8 Podobná (ekviformní) zobrazení v rovině
|
|
- Ivana Miroslava Vávrová
- před 8 lety
- Počet zobrazení:
Transkript
1 Typeset by LATEX2ε 1 8 Podobná (ekviformní) zobrazení v rovině 8.1 Stejnolehlost (homotetie) v rovině Definice Nechť jsou dány 3 různé kolineární body A, B, C. Dělicím poměrem λ = (ABC) rozumíme reálné číslo, které splňuje následující podmínky: 1. λ = AC BC, 2. λ > 0 C neleží mezi body A, B a λ < 0 C leží mezi body A, B. Poznámka Z definice ihned plyne, že λ R \ {0, 1}. Věta Nechť (ABC) = λ. Potom platí: (BAC) = 1 λ, (ACB) = 1 λ, (BCA) = 1 1 λ = λ 1 (CBA) = λ λ 1, (CAB) = 1 1 λ. Definice Je dán bod S a reálné číslo κ R \ {0, 1}. Uvažujme zobrazení H(S, κ) v rovině E 2, které je určeno následujícím předpisem: (i) Obrazem bodu S je bod S = S. (ii) Obrazem bodu X S je bod X takový, že (X XS) = κ. Zobrazení H(S, κ) se nazývá stejnolehlost (homotetie), bod S nazýváme střed stejnolehlosti a reálné číslo κ nazýváme koeficient stejnolehlosti. Poznámka Porovnáním konstrukčních definic obou zobrazení zjistíme, že platí H(S, 1) = S(S), tj. středová souměrnost je zvláštním případem stejnolehlosti. Poznámka Obdobně bychom definovali i stejnolehlost v prostoru E 3 nebo na přímce E 1. Věta Stejnolehlost je prosté zobrazení. Věta Inverzním zobrazením ke stejnolehlosti H(S, κ) je opět stejnolehlost, neboli H 1 (S, κ) = H(S, 1 κ. λ, Věta Ve stejnolehlosti H(S, κ) je obrazem přímky p přímka p s ní rovnoběžná; obrazem úsečky AB úsečka A B, přičemž A B = κ AB ; obrazem polopřímky AB polopřímka A B, přičemž A B AB κ > 0 a A B AB κ < 0; obrazem úhlu AV B úhel A V B shodný s úhlem AV B. Věta Stejnolehlost H(S, κ) má jediný samodružný bod střed stejnolehlosti. Samodružnými přímkami jsou všechny přímky procházející středem stejnolehlosti. Všechny směry jsou samodružné. Stejnolehlost 2 kružnic Věta Obrazem kružnice k(s 0, r) ve stejnolehlosti H(S, κ) je kružnice k (S 0, κ r). Věta Každé dvě kružnice jsou stejnolehlé. Věta Dotýkají-li se dvě kružnice, potom bod dotyku je jedním ze středů stejnolehlosti.
