4 Binární relace, Ekvivalence
|
|
- Otto Havel
- před 6 lety
- Počet zobrazení:
Transkript
1 4 Binární relace, Ekvivalence Na pojem relace velmi brzo narazí(snad) každý informatik při studiu relačních databází. Nenítovšakjentatooblast,aleijinámístainformatiky,kdeserelaceskrývajíčipřímo explicitně objevují. Nejčastěji se takto setkáme s binárními relacemi, například vždy, kdyžrozdělujemeobjektypodle shodných znaků(relaceekvivalence),nebokdyž objektymezisebou srovnáváme (relaceuspořádání). Stručný přehled lekce * Reprezentace relací, tabulkou a grafem. * Základní vlastnosti binárních relací. * Relace ekvivalence, neboli rozklady množin. Petr Hliněný, FI MU Brno 1 FI: IB000: Binární Relace
2 Zopakování pojmu relace Definice4.1.Relace mezimnožinami A 1,,A k,pro k Æ, je libovolná podmnožina kartézského součinu R A 1 A k. Pokud A 1 = =A k = A,hovořímeok-árnírelacina A. Takžebinárnírelace R(pro k=2)je R A A. Příklady relací. {(1,a),(2,a)}jerelacemezi {1,2,3}a{a,b}. {(i,2.i) i Æ}jebinárnírelacena Æ. {(i,j,i+ j) i,j Æ}jeternárnírelacena Æ. Relace mítrychlejšípočítač jebinárnírelacímezistudentyfi. Petr Hliněný, FI MU Brno 2 FI: IB000: Binární Relace
3 4.1 Reprezentace konečných relací Příklad 4.2. Tabulky relační databáze. Definujmenásledujícímnožiny( elementárnítypy ) ZNAK={a,,z, A,,Z, mezera}, CISLICE={0,1,2,3,4,5,6,7,8,9}. Dáledefinujemetytomnožiny( odvozenétypy ) JMENO=ZNAK 15, PRIJMENI=ZNAK 20, VEK=CISLICE 3, ZAMESTNANEC JMENO PRIJMENI VEK. Relaci typu ZAMESTNANECpaklzereprezentovattabulkou: JMENO PRIJMENI VEK Jan Novák 42 Petr Vichr 28 Pavel Zíma 26 Relační datábáze je konečná množina tabulek. Schéma databáze je(zjednodušeněřečeno)množina typů jednotlivýchtabulek. Petr Hliněný, FI MU Brno 3 FI: IB000: Binární Relace
4 Reprezentace binárních relací na množině Značení: Binární relaci R M M lze jednoznačně znázornit jejím grafem. Prvky M znázorníme jako body v rovině. Prvek(a,b) Rznázornímejakoorientovanouhranu( šipku )zado b. Je-li a=b,pakjetoutohranou smyčka na a. Pozor,nejednáseo grafyfunkcí známézanalýzy. Napříkladmějme M= {a, b, c, d, e, f}ar={(a, b),(b, c),(b, d),(b, e),(b, f),(d, c), (e, c),(f, c),(e, d),(e, f),(f, b)},pak: f e a b d c Vpřípadě,že Rjenekonečnánebo velká,můžebýtreprezentace Rjejím grafemnepraktická(záležípaknamíře pravidelnosti R). Petr Hliněný, FI MU Brno 4 FI: IB000: Binární Relace
5 4.2 Vlastnosti binárních relací Definice4.3. Nechť R M M.Binárnírelace Rje reflexivní,právěkdyžprokaždé a Mplatí(a,a) R; ireflexivní,právěkdyžprokaždé a Mplatí(a,a) R; X X symetrická,právěkdyžprokaždé a,b M platí,žejestliže(a,b) R, paktaké(b,a) R; antisymetrická, právě když pro každé a, b (a,b),(b,a) R,pak a=b; X M platí, že jestliže Petr Hliněný, FI MU Brno 5 FI: IB000: Binární Relace
