVROPSKÝCH

Více

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia projekt GML Brno Docens DUM č. 12 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 03.05.2014 Ročník: 1. ročník Anotace DUMu: Kapaliny, změny skupenství Materiály

Více

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3 Výpočtový seminář z Procesního inženýrství podzim 2008 Bilance Materiálové a látkové 10.10.2008 1 Tématické okruhy bilance - základní pojmy bilanční schéma způsoby vyjadřování koncentrací a přepočtové

Více

Reaktory pro systém plyn-kapalina

Reaktory pro systém plyn-kapalina Reaktory pro systém plyn-kapalina Vypracoval : Jan Horáček FCHT, ústav 111 Prováděné reakce Rychlé : všechen absorbovaný plyn zreaguje již na fázovém rozhraní (př. : absorpce kyselých plynů : CO 2, H 2

Více

Třecí ztráty při proudění v potrubí

Třecí ztráty při proudění v potrubí Třecí ztráty při proudění v potrubí Vodorovným ocelovým mírně zkorodovaným potrubím o vnitřním průměru 0 mm proudí 6 l s - kapaliny o teplotě C. Určete tlakovou ztrátu vlivem tření je-li délka potrubí

Více

3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice

3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice 3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice I Základní vztahy a definice iltrace je jedna z metod dělení heterogenních směsí pevná fáze tekutina. Směs prochází pórovitým materiálem

Více

VYHODNOCOVÁNÍ CHROMATOGRAFICKÝCH DAT

VYHODNOCOVÁNÍ CHROMATOGRAFICKÝCH DAT VYHDNCVÁNÍ CHRMATGRAFICKÝCH DAT umístění práce: laboratoř č. S31 vedoucí práce: Ing. J. Krupka 1. Cíl práce: Seznámení s možnostmi, které poskytuje GC chromatografie pro kvantitativní a kvalitativní analýzu.

Více

Přírodní vědy - Chemie vymezení zájmu

Přírodní vědy - Chemie vymezení zájmu Přírodní vědy - Chemie vymezení zájmu Hmota Hmota má dualistický, korpuskulárně (částicově) vlnový charakter. Převládající charakter: korpuskulární (částicový) - látku vlnový - pole. Látka se skládá z

Více

Automatická potenciometrická titrace Klinická a toxikologická analýza Chemie životního prostředí Geologické obory

Automatická potenciometrická titrace Klinická a toxikologická analýza Chemie životního prostředí Geologické obory Automatická potenciometrická titrace Klinická a toxikologická analýza Chemie životního prostředí Geologické obory Titrace je spolehlivý a celkem nenáročný postup, jak zjistit koncentraci analytu, její

Více

Hydrogenace sorbového. alkoholu pomocí toru. tická. Školitel: Ing. Eliška. Leitmannová

Hydrogenace sorbového. alkoholu pomocí toru. tická. Školitel: Ing. Eliška. Leitmannová ydrogenace sorbového alkoholu pomocí Ru - imobilizovaného katalyzátoru toru Ivana Luštick tická Školitel: Ing. Eliška Leitmannová Úvod cis-ex-3-en-1-ol = silná, intenzivně svěží vůně trávy,složka v muškátovém,

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu

Více

Destilace

Destilace Výpočtový ý seminář z Procesního inženýrství podzim 2007 Destilace 18.9.2008 1 Tématické okruhy destilace - základní pojmy rovnováha kapalina - pára jednostupňová destilace rektifikace 18.9.2008 2 Destilace

Více

Acidobazické děje - maturitní otázka z chemie

Acidobazické děje - maturitní otázka z chemie Otázka: Acidobazické děje Předmět: Chemie Přidal(a): Žaneta Teorie kyselin a zásad: Arrhemiova teorie (1887) Kyseliny jsou látky, které odštěpují ve vodném roztoku proton vodíku H+ HA -> H+ + A- Zásady

Více

7 Tenze par kapalin. Obr. 7.1 Obr. 7.2

7 Tenze par kapalin. Obr. 7.1 Obr. 7.2 7 Tenze par kapalin Tenze par (neboli tlak sytých, případně nasycených par) je tlak v jednosložkovém systému, kdy je za dané teploty v rovnováze fáze plynná s fází kapalnou nebo pevnou. Tenze par je nejvyšší

Více

Závěsné kotle. Modul: Závěsné kotle s atmosférickým hořákem. Verze: 03 VUI 280-7 aquaplus, VUI 242-7, 282-7 aquaplus turbo 05-Z1