2 Typeset by LATEX2ε 2 Věta Jsou-li dány 2 nesoustředné kružnice k 1, k 2 (S 1 S 2 ) a přímka t, která je tečnou kružnice k 1 a současně prochází jedním ze středů stejnolehlosti, potom je přímka t i tečnou kružnice k 2. Věta Společná tečna 2 nesoustředných kružnic k 1 (S 1, r 1 ), k 2 (S 2, r 2 ) prochází některým ze středů stejnolehlosti kružnic k 1, k 2 nebo je rovnoběžná s přímkou S 1 S 2. Poznámka Předcházející věty lze využít při konstrukci společné tečny 2 kružnic. Poznámka Při konstrukci společné tečny 2 kružnic lze využít metodu kontrakce a dilatace. Skládání stejnolehlostí Věta (Mongeova věta: Nechť jsou dány stejnolehlosti H 1 (S 1, κ 1 ), H 2 (S 2, κ 2 ). Složením H 1 H 2 vznikne 1. identita I S 1 = S 2 κ 1 κ 2 = 1; 2. translace T S 1 S 2 κ 1 κ 2 = 1; 3. stejnolehlost H(S, κ 1 κ 2 ) κ 1 κ 2 1. Věta Množina všech stejnolehlostí, všech translací a identity tvoří vzhledem k operaci skládání grupu. Definice Grupa G M z předcházející věty se nazývá Mongeova grupa. Poznámka Průnikem Mongeovy grupy G M a grupy všech shodností G S je grupa tvořená středovými souměrnostmi, translacemi a identitou. 8.2 Podobná zobrazení (podobnosti). Skládání podobností Definice Je dáno kladné reálné číslo k. Zobrazení P(k) v množině M se nazývá podobné zobrazení (zkráceně podobnost) v množině M, právě když ( X, Y M) (P(k) : X X Y Y = X Y = k XY ). Číslo k se nazývá poměr podobnosti. Poznámka M = E 1 (eukleidovská přímka) podobná zobrazení na přímce, M = E 2 (eukleidovská rovina) podobná zobrazení v rovině, M = E 3 (eukleidovský prostor) podobná zobrazení v prostoru Poznámka Základním invariantem podobných zobrazení je poměr velikostí úseček. Z definice shodnosti dvou úhlů vyplývá, že tato vlastnost je ekvivalentní se zachováním velikosti úhlu. Definice Podobnost P(1) se nazývá nevlastní podobnost. Podobnost P(k) (k 1) se nazývá vlastní podobnost. Pro k > 1 hovoříme o zvětšení, pro k < 1 o zmenšení. Věta Shodnost S je nevlastní podobnost. Věta Každá vlastní podobnost má nejvýše jeden samodružný bod. Věta Stejnolehlost H s koeficientem κ je podobnost s poměrem podobnosti κ. Věta Každé podobné zobrazení je prosté.
3 Typeset by LATEX2ε 3 Věta Inverzní zobrazení k podobnosti P(k) je podobnost P( 1 k ). Věta Složením dvou podobných zobrazení v množině M vzniká opět podobné zobrazení v množině M. Věta Každou vlastní podobnost v rovině lze rozložit na stejnolehlost a shodnost, a to v libovolném pořadí. Definice Podobnost, která vznikne složením stejnolehlosti a přímé (nepřímé) shodnosti se nazývá přímá (nepřímá) podobnost. Poznámka Opět platí: Sestrojíme-li libovolný trojúhelník ABC a jeho obraz A B C v přímé podobnosti, potom jsou smysly obíhání vrcholů obou trojúhelníků souhlasné. Sestrojíme-li libovolný trojúhelník ABC a jeho obraz A B C v nepřímé podobnosti, potom jsou smysly obíhání vrcholů obou trojúhelníků opačné. Věta Složením dvou přímých podobností vzniká přímá podobnost. Složením dvou nepřímých podobností vzniká přímá podobnost. Složením přímé a nepřímé podobnosti vzniká nepřímá podobnost. Důsledek Skládání přímých podobností je uzavřená operace. Věta Všechny podobnosti v rovině vytvářejí grupu (G P, ). Věta Všechny přímé podobnosti v rovině vytvářejí grupu (G P, ), která je podgrupou grupy všech podobností G P. Věta Grupa všech shodností G S je podgrupou grupy všech podobností G P. Grupa všech přímých shodností G S je podgrupou grupy všech přímých podobností G P. Věta Mongeova grupa G M je podgrupou grupy všech podobností G P Věta (O určenosti podobného zobrazení) Nechť jsou dány dva trojúhelníky ABC a A B C, přičemž platí A B = k AB, B C = k BC a C A = k CA. Potom existuje jediná podobnost, která převádí bod A v bod A, bod B v bod B a bod C v bod C. 8.3 Podobnost trojúhelníků. Eukleidovy věty, Pythagorova věta Definice Útvar U je podobný útvaru U, jestliže existuje podobnost Z, která převádí útvar U na útvar U. Značíme U U. V závislosti na podobnosti Z hovoříme o útvarech přímo podobných a nepřímo podobných. Poznámka Relace podobnosti je reflexivní, symetrická a tranzitivní, tj. jedná se o relaci ekvivalence. Ta vytváří na množině geometrických útvarů třídy navzájem podobných útvarů. Poznámka Zřejmě platí: Každé 2 kružnice jsou podobné. Každé 2 čtverce jsou podobné. Každé 2 rovnostranné trojúhelníky jsou podobné. Každé 2 pravidelné n-úhelníky jsou podobné. Věta Věty o podobnosti trojúhelníků Jsou dány trojúhelníky ABC (velikosti stran a, b, c a velikosti vnitřních úhlů α, β, γ) a A B C (velikosti stran a, b, c a velikosti vnitřních úhlů α, β, γ ).