6 tranzitivní,právěkdyžprokaždé a,b,c Mplatí,žejestliže(a,b),(b,c) R,paktaké(a,c) R. a b c Následují dva základní typy binárních relací, R je relace ekvivalence, právě když je R reflexivní, symetrická a tranzitivní; částečné uspořádání, právě když je R reflexivní, antisymetrická a tranzitivní (často říkáme jen uspořádání). Poznámka: Pozor, může být relace symetrická i antisymetrická zároveň? Ano! Petr Hliněný, FI MU Brno 6 FI: IB000: Binární Relace
7 Příklad 4.4. Několik příkladů relací definovaných v přirozeném jazyce. Buď Mmnožinavšechstudentů1.ročníkuFI.Uvažmepostupněrelace R M M definované takto (x, y) Rprávěkdyž xaymajístejnérodnéčíslo; (x, y) Rprávěkdyž xmástejnouvýškujako y(dejmetomunacelémm); (x, y) Rprávěkdyžvýška xaysenelišívícejako2mm; (x, y) Rprávěkdyž xmáalespoňtakovouvýškujako y; (x, y) Rprávěkdyž xmájinouvýškunež y(dejmetomunacelémm); (x, y) Rprávěkdyž xjezamilován(a)do y. Příklad 4.5. Jaké vlastnosti mají následující relace? Buď R Æ Æ definovaná takto (x,y) R právě když x dělí y. (Částečné uspořádání, ale ne každá dvě čísla jsou porovnatelná.) Buď R Æ Ædefinovanátakto(x,y) Rprávěkdyž xaymajístejný zbytek po dělení číslem 5. (Ekvivalence.) Nechť F= {f f: Æ Æ}jemnožinafunkcí.Buď R F Fdefinovaná takto(f,g) Rprávěkdyž f(x) < g(x)provšechna x. (Antisymetrická a tranzitivní, ale ne reflexivní není uspořádání.) Petr Hliněný, FI MU Brno 7 FI: IB000: Binární Relace
8 4.3 Relace ekvivalence Relace R M Mjeekvivalenceprávěkdyž Rjereflexivní,symetrickáa tranzitivní. Tyto tři vlastnosti je tedy třeba ověřit k důkazu toho, že daná relace R je ekvivalence. Jak vypadá graf ekvivalence? Neformálněřečeno:ekvivalencejerelace R M M,taková,že(x,y) R právěkdyž xayjsouvnějakémsmyslu stejné. Petr Hliněný, FI MU Brno 8 FI: IB000: Binární Relace
9 Buď Mmnožinavšechstudentů1.ročníkuFI.Uvažmepostupněrelace R M Mdefinovanétakto (x,y) Rprávěkdyž xmástejnouvýškujako y; (x,y) Rprávěkdyž xmástejnoubarvuvlasůjako y; (x,y) Rprávěkdyž x,ymajístejnouvýškuastejnoubarvuvlasů; (x,y) Rprávěkdyž x,ymajístejnouvýškunebostejnoubarvuvlasů. (Tato relace obecně není ekvivalence! Proč?) Příklad4.6.Buď R Æ Æbinárnírelacedefinovanátakto:(x,y) Rprávě když x y jedělitelnétřemi. Vjakémsmyslujsouzde xay stejné? Dávajístejnýzbytekpodělenítřemi. Příklad 4.7. Buď R binární relace mezi všemi studenty na přednášce FI: IB000 definovanátakto:(x,y) Rprávěkdyž xiysedívprvnílavici. Proč se v tomto případě nejedná o relaci ekvivalence? Protože není reflexivní pro studenty sedící v dalších lavicích.(takže si dávejte dobrý pozor na správné pochopení definic.) Petr Hliněný, FI MU Brno 9 FI: IB000: Binární Relace
10 4.4 Rozklady a jejich vztah k ekvivalencím Definice 4.8. Rozklad. Buď M množina. Rozklad(na) Mjemnožinapodmnožin N 2 M splňujícínásl.třipodmínky: N(tj.každýprvek Njeneprázdnápodmnožina M); pokud A,B N,pakbuď A=Bnebo A B= ; A N A=M. Prvkům N se také říká třídy rozkladu. Buď M= {a,b,c,d}.pak N= {{a}, {b,c}, {d}}jerozkladna M. Nechť A 0 = {k Æ kmod3=0}, A 1 = {k Æ kmod3=1}, A 2 = {k Æ kmod3=2}. Pak N= {A 0,A 1,A 2 }jerozkladvšechpřirozenýchčísel Æpodlezbytkových tříd. Každýrozklad Nna Mjednoznačněurčujejistouekvivalenci R N na M. Petr Hliněný, FI MU Brno 10 FI: IB000: Binární Relace