Závěsné kotle. Modul: Závěsné kotle s atmosférickým hořákem. Verze: 03 VUI 280-7 aquaplus, VUI 242-7, 282-7 aquaplus turbo 05-Z1 s atmosférickým hořákem Verze: 03 VUI 280-7 aquaplus, VUI 242-7, 282-7 aquaplus turbo 0-Z1 Konstrukce závěsných kotlů aquaplus navazuje na stávající řady kotlů atmotop, turbotop Plus se shodnými konstrukčními

Více

Koncept odborného vzdělávání

Koncept odborného vzdělávání Koncept odborného vzdělávání Škola SPŠCH Pardubice (CZ) Oblast vzdělávání Odborné vzdělávání Zaměření (ŠVP) 1. Analytická chemie 2. Farmaceutické substance 3. Chemicko-farmaceutická výroba 4. Analýza chemických

Více

DOUČOVÁNÍ KVINTA CHEMIE

DOUČOVÁNÍ KVINTA CHEMIE 1. ÚVOD DO STUDIA CHEMIE 1) Co studuje chemie? 2) Rozděl chemii na tři důležité obory. DOUČOVÁNÍ KVINTA CHEMIE 2. NÁZVOSLOVÍ ANORGANICKÝCH SLOUČENIN 1) Pojmenuj: BaO, N 2 0, P 4 O 10, H 2 SO 4, HMnO 4,

Více

Nultá věta termodynamická

Nultá věta termodynamická TERMODYNAMIKA Nultá věta termodynamická 2 Práce 3 Práce - příklady 4 1. věta termodynamická 5 Entalpie 6 Tepelné kapacity 7 Vnitřní energie a entalpie ideálního plynu 8 Výpočet tepla a práce 9 Adiabatický

Více

Odměrná analýza, volumetrie

Odměrná analýza, volumetrie Odměrná analýza, volumetrie metoda založená na měření objemu metoda absolutní: stanovení analytu ze změřeného objemu roztoku činidla o přesně známé koncentraci, který je zapotřebí k úplné a stechiometricky

Více

pevná látka tekutina (kapalina, plyn) (skripta str )

pevná látka tekutina (kapalina, plyn) (skripta str ) Reakce v heterogenních soustavách pevná látka tekutina (kapalina, plyn) (skripta str. 90-03) Rozpouštění pevných látek s chemickou reakcí (např. Mg 3(s) + HN 3(l) ) CVD - Chemical Vapor Deposition (SiH

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

TLAKOVACÍ ZAŘÍZENÍ HTG 500. samostatný tlakovací modul. Provozní pokyny HTG 500 samostatné tlakovací zařízení

TLAKOVACÍ ZAŘÍZENÍ HTG 500. samostatný tlakovací modul. Provozní pokyny HTG 500 samostatné tlakovací zařízení 1 TLAKOVACÍ ZAŘÍZENÍ HTG 500 samostatný tlakovací modul 2 OBECNÉ INFORMACE S hydraulickým testovacím zařízením HTG 500 mohou být provedeny tlakové zkoušky ocelových tlakových láhví maximálním tlakem 450

Více

Laboratorní úloha Diluční měření průtoku

Laboratorní úloha Diluční měření průtoku Laboratorní úloha Diluční měření průtoku pro předmět lékařské přístroje a zařízení 1. Teorie Diluční měření průtoku patří k velmi používaným nepřímým metodám v biomedicíně. Využívá se zejména tehdy, kdy

Více

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů Univerzita obrany K-216 Laboratorní cvičení z předmětu HYDROMECHANIKA Měření součinitele tření potrubí Protokol obsahuje 14 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování:5.5.2011

Více

POJISTNÉ A ZABEZPEČOVACÍ ZAŘÍZENÍ

POJISTNÉ A ZABEZPEČOVACÍ ZAŘÍZENÍ POJISTNÉ A ZABEZPEČOVACÍ ZAŘÍZENÍ 163 udník 2010-1 oběť Louny 2002-6 obětí 164 1 Pojistné a zabezpečovací zařízení teplovodních otopných soustav Pojistné zařízení zařízení, které chrání zdroj tepla proti