4 Typeset by LATEX2ε 4 Věta sss o podobnosti trojúhelníků a = k a b = k b c = k c k > 0 = A B C ABC Věta sus o podobnosti trojúhelníků (b = k b c = k c k > 0) α = α = A B C ABC Věta uu o podobnosti trojúhelníků α = α β = β = A B C ABC Věta Ssu o podobnosti trojúhelníků (a = k a b = k b k > 0) a > b α = α = A B C ABC Věta Eukleidovy věty: Nechť je dán pravoúhlý ABC s pravým úhlem při vrcholu C. Označme C 0 patu výšky spuštěné z vrcholu C a c a, c b velikosti úseků přepony (c a = BC 0, c b = AC 0. Potom platí a 2 = c a c b 2 = c b c; v 2 c = c a c b Eukleidova věta o odvěsně Eukleidova věta o výšce Věta Pythagorova věta: Nechť je dán pravoúhlý ABC s pravým úhlem při vrcholu C. Potom platí a 2 + b 2 = c Mocnost bodu ke kružnici. Chordála. Potenční střed Mocnost bodu ke kružnici Věta Nechť je dána kružnice k(s, r) a bod M, který na ní neleží. Nechť p a p jsou dvě libovolné sečny kružnice k, které procházejí bodem M a protínají kružnici v bodech A, B a A, B. Potom platí kde k je konstantní číslo (k > 0). MA MB = MA MB = k, Věta Nechť je dána kružnice k(s, r) a její vnější bod M. Nechť p je libovolná sečna kružnice k, která prochází bodem M a protíná kružnici v bodech A, B, a t je tečna, která se dotýká kružnice k v bodě T. Potom platí MA MB = MT 2 = k, kde k je konstantní číslo (k > 0). Poznámka Jestliže označíme MS = d, potom pro vnější bod M platí MA MB = MA MB =... = MT 2 = d 2 r 2. Definice Nechť je dán bod M a kružnice k(s, r). Označme vzdálenost M S = d. Mocností bodu M ke kružnici k(s, r) (značíme µ M k ) rozumíme číslo µ M k = d 2 r 2. Důsledek M je vnější bod kružnice k (tj. d > r), potom µ M k = d 2 r 2 > 0. M je vnitřní bod kružnice k (tj. d < r), potom µ M k = d 2 r 2 < 0. M je bod na kružnici k (tj. d = r), potom µ M k = d2 r 2 = 0.