11 Věta4.9.Buď MmnožinaaNrozkladna M.Nechť R N M Mjerelace na M definovaná takto (x,y) R N právěkdyžexistuje A Ntaková,že x,y A. Pak R N jeekvivalencena M. Důkaz:Dokážeme,že R N jereflexivní,symetrickáatranzitivní(def.4.3). Reflexivita:Buď x Mlibovolné.Jelikož Njerozkladna M,musíexistovat A N takové,že x A(jinaksporsetřetípodmínkouzDefinice4.8). Proto(x,x) R N,tedy R N jereflexivní. Symetrie:Nechť(x,y) R N.Podledefinice R N pakexistuje A N taková,že x,y A.Toaleznamená,žetaké(y,x) R N podledefinice R N,tedy R N jesymetrická. Tranzitivita:Nechť(x,y),(y,z) R N.Podledefinice R N existují A,B Ntakové,že x,y Aay,z B.Jelikož A B,podledruhépodmínky zdefinice4.8platí A=B.Tedy x,z A=B,proto(x,z) R N podle definice R N. Petr Hliněný, FI MU Brno 11 FI: IB000: Binární Relace
12 Každá ekvivalence R na M jednoznačně určuje jistý rozklad M/R na M. Věta4.10.Buď MmnožinaaRekvivalencena M.Prokaždé x Mdefinujeme množinu [x]={y M (x,y) R}. Pak {[x] x M}jerozkladna M,kterýznačíme M/R. [c] [d] [h] [g] M [a] [b] [e] [f] Důkaz: Dokážeme, že M/R splňuje podmínky Definice 4.8. Petr Hliněný, FI MU Brno 12 FI: IB000: Binární Relace
13 [c] [d] [h] [g] [b] [e] [f] M [a] Prokaždé[x] M/Rplatí[x],neboť x [x]. Nechť[x],[y] M/R.Ukážeme,žepokud[x] [y],pak[x]=[y]. Jestliže[x] [y],existuje z Mtakové,že z [x]az [y].podle definice[x]a[y]toznamená,že(x,z),(y,z) R.Jelikož Rjesymetrickáa (y,z) R,platí(z,y) R.Jelikož(x,z),(z,y) RaRjetranzitivní,platí (x,y) R.Prototaké(y,x) R(opětzesymetrie R). Nynídokážeme, že[y]=[x]: [x] [y]: Nechť v [x].pak(x, v) Rpodledefinice[x].Dále(y, x) R(vizvýše),tedy(y, v) Rneboť Rjetranzitivní.Topodledefinice[y] znamená,že v [y]. [y] [x]: Nechť v [y].pak(y, v) Rpodledefinice[y].Dále(x, y) R(vizvýše),tedy(x, v) Rneboť Rjetranzitivní.Topodledefinice[x] znamená,že v [x]. Platí [x] M/R[x]=M,neboť x [x]prokaždé x M. Petr Hliněný, FI MU Brno 13 FI: IB000: Binární Relace
Aritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 02 Opakování základních pojmů - 2. část O čem budeme hovořit: Binární relace a jejich vlastnosti Speciální typy binárních relací
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní
Relace. R, S vyjmenovaním prvků. Sestrojte grafy relací R, S. Určete relace
Relace 1. Nechť A = {n N; n < 10}, B = {m N; m 12}, R = {[m, n] A B; m + 1 = n}, S = {[m, n] A B; m 2 = n}. Zapište relace R, S vyjmenovaním prvků. Sestrojte grafy relací R, S. Určete relace R R, S S,
Ekvivalence. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 5
doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze c Josef Kolar, 2011 Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 5 Evropský sociální fond.
Úvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008.
Úvod do informatiky přednáška čtvrtá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Pojem relace 2 Vztahy a operace s (binárními) relacemi
3 Množiny, Relace a Funkce
3 Množiny, Relace a Funkce V přehledu matematických formalismů informatiky se v této lekci zaměříme na základní datové typy matematiky, tj. na množiny, relace a funkce. O množinách jste sice zajisté slyšeli
Princip rozšíření a operace s fuzzy čísly
Center for Machine Perception presents Princip rozšíření a operace s fuzzy čísly Mirko Navara Center for Machine Perception Faculty of Electrical Engineering Czech Technical University Praha, Czech Republic
Cvičení 1. Úvod do teoretické informatiky(2014/2015) cvičení 1 1
Úvod do teoretické informatiky(2014/2015) cvičení 1 1 Cvičení 1 Příklad 1: Pro každý z následujících formálních zápisů množin uveďte(svými slovy), jaké prvky daná množina obsahuje: a) {1,3,5,7,...} b)
B i n á r n í r e l a c e. Patrik Kavecký, Radomír Hamřík
B i n á r n í r e l a c e Patrik Kavecký, Radomír Hamřík Obsah 1 Kartézský součin dvou množin... 3 2 Binární relace... 6 3 Inverzní relace... 8 4 Klasifikace binární relací... 9 5 Ekvivalence... 12 2 1
5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška šestá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní
UDBS Cvičení 10 Funkční závislosti
UDBS Cvičení 10 Funkční závislosti Ing. Miroslav Valečko Zimní semestr 2014/2015 25. 11. 2014 Návrh schématu databáze Existuje mnoho způsobů, jak navrhnout schéma databáze Některá jsou lepší, jiná zase
Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.
Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při
PŘEDNÁŠKA 7 Kongruence svazů
PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí
Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace
RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,
Kapitola 1. Relace. podle definice podmnožinou každé množiny. 1 Neříkáme už ale, co to je objekt. V tom právě spočívá intuitivnost našeho přístupu.
Kapitola 1 Relace Úvodní kapitola je věnována důležitému pojmu relace. Protože relace popisují vztahy mezi prvky množin a navíc jsou samy množinami, bude vhodné množiny nejprve krátce připomenout. 1.1
Relace a kongruence modulo
Relace a kongruence modulo Jiří Velebil: X01DML 5. listopadu 2010: Relace a kongruence modulo 1/17 Definice Binární relace R na množině A je podmnožina R A A. Píšeme x R y (čteme: x je v relaci R s y)
RELACE, OPERACE. Relace
RELACE, OPERACE Relace Užití: 1. K popisu (evidenci) nějaké množiny objektů či jevů, které lze charakterizovat pomocí jejich vlastnostmi. Entita je popsána pomocí atributů. Ty se vybírají z domén. Různé
Lineární algebra Kapitola 1 - Základní matematické pojmy
Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,
Relace a kongruence modulo
Relace a kongruence modulo Jiří Velebil: A7B01MCS 10. října 2011: Relace a kongruence modulo 1/19 Definice Binární relace R na množině A je podmnožina R A A. Píšeme x R y (čteme: x je v relaci R s y) místo
Teoretická informatika - Úkol č.1
Teoretická informatika - Úkol č.1 Lukáš Sztefek, xsztef01 18. října 2012 Příklad 1 (a) Gramatika G 1 je čtveřice G 1 = (N, Σ, P, S) kde, N je konečná množina nonterminálních symbolů N = {A, B, C} Σ je
KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Olomouc
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Kongruence na množině celých čísel
121 Kapitola 4 Kongruence na množině celých čísel 4.1 Relace kongruence na množině celých čísel Vraťme se k úvahám o dělení se zbytkem. Na základní škole jsme se naučili, že když podělíme číslo 11 číslem
Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky.