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

ADEX Midi 2010 Dynamický regulátor topení

ADEX Midi 2010 Dynamický regulátor topení KTR s.r.o. KATALOGOVÝ LIST Objednací číslo: 803 U Korečnice 1770 Uherský Brod 688 01 www.ktr-adex.cz tel. 572 633 985 APLIKACE Provedení: na stěnu ADEX Midi 2010 Dynamický regulátor topení Regulace teploty

Více

POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ. (Bi) ( 18 ) (П) ČESKOSLOVENSKÁ SOCIALISTICKÁ. (51) Int. Cl? G 21 D 5/00

POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ. (Bi) ( 18 ) (П) ČESKOSLOVENSKÁ SOCIALISTICKÁ. (51) Int. Cl? G 21 D 5/00 ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A ( 18 ) POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ 212123 (П) (Bi) (22) Přihlááeno 08 10 80 (21);(PV 6777-80) (51) Int. Cl? G 21 D 5/00 ÚŘAD PRO VYNÁLEZY A OBJEVY

Více

= 2,5R 1,5R =1,667 T 2 =T 1. W =c vm W = ,5R =400,23K. V 1 =p 2. p 1 V 2. =p 2 R T. p 2 p 1 1 T 1 =p 2 1 T 2. =p 1 T 1,667 = ,23

= 2,5R 1,5R =1,667 T 2 =T 1. W =c vm W = ,5R =400,23K. V 1 =p 2. p 1 V 2. =p 2 R T. p 2 p 1 1 T 1 =p 2 1 T 2. =p 1 T 1,667 = ,23 15-17 Jeden mol argonu, o kterém budeme předpokládat, že se chová jako ideální plyn, byl adiabaticky vratně stlačen z tlaku 100 kpa na tlak p 2. Počáteční teplota byla = 300 K. Kompresní práce činila W

Více

Měření měrného skupenského tepla tání ledu

Měření měrného skupenského tepla tání ledu KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření měrného skupenského tepla tání ledu Úvod Tání, měrné

Více

Bezpečnost chemických výrob N Petr Zámostný místnost: A-72a tel.:

Bezpečnost chemických výrob N Petr Zámostný místnost: A-72a tel.: Bezpečnost chemických výrob N111001 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Specifická rizika chemických reakcí Reaktivita látek Laboratorní měření reaktivity Reaktory s

Více

Testování fotokatalytické aktivity nátěrů FN z hlediska jejich schopnosti odbourávání polutantů ze vzduchu dle následujících ISO standardů:

Testování fotokatalytické aktivity nátěrů FN z hlediska jejich schopnosti odbourávání polutantů ze vzduchu dle následujících ISO standardů: Laboratorní protokol: TPK 570/13/2016 Testování otokatalytické aktivity nátěrů FN z hlediska jejich schopnosti odbourávání polutantů ze vzduchu dle následujících ISO standardů: a) odbourávání NOx: ISO

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

Hmotnost atomů a molekul 6 Látkové množství 11. Rozdělení směsí 16 Separační metody 20. Hustota, hmotnostní a objemový zlomek 25.

Hmotnost atomů a molekul 6 Látkové množství 11. Rozdělení směsí 16 Separační metody 20. Hustota, hmotnostní a objemový zlomek 25. Obsah Obecná chemie II. 1. Látkové množství Hmotnost atomů a molekul 6 Látkové množství 11 2. Směsi Rozdělení směsí 16 Separační metody 20 3. Chemické výpočty Hustota, hmotnostní a objemový zlomek 25 Koncentrace

Více

DOKUMENTACE K PILOTNÍ JEDNOTCE SONOLÝZY OZONU

DOKUMENTACE K PILOTNÍ JEDNOTCE SONOLÝZY OZONU DOKUMENTACE K PILOTNÍ JEDNOTCE SONOLÝZY OZONU SOUHRN VÝSTUPU B2D1 PROJEKTU LIFE2WATER EXECUTIVE SUMMARY OF DELIVERABLE B2D1 OF LIFE2WATER PROJECT BŘEZEN 2015 www.life2water.cz ÚVOD Sonolýzou ozonu se rozumí

Více

RUŠENÁ KRYSTALIZACE A SUBLIMACE

RUŠENÁ KRYSTALIZACE A SUBLIMACE LABORATORNÍ PRÁCE Č. 5 RUŠENÁ KRYSTALIZACE A SUBLIMACE KRYSTALIZACE PRINCIP Krystalizace je důležitý postup při získávání čistých tuhých látek z jejich roztoků. Tuhá látka se rozpustí ve vhodném rozpouštědle.

Více