5 Typeset by LATEX2ε 5 Chordála dvou nesoustředných kružnic Příklad Vyšetřete množinu všech bodů v rovině, které mají stejnou mocnost ke dvěma zadaným kružnicím k 1, k 2. Závěr: Množinou všech bodů v rovině, které mají stejnou mocnost ke kružnicím k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) ( S 1 S 2 = s) je přímka c kolmá na přímku S 1 S 2, jejíž patou je bod P, pro který platí S 1 P = s 2 +r 2 1 r2 2 2s. Definice Přímka c, která je množinou všech bodů v rovině majících stejnou mocnost ke kružnicím k 1 a k 2, se nazývá chordála kružnic k 1, k 1. Příklad Sestrojte chordálu 2 nesoustředných kružnic k 1, k 2. a) k 1, k 2 se protínají v bodech A, B. Platí A k 1 µ A k 1 = 0 a A k 2 µ A k 2 = 0. Bod A je jedním bodem chordály. Ze stejného důvodu i B c, tj. c = AB. b) k 1, k 2 se dotýkají v bodě T. Platí T k 1 µ T k 1 = 0 a T k 2 µ T k 2 = 0. Bod T je jedním bodem chordály. Dále víme: c S 1 S 2. c) k 1 k 2 = viz dále Potenční střed tří (po dvou nesoustředných) kružnic Příklad Jsou dány kružnice k 1 (S 1, r 1 ), k 2 (S 2, r 2 ), k 3 (S 3, r 3 ) (S 1 S 2 S 3 S 1 ). Vyšetřete, zdali existuje bod, který by měl stejnou mocnost ke všem kružnicím. a) S 1, S 2, S 3 kolineární. Potom chordály ch 12, ch 23, ch 31 jsou navzájem rovnoběžné, přičemž buďto všechny splynou, anebo žádné dvě spolu nesplynou. b) S 1, S 2, S 3 nekolineární. Potom se chordály ch 12, ch 23, ch 31 protínají v jednom bodě. Definice Bod P, který má stejnou mocnost ke kružnicím k 1, k 2, k 3 se nazývá potenční střed kružnic. k 1, k 2, k 3. Příklad Sestrojte chordálu 2 nesoustředných kružnic k 1, k 2 bez společného bodu. 1. zvolíme k 3 (S 3, r 3 ), S 3 S 1 S 2 tak, aby k 1 k 3 = {A, B} k 2 k 3 = {C, D} 2. ch 13 = AB ch 23 = CD = {P }, 3. P ch 12 ch 12 S 1 S 2
Syntetická geometrie I
Shodnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB = BA pozitivně definitní
Syntetická geometrie I
Shodnost Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Definice (Vzdálenost) Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB
Obrázek 101: Podobné útvary
14 Podobná zobrazení Obrázek 101: Podobné útvary Definice 10. [Podobné zobrazení] Geometrické zobrazení f se nazývá podobné zobrazení, jestliže existuje kladné reálné číslo k tak, že pro každé dva body
Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné.
11 Stejnolehlost Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné. Definice 26. Budiž dán bod S a reálné číslo κ (různé od 0 a 1). Stejnolehlost H(S; κ) se středem S
Syntetická geometrie I
Kružnice Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ & přímka Vzájemná poloha přímky a kružnice p 1 vnější přímka p 2 tečna s bodem dotyku T p 3 sečna X 1 X 2 tětiva Y 1 Y 2 průměr Y 1 S poloměr
Syntetická geometrie I
Kružnice Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ & přímka Vzájemná poloha přímky a kružnice p 1 vnější přímka p 2 tečna s bodem dotyku T p 3 sečna X 1 X 2 tětiva Y 1 Y 2 průměr Y 1 S poloměr
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ 7. 5. 0 Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Je každé zobrazení v rovině takové, že pro libovolné body roviny
PLANIMETRIE úvodní pojmy
PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést
A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2.
PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2. ČÁST MAT. OT 2. OT. Č.. 15: SHODNÁS HODNÁ ZOBRAZENÍ V ROVINĚ, PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY PODOBNOST KDE LÁTKU NAJDETE Kapitola Základy planimetrie
Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem
Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A
Syntetická geometrie I
Podobnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Úhel Zvolíme-li na přímce bod, rozdělí ji na dvě polopřímky. Definice (Úhel) Systém dvou polopřímek ÝÑ VA, ÝÑ VB se společným počátečním
Syntetická geometrie I
Podobnost Pedagogická fakulta 2017 www.karlin.mff.cuni.cz/~zamboj/ Úhel Zvolíme-li na přímce bod, rozdělí ji na dvě polopřímky. Definice (Úhel) Systém dvou polopřímek ÝÑ VA, ÝÑ VB se společným počátečním
- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:
1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.
5. P L A N I M E T R I E
5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční
Definice 3. Kruhová inverze určená kružnicí ω(s, r) (viz Obr. 6) je zobrazení, které každému bodu X S přiřadí bod X tímto způsobem:
2 Kruhová inverze Definice 3. Kruhová inverze určená kružnicí ω(s, r) (viz Obr. 6) je zobrazení, které každému bodu X S přiřadí bod X tímto způsobem: (1) X SX, (2) SX SX = r 2. Obrázek 6: Kruhová inverze
Syntetická geometrie I
Kruhová inverze Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Sférická inverze Autoportrét v kulovém zrcadle M.C.Escher, 1935 Pozor! jen pro ilustraci, inverze a zrcadlení se značně liší Kruhová
SHODNÁ A PODOBNÁ ZOBRAZENÍ V ROVINĚ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky HODNÁ PODOBNÁ ZOBRZENÍ V ROVINĚ Pomocný učební text Petra Pirklová Liberec, září 2013
Shodná zobrazení v rovině
Shodná zobrazení v rovině Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz. Zapisujeme Z: X X. Množinu obrazů všech
Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna
16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná
Kružnice, úhly příslušné k oblouku kružnice
KRUŽNICE, KRUH Kružnice, úhly příslušné k oblouku kružnice Je dán bod S a kladné číslo r. Kružnice k(s;r) je množina všech bodů (roviny), které mají od bodu S vzdálenost r. Můžeme také říci. Kružnicí k
Užití stejnolehlosti v konstrukčních úlohách
Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz
Cyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou
Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří
Geometrická zobrazení
Geometrická zobrazení Franta Konopecký Geometrická zobrazení jsou nádherná kapitola matematiky, do které když proniknete, tak už neuniknete. Pro lepší představu v tomto příspěvku najdete stručný přehled,
M - Pythagorova věta, Eukleidovy věty
M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )
6. Algebraické nerovnice s jednou neznámou Další dovednosti: -iracionální nerovnice -lineární nerovnice s parametrem -kvadratické nerovnice s parametrem Možné maturitní otázky: Lineární a kvadratické nerovnice
Syntetická geometrie I
Afinita Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Směr Dvě rovnoběžné přímky mají stejný (neorientovaný) směr. Definice (Samodružný směr) Když se při zobrazení f zobrazí přímka p na přímku
6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)
6 Planimetrie Planimetrie = část matematiky, která se zabývá geometrií (původně věda o měřené země) v rovině (obrazce, jejich vlastnosti, shodnost a podobnost, zobrazení). 6.1 Trojúhelník Každé tři body,
Shodné zobrazení v rovině
Gymnázium Cheb Shodné zobrazení v rovině seminární práce Cheb, 2007 Lojza Tran Prohlášení Prohlašuji, že jsem seminární práci na téma: Shodné zobrazení v rovině vypracoval zcela sám za použití pramenů
PODOBNÁ ZOBRAZENÍ V ROVINĚ (včetně stejnolehlosti)
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PODOBNÁ
2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.
ZS1BK_PGE1 Geometrie I: Vybrané úlohy z elementární geometrie 1. Které geometrické útvary mohou vzniknout a) jako průnik dvou polopřímek téže přímky, b) jako průnik dvou polorovin téže roviny? V případě
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuk prostřednictvím ICT Číslo a název šablon klíčové aktivit III/2 Inovace a zkvalitnění výuk prostřednictvím
Vlastnosti kružnice. Bakalářská práce. Jihočeská univerzita v Českých Budějovicích Fakulta pedagogická Katedra matematiky
Jihočeská univerzita v Českých Budějovicích Fakulta pedagogická Katedra matematiky Bakalářská práce Vlastnosti kružnice Vypracoval: Veronika Šulová Vedoucí práce: prof. RNDr. Pavel Pech, CSc. České Budějovice
Základy geometrie - planimetrie
Základy geometrie - planimetrie Základní pojmy - bod (A, B, X, Y...), přímka ( p, q, a... ), rovina ( α, β, π... ) - nedefinují se Polopřímka: bod dělí přímku na dvě polopřímky opačně orientované značíme
7 Analytické vyjádření shodnosti
7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +
TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik
TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající
n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram
4.5 Mnohoúhelníky Obrázek 28: Tangram Mnohoúhelník můžeme charakterizovat jako část roviny ohraničenou uzavřenou lomenou čarou (tj. čarou, která se skládá z na sebe navazujících úseček). Již víme, že rozlišujeme
SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ
Předmět: Ročník: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr. Tomáš MŇÁK 21. června 2012 Název zpracovaného celku: SHODNÁ ZORZENÍ V ROVINĚ Teoretická část GEOMETRICKÁ ZORZENÍ V ROVINĚ Zobrazení Z v rovině je předpis,
Cesta z roviny do prostoru od vlastností kružnic ke kulové inverzi
Cesta z roviny do prostoru od vlastností kružnic ke kulové inverzi RNDr. Šárka Gergelitsova, Ph.D. Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních
Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
Přípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Konstrukční úlohy Klíčová slova: rozbor, náčrt, popis, diskuse počtu řešení, kružnice opsaná a vepsaná Autor: trojúhelníku Mlynářová 12 19 9:02 Kontrukční úlohy Výsledkem
GEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TROJÚHELNÍK PYTHAGOROVA VĚTA TROJÚHELNÍK Geodetické výpočty I. trojúhelník je geometrický rovinný útvar určený třemi
Seznam pomůcek na hodinu technického kreslení
Seznam pomůcek na hodinu technického kreslení Sešit bez linek, formát A4 Psací potřeby propiska nebo pero, mikrotužky 2B, H Pravítko s ryskou Rovné pravítko Úhloměr Kružítko Šablona písma 3,5 mm Šablona
2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky.
2.cvičení 1. Polopřímk: od O dělí přímku n dvě nvzájem opčné polopřímky. Úsečk: průnik dvou polopřímek,. Polorovin: přímk dělí rovinu n dvě nvzájem opčné poloroviny. Úhel: průnik polorovin (pozor n speciální
5 Pappova věta a její důsledky
5 Pappova věta a její důsledky Pappos z Alexandrie (?90?350), řecký matematik a astronom. Pod označením Pappova věta je uváděno více vět. Proto je třeba uvést, o jaké z těchto vět hovoříme. Zde se budeme
Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
Rozpis výstupů zima 2008 Geometrie
Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...
Mongeovo zobrazení. Osová afinita
Mongeovo zobrazení Osová afinita nechť je v prostoru dána průmětna π, obecná rovina ρ a v této rovině libovolný trojúhelník ABC, promítneme-li trojúhelník kolmo do průmětny π, dostaneme trojúhelník A
Opakování ZŠ - Matematika - část geometrie - konstrukce
Opakování ZŠ - Matematika - část geometrie - konstrukce Základní útvary v rovině Bod je nejzákladnější geometrický pojem. Body zapisujeme písmeny velké abecedy: A, B, N, H, Přímka Přímky zapisujeme písmeny
1 Připomenutí vybraných pojmů
1 Připomenutí vybraných pojmů 1.1 Grupa Definice 1 ((Komutativní) grupa). Grupou (M, ) rozumíme množinu M spolu s operací na M, která má tyto vlastnosti: i) x, y M; x y M, Operace je neomezeně definovaná
Syntetická geometrie I
Kolineace Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Incidence Incidence je základní vztah - nedefinujeme ji. Bod leží na přímce = Přímka prochází bodem = Bod je incidentní s přímkou. Definice
ZÁKLADY PLANIMETRIE. 1.1 Přímka. Základy planimetrie, Jaroslav Reichl, 2013
ZÁKLADY PLANIMETRIE Planimetrie je část matematiky, která se zabývá studiem geometrických útvarů v rovině. Těmito útvary v rovině jsou: 1. body - značí se velkými písmeny latinské abecedy (A, B, C, D,
Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.
Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky
SOUŘADNICE BODU, VZDÁLENOST BODŮ
Registrační číslo projektu: CZ.1.07/1.1.14/01.001 SOUŘADNICE BODU, VZDÁLENOST BODŮ SOUŘADNICE BODU NA PŘÍMCE ČÍSELNÁ OSA na přímce je určena počátkem O a jednotkou měření. Libovolný bod A na číselné ose
ZÁKLADNÍ PLANIMETRICKÉ POJMY
ZÁKLADNÍ PLANIMETRICKÉ POJMY Základní geometrické pojmy jsou bod, přímka a rovina. Geometrie je chápána jako část matematiky, která se zabývá studiem geometrických útvarů v rovině. Body určujeme jako průsečíky
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Obrázek 13: Plán starověké Alexandrie,
4 Geometrické útvary v rovině Obrázek 13: Plán starověké Alexandrie, https://commons.wikimedia.org Jestliže rovinu chápeme jako množinu bodů, potom uvažované geometrické útvary jsou jejími podmnožinami.
P L A N I M E T R I E
M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů
Kreslení, rýsování. Zobrazení A B. Promítání E 3 E 2
Kreslení, rýsování Zobrazení A B Promítání E 3 E 2 1 Promítání lineární 1. Obrazem bodu je bod 2. Obrazem přímky je přímka (nebo bod) 3. Obrazem roviny je rovina (nebo přímka) Nelineární perspektivy: válcová...
p ACD = 90, AC = 7,5 cm, CD = 12,5 cm
Úloha Je dán pravoúhlý trojúhelník ACD s pravým úhlem při vrcholu C, AC = 7,5 cm, CD =,5 cm. Na přímce CD určete bod B tak, aby AB = BD Řešení: Úlohu vyřešíme nejprve geometrickou konstrukcí. a) Z rozboru
S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A
S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,
Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.
MNOHOÚHELNÍKY Vlastnosti mnohoúhelníků Lomená čára C 0 C C C 3 C 4 protíná samu sebe. Lomená čára A 0 A A... A n- A n (n ) se skládá z úseček A 0 A, A A,..., A n- A n, z nichž každé dvě sousední mají společný
Trojúhelník. Jan Kábrt
Trojúhelník Jan Kábrt Co se učívá ve školách Výšky, jejich průsečík ortocentrum O Těžnice, jejich průsečík těžiště T Osy stran, střed kružnice opsané S o Osy úhlů, střed kružnice vepsané S v Někdy ještě
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní
Univerzita Karlova v Praze Pedagogická fakulta
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 PLANIMETRIE 000/001 Cifrik, M-ZT První příklad ze zadávacích listů 1 Zadání: Sestrojte trojúhelník ABC, pokud je dáno: ρ
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Vlasta Moravcová. Matematicko-fyzikální fakulta & Nad Ohradou 23 Univerzita Karlova v Praze Praha 3. Letní škola geometrie 2018,
KONSTRUKČNÍ ÚLOHY Katedra didaktiky matematiky Gymnázium Na Pražačce Matematicko-fyzikální fakulta & Nad Ohradou 23 Univerzita Karlova v Praze Praha 3 Letní škola geometrie 2018, 4. července 2018, Česká
PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.
Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ
KMA/G2 GEOMETRIE 2 Pomocný učební text. Miroslav Lávička
KMA/G2 GEOMETRIE 2 Pomocný učební text Miroslav Lávička Plzeň, únor 2006 KMA/G2 Geometrie 2 2 Předmluva Tento text vznikl jako pomocný učební materiál pro potřeby studentů Fakulty aplikovaných věd a Fakulty
KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI
KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI Šroubový pohyb vzniká složením otáčení kolem osy o a posunutí ve směru osy o, přičemž oba pohyby jsou spojité a rovnoměrné. Jestliže při pohybu po ose "dolů" je otáčení
0. Pak existuje n tak, že Bµ APn
Euklidovský prostor Základní pojmy: bod, přímka rovina Základní vztahy: bod leží na přímce přímka prochází bodem bod leží v rovině rovina prochází bodem bod inciduje s přímkou přímka inciduje s bodem bod
1. Planimetrie - geometrické útvary v rovině
1. Planimetrie - geometrické útvary v rovině 1. Základní pojmy Body průsečíky čar, značí se velkými tiskacími písmeny A = B bod A je totožný (splývá) s bodem B A B různé body A, B Přímka je dána dvěma
Úlohy domácí části I. kola kategorie C
63. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete, jaké nejmenší hodnoty může nabýt výraz V = (a b) + (b c) + (c a), splňují-li reálná čísla a, b, c dvojici podmínek a +
6 Samodružné body a směry afinity
6 Samodružné body a směry afinity Samodružnými body a směry zobrazení rozumíme body a směry, které se v zobrazují samy na sebe. Například otočení R(S má jediný samodružný bod, střed S, anemá žádný samodružný
(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,
1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo
Geometrická zobrazení
Pomocný text Geometricá zobrazení hodná zobrazení hodná zobrazení patří nejjednodušším zobrazením na rovině. Je jich vša hrozně málo a často se stává, že musíme sáhnout i po jiných, nědy výrazně složitějších
Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,
Konstrukční úlohy Růžena Blažková, Irena Budínová Milé studentky, milí studenti, zadání konstrukčních úloh si vylosujete v semináři nebo na přednášce, u každé konstrukční úlohy proveďte: - rozbor obsahuje
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další
Kapitola 1 Planimetrie a stereometrie Doplňky ke středoškolské látce 1.1 Základní pojmy prostorové geometrie 1.1.1 Axiomy Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další
Deskriptivní geometrie 2
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání
Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností.
Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností. Metody řešení konstrukčních úloh: množinou bodů zobrazením výpočtem kombinací předchozích způsobů Konstrukční
Pomocný text. Kruhová inverze
Pomocný text Kruhová inverze Co je to kruhová inverze? Pod pojmem kruhová inverze se rozumí geometrické zobrazení, jehož vlastnostem se nyní budeme věnovat. Nechť je dána rovina, v ní ležící bod O, který
MATEMATIKA. Problémy a úlohy, v nichž podrobujeme geometrický objekt nějaké transformaci
MATEMATIKA Úloha o čtverci a přímkách ŠÁRKA GERGELITSOVÁ TOMÁŠ HOLAN Matematicko-fyzikální fakulta UK, Praha Problémy a úlohy, v nichž podrobujeme geometrický objekt nějaké transformaci (například podobnosti)
Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník
Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník 2.4.1. Základní vlastnosti 2.4.2. Výšky
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky
[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]
Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.
Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
Dvěma různými body prochází právě jedna přímka.
Úvod Jestliže bod A leží na přímce p a přímka p leží v rovině, pak i bod A leží v rovině. Jestliže v rovině leží dva různé body A, B, pak také přímka p, která těmito body prochází, leží v rovině. Dvěma
Kuželoseč ky. 1.1 Elipsa
Kuželoseč ky 1.1 Elipsa Definice: Elipsa je množina všech bodů v 2, které mají od dvou pevných (různých) bodů v 2, zvaných ohniska (značíme F 1, F 2 ), stálý součet vzdáleností rovný 2a, který je větší
Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.
4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,
February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace
Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při
. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Počítání v planimetrii Michal Kenny Rolínek
Počítání v planimetrii Michal Kenny Rolínek Cílem této přednášky je obohatit vaše znalosti z planimetrie o nové metody, založené na algebraickém přístupu. Nebudeme ovšem sáhodlouze upravovat obrovskévýrazy,jakbysemohlozdát.naopaksiukážemepříklady,vnichžnástrocha
9.5. Kolmost přímek a rovin
9.5. Kolmost přímek a rovin Pro kolmost přímek a rovin platí následující věty, které budeme demonstrovat na krychli ABCDEFGH se středy podstav S, Q. Přímka kolmá k rovině je kolmá ke všem přímkám této