Relace. Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky. Definice. Mějme množiny A a B. Binární relace R z množiny A do množiny B je každá množina uspořádaných dvojic (a, b), kde
3 Množiny, Relace a Funkce
3 Množiny, Relace a Funkce V přehledu matematických formalismů informatiky se v této lekci zaměříme na základní datovétypy matematiky,tj.namnožiny,relaceafunkce.omnožináchjstesice zajisté slyšeli už na
Přijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Relace, zobrazení, algebraické struktury Michal Botur Přednáška
Vlastnosti regulárních jazyků
Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro
text ke studiu matematiky v oboru učitelství pro první stupeň základní školy zejména jako opora pro kombinované studium
UNIVERZITA JANA EVANGELISTY PURKYNĚ Pedagogická fakulta Binární relace text ke studiu matematiky v oboru učitelství pro první stupeň základní školy zejména jako opora pro kombinované studium Doc. Paed
Relační datový model. Integritní omezení. Normální formy Návrh IS. funkční závislosti multizávislosti inkluzní závislosti
Relační datový model Integritní omezení funkční závislosti multizávislosti inkluzní závislosti Normální formy Návrh IS Funkční závislosti funkční závislost elementární redundantní redukovaná částečná pokrytí
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků
Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní
Marie Duží
Marie Duží marie.duzi@vsb.cz Co je to množina? Množina je soubor prvků a je svými prvky plně určena; množinu s prvky a, b, c značíme: {a, b, c}. Prvkem množiny může být opět množina, množina nemusí mít
Množiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Obsah přednášky. Databázové systémy. Normalizace relací. Normalizace relací. Normalizace relací. Normalizace relací
Obsah přednášky Databázové systémy Logický model databáze normalizace relací normální formy tabulek 0NF, 1NF, 2NF, 3NF, BCNF, 4NF, 5NF, DNF denormalizace zápis tabulek relační algebra klasické operace
Databázové systémy. Cvičení 2
Databázové systémy Cvičení 2 Matematické a databázové relace Matematická relace podmnožina kartézského součinu A = {X, Y}, B = {1,2,3} kartézský součin: A B A B = {(X,1),(X,2),(X,3),(Y,1),(Y,2),(Y,3)}
Základy teorie množin
Základy teorie množin Teorie Výběr základních pojmů: Množina Podmnožina Prázdná množina Označení běžně používaných množin Množinová algebra (sjednocení, průnik, rozdíl) Doplněk množiny Potenční množina
* Induktivní definice množin a funkcí.
6 Skládání relací a funkcí Vrat me se nyní k látce Lekce 3. Z jejího pokročilého obsahu jsme doposud velmi detailně probírali relace a jejich jednotlivé vlastnosti. Nyní se podívejme, jak lze relace mezi
Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.
1.2. Cíle Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. Průvodce studiem Množina je jedním ze základních pojmů moderní matematiky. Teorii množin je možno budovat
4 Pojem grafu, ve zkratce
Petr Hliněný, FI MU Brno, 2014 1 / 24 FI: IB000: Pojem grafu 4 Pojem grafu, ve zkratce Třebaže grafy jsou jen jednou z mnoha struktur v matematice a vlastně pouze speciálním případem binárních relací,
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Lineární algebra Eva Ondráčková
Lineární algebra Eva Ondráčková Vektorové prostory Mnozízvásužsenejspíšsetkalispojmemvektor.Ukážemesi,ževektorynejsoujen množiny orientovaných úseček v rovině či trojrozměrném prostoru, ale něco zajímavějšího,
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa
2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace
Množina je nejdůležitější matematický pojem, na kterém stojí veškeré další matematické pojmy.
1 Teorie množin Základní informace V této výukové jednotce se student seznámí se základními pojmy a algoritmy z teorie množin. Začneme základními operacemi s množinami, seznámíme se s pojmy jako kartézský
Databázové systémy Tomáš Skopal
Databázové systémy Tomáš Skopal - relační model * funkční závislosti, odvozování * normální formy Osnova přednášky Armstrongova pravidla atributové a funkční uzávěry normální formy relačních schémat Armstrongova
)(x 2 + 3x + 4),
3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem
prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010
Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy
Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.
Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Notice:Jagran Infotech Ltd. Printed by Fontographer 4.1 on 6/3/2003 at 7:12 PM
$ % $0 Undefined $1 Undefined $2 Undefined $3 Undefined $4 Undefined $5 Undefined $6 Undefined $7 Undefined $8 Undefined $9 Undefined $A Undefined $B Undefined $C Undefined $D Undefined $E Undefined $F
Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno
Tomáš Foltýnek foltynek@pef.mendelu.cz Teorie čísel Nekonečno strana 2 Opakování z minulé přednášky Jak je definována podmnožina, průnik, sjednocení, rozdíl? Jak je definována uspořádaná dvojice a kartézský
Fuzzy množiny, Fuzzy inference system. Libor Žák
Fuzzy množiny, Fuzzy inference system Proč právě fuzzy množiny V řadě případů jsou parametry, které vstupují a ovlivňují vlastnosti procesu, popsané pomocí přibližných nebo zjednodušených pojmů. Tedy
3. Algebraické systémy
Markl: 3.1. Morfismy a kongruence /ras31.doc/ Strana 1 3. Algebraické systémy Na rozdíl od klasické algebry, jejíž ústředním tématem jsou rovnice a potřebný aparát pro jejich řešení /matice, polynomy,.../,
Formální jazyky a gramatiky Teorie programovacích jazyků
Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina
Lineární algebra. Matice, operace s maticemi
Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
M M. Je-li ρ M 2 relace, pak vztah (x, y) ρ zapisujeme x ρ y.
Matematický ústav Slezské univerzity v Opavě Učební textykpřednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 8. Uspořádání asvazy Uspořádání je další užitečná abstraktní struktura na množině. Modeluje
Definice 4.1 Nechť (X, ) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku x X je každý prvek y, pro který platí. x y = 1, x y = 0.
Kapitola 4 Booleovy algebry 4.1 Definice Definice 4.1 Nechť (X, ) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku x X je každý prvek y, pro který platí x y = 1, x y = 0. Představu o
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Učební texty k státní bakalářské zkoušce Matematika Diskrétní matematika. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Diskrétní matematika študenti MFF 15. augusta 2008 1 16 Diskrétní matematika Požadavky Uspořádané množiny Množinové systémy, párování, párování v bipartitních
10 Důkazové postupy pro algoritmy
10 Důkazové postupy pro algoritmy Nyní si ukážeme, jak formální deklarativní jazyk z Lekce 9 využít k formálně přesným induktivním důkazům vybraných algoritmů. Dá se říci, že tato lekce je vrcholem v naší
Jan Pavĺık. FSI VUT v Brně 14.5.2010
Princip výškovnice Jan Pavĺık FSI VUT v Brně 14.5.2010 Osnova přednášky 1 Motivace 2 Obecný princip 3 Příklady Světové rekordy Turnajové uspořádání Skupinové hodnocení Rozhledny 4 Geografická výškovnice
{ } B =. Rozhodni, které z následujících. - je relace z A do B
.. Binární relace Předpoklad: 0 Pedagogická poznámka: Naprostá většina studentů vřeší hodinu samostatně Ti nejrchlejší potřebují tak minut. Binární relace: Jsou dán množin A, B. Binární relace R z A do
Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému
BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag)
Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy
Vysoké učení technické v Brně Fakulta informačních technologií Regulární pologrupy Semestrální práce do předmětu Algebra, Kombinatorika, Grafy Tomáš Masopust Brno, 2006 Obsah Úvod 1 1 Základní definice
MIDTERM D. Příjmení a jméno:
MIDTERM D Příjmení a jméno: 1 2 3 4 5 6 7 8 9 10 11 12 1 Doplňte místo otazníku ten ze symbolů, aby platil vztah (log n) / (log n 2 ) =?(1/ n): A) o B) O (a současně nelze použít ani o ani Θ) C) Θ D) Ω
3. série. Nerovnosti. Téma: Termínodeslání:
Téma: Termínodeslání: 3. série Nerovnosti º ÔÖÓ Ò ¾¼¼ ½º ÐÓ Óݵ Nechť a, b jsou délky odvěsen pravoúhlého trojúhelníka, c buď délka jeho přepony. Dokažte, že prokaždépřirozenéčíslo nvětšíneždvaplatí c
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
Matematická logika. Miroslav Kolařík
Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Obsah. Množiny (opakování) Relace a zobrazení (opakování) Relace Binární relace na množině Zobrazení Rozklady, ekvivalence Uspořádání
Obsah Množiny (opakování) Relace a zobrazení (opakování) Relace Binární relace na množině Zobrazení Rozklady, ekvivalence Uspořádání lgebry lgebry s jednou operací lgebry se dvěma operacemi Svazy 2 Teorie
I) Příklady (převeďte následující věty do formulí PL1 a ověřte jejich ekvivalenci pomocí de Morganových zákonů):
I) Příklady (převeďte následující věty do formulí PL1 a ověřte jejich ekvivalenci pomocí de Morganových zákonů): 1. Všechna prvočísla větší než 2 jsou lichá. Je-li prvočíslo větší než 2, pak je liché.
Matematika 6F fuzzy množiny
Pojem fuzzy množiny Matematika 6F fuzzy množiny Mirko Navara http://cmp.felk.cvut.cz/ navara/m6f/fset print.pdf. dubna 007. Minimum o klasických množinách Abychom se vyhnuli problémům, omezíme se na podmnožiny
Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací
Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména
2. přednáška 8. října 2007
2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =
REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ
REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ 5 přednáška S funkcemi se setkáváme na každém kroku ve všech přírodních vědách ale i v každodenním životě Každá situace kdy jsou nějaký jev nebo veličina jednoznačně určeny
Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů
BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
B A B A B A B A A B A B B
AB ABA BA BABA B AB A B B A A B A B AB A A B B B B ABA B A B A A A A A B A A B A A B A A B A BA B A BA B D A BC A B C A B A B C C ABA B D D ABC D A A B A B C D C B B A A B A B A B A A AB B A AB A B A A
Základy teorie grupoidů a grup
Základy teorie grupoidů a grup 11. Násobení v množinách In: Otakar Borůvka (author): Základy teorie grupoidů a grup. (Czech). Praha: Nakladatelství Československé akademie věd, 1962. pp. 89--93. Persistent
Matematická analýza pro informatiky I.
Matematická analýza pro informatiky I. 2. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 17. února 2010 Jan Tomeček, tomecek@inf.upol.cz
Zadání semestrálního projektu Algoritmy II. letní semestr 2017/2018
Zadání semestrálního projektu Algoritmy II. letní semestr 2017/2018 doc. Mgr. Jiří Dvorský, Ph.D. Verze zadání 6. dubna 2018 První verze Obecné pokyny 1. Celkem jsou k dispozici tři zadání příkladů. 2.
4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
VEKTOROVÁ POLE Otázky
VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,
1. Množiny, zobrazení, relace
Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách
8 Podobná (ekviformní) zobrazení v rovině
Typeset by LATEX2ε 1 8 Podobná (ekviformní) zobrazení v rovině 8.1 Stejnolehlost (homotetie) v rovině Definice 8.1.1. Nechť jsou dány 3 různé kolineární body A, B, C. Dělicím poměrem λ = (ABC) rozumíme
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 5. března 2013 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko) Úloha:
11 Vzdálenost podprostorů
11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu
Funkce zadané implicitně
Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf
1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad
1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky
Svazy. Jan Paseka. Masarykova univerzita Brno. Svazy p.1/37
Svazy Jan Paseka Masarykova univerzita Brno Svazy p.1/37 Abstrakt Zmíníme se krátce o úplných a distributivních svazech, resp. jaké vlastnosti má řetězec reálných čísel. Svazy p.2/37 Abstrakt V této kapitole
4. Diferenciál a Taylorova věta
4. Diferenciál a Taylorova věta Definice 4.1. Buď f : R n R, a Df. Řekneme, že f je diferencovatelná v bodě a, když h V n takový, že a + h Df platí f(a + h) f(a) gradf(a) h + h τ(h), kde lim τ(h) 0. Funkce
Cvičení z Lineární algebry 1
Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice