MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
|
|
- Pavel Veselý
- před 8 lety
- Počet zobrazení:
Transkript
1 MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě (i, j), tj v řádku i a v sloupci j První index i je index řádkový, druhý index j je index sloupcový Těleso T může být těleso komplexních čísel C, těleso reálných čísel R či jiné těleso Matici nad tělesem reálných čísel R nazýváme reálná matice Typ matice udává počet řádků a počet sloupců matice (v tomto pořadí) Prvky a kk, pro které je řádkový index stejný jako index sloupcový, se nazývají prvky diagonální Matice A = [a ij ] typu m/n se nazývá matice nulová a značí se 0, jestliže a ij = 0 pro každé i = 1,, m a pro každé j = 1,, n, tj jestliže na každém místě matice je prvek 0 Matice A typu m/n se nazývá matice čtvercová řádu n, jestliže m = n, tj jestliže má stejný počet řádků a sloupců Matice A typu m/n se nazývá matice obdélníková, jestliže m n Čtvercová matice A = [a ij ] řádu n se nazývá matice diagonální, jestliže a ij = 0 pro každé i j Potom píšeme A = diag [a 11, a 22,, a nn ] Jednotková matice řádu n je matice I = diag[ 1, 1,, 1 ], }{{} n tj I =
2 Řekneme, že čtvercová matice A řádu n je symetrická, jestliže a ij = a ji pro každé i, j = 1,, n Řekneme, že matice A typu m/n je horní (resp dolní) trojúhelníková matice, jestliže a ij = 0 pro každé i > j (resp i < j) Rovnost matic: Matice A = [a ij ], B = [b ij ] jsou si rovny, jestliže to jsou matice stejného typu m/n a jestliže a ij = b ij pro každé i = 1,, m a pro každé j = 1,, n Píšeme A = B Operace s maticemi Transponování matice Je-li A = [a ij ] matice typu m/n, potom matice typu n/m tvaru A T = [a ji ] se nazývá matice transponovaná k matici A Pro matici a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn je AT = a 11 a 21 a m1 a 12 a 22 a m2 a 1n a 2n a mn Tvrzení: 1 Matice A je symetrická právě tehdy, když A T = A 2 Pro každou matici A platí: (A T ) T = A Sčítání matic Jsou-li matice A = [a ij ], B = [b ij ] matice stejného typu m/n nad tělesem T, potom jejich součet je matice typu m/n nad tělesem T tvaru A + B = [a ij + b ij ] 2
3 Vlastnosti sčítání matic: Jsou-li A, B, C matice téhož typu m/n nad tělesem T a 0 je nulová matice typu m/n nad T, platí: 1 A + B = B + A, 2 A + (B + C) = (A + B) + C, 3 A + 0 = 0 + A = A, 4 (A + B) T = A T + B T Násobení matice prvkem z tělesa Je-li λ prvek z tělesa T, A = [a ij ] matice typu m/n nad tělesem T, potom matice typu m/n tvaru λa = [λa ij ] se nazývá násobek matice A prvkem λ Matice opačná k matici A je násobek matice A číslem 1, tedy A = ( 1)A Odečítání matic je součet matice a matice opačné, tj A B = A + ( B) Vlastnosti násobení matice prvkem z tělesa: Jsou-li A, B matice typu m/n nad tělesem T, 0 nulová matice téhož typu m/n nad T a λ, λ 1, λ 2 jsou libovolné prvky z tělesa T, platí: 1 λ(a + B) = λa + λb, 2 (λ 1 + λ 2 )A = λ 1 A + λ 2 A, 3 (λ 1 λ 2 )A = λ 1 (λ 2 A), 4 1A = A, 5 0A = 0, 6 (λa) T = λa T 3
4 n-členný aritmetický vektor nad tělesem T je matice typu n/1 nad tělesem T Při zápisu n-členného aritmetického vektoru budeme vynechávat druhý index, budeme psát a = a 1 a 2 a n = [a 1, a 2,, a n ] T Symbolem R n budeme označovat množinu všech n-členných aritmetických vektorů nad tělesem R reálných čísel Násobení matic Jsou-li A = [a ij ] matice typu m/n nad tělesem T, B = [b jk ] matice typu n/p nad tělesem T, potom matice C = [c ik ] typu m/p se nazývá součin matic C = AB, jestliže pro každé i = 1,, m, k = 1,, p platí: n c ik = a i1 b 1k + a i2 b 2k + + a in b nk = a ij b jk j=1 Poznámka: 1 Jestliže C = AB, potom prvek v matici C na místě (i, k) je vlastně skalární součin i-tého řádku matice A s k-tým sloupcem matice B 2 Lze násobit pouze matice vhodných typů, tj existuje součin C = AB, jestliže počet sloupců matice A se rovná počtu řádků matice B 3 POZOR!!! Násobení matic není komutativní operace, tj pro mnoho matic A, B je AB BA Vlastnosti násobení matic: Pro každé tři matice A, B, C nad tělesem T a pro libovolný prvek λ T platí, pokud je alespoň jedna strana rovnosti definována: 1 A(BC) = (AB)C, 2 (A + B)C = AC + BC, 3 C(A + B) = CA + CB, 4
5 4 (AB) T = B T A T, 5 (λa)b = A(λB) = λ(ab) Dále platí pro jednotkovou matici I a nulovou matici 0 a pro každou matici A nad tělesem T, kdykoliv je definována levá strana rovnosti: (a) AI = A, IA = A, (b) A0 = 0, 0A = 0 Jestliže A je čtvercová matice řádu n nad tělesem T, potom čtvercová matice A 1 řádu n nad T se nazývá inverzní matice k matici A, jestliže AA 1 = I a A 1 A = I, kde I je jednotková matice řádu n Věta: Ke čtvercové matici existuje nejvýše jedna inverzní matice 5
6 SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC I (GAUSSOVA ELIMINAČNÍ METODA - využití redukovaného stupňovitého tvaru matice) Necht je dána matice A typu m/n nad tělesem R reálných čísel, n-členný aritmetický vektor x = [x 1, x 2,, x n ] T nad R a m-členný aritmetický vektor b = [b 1, b 2,, b m ] T nad R Potom Ax = b je soustava m lineárních algebraických rovnic o n neznámých Jestliže A = [a ij ], potom Ax = b rozepíšeme do tvaru: tj a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn x 1 x 2 x n = b 1 b 2 b m a 11 x 1 + a 12 x a 1n x n = b 1, a 21 x 1 + a 22 x a 2n x n = b 2, a m1 x 1 + a m2 x a mn x n = b m Matice A = [a ij ] se nazývá matice soustavy Vektor x = [x 1, x 2,, x n ] T vektor neznámých Vektor b = [b 1, b 2,, b m ] T vektor pravých stran Matici [A b] = soustavy a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a m1 a m2 a mn b m nazýváme rozšířená matice 6
7 Necht Ax = b je soustava m lineárních rovnic o n neznámých Potom každý n-členný aritmetický vektor x nad tělesem R, pro který platí Ax = b, nazýváme řešení soustavy rovnic Dvě soustavy lineárních rovnic nazýváme ekvivalentní soustavy, jestliže mají stejné množiny řešení Následující úpravy matice A ( typu m/n ) 1 vzájemná výměna dvou řádků matice, 2 vynásobení řádku matice nenulovým číslem, 3 přičtení násobku jednoho řádku k jinému řádku, se nazývají elementární řádkové úpravy matice A Věta: Jestliže matice [C d] vznikne z matice [A b] užitím řádkových elementárních úprav, potom soustavy lineárních rovnic Ax = b a Cx = d jsou ekvivalentní Řekneme, že matice A je ve stupňovitém tvaru s pivoty 1, jestliže platí: 1 Jestliže řádek není nulový, potom první nenulové číslo je 1 Toto číslo se nazývá pivot neboli vedoucí prvek 2 Všechny nulové řádky jsou až za řádky nenulovými 3 V každých dvou nenulových řádcích i, j, i < j, je pivot v řádku j více vpravo než pivot v řádku i Říkáme, že matice je v redukovaném stupňovitém tvaru s pivoty 1, jestliže navíc platí: Každý sloupec obsahující pivot 1 má všude jinde 0 Věta: Každou matici lze převést pomocí řádkových elementárních úprav na matici ve stupňovitém tvaru s pivoty 1 a také na matici v redukovaném stupňovitém tvaru s pivoty 1 7
8 LINEÁRNÍ VEKTOROVÝ PROSTOR Neprázdná množina L se nazývá lineární vektorový prostor nad tělesem T, jestliže platí: 1 Pro libovolné dva prvky u, v L existuje jednoznačně určený prvek u + v L nazývaný součet prvků u a v 2 Pro libovolný prvek u L a pro libovolný prvek λ T existuje jednoznačně určený prvek λu L nazývaný násobek prvku u prvkem λ z tělesa T 3 Pro každé dva prvky u, v L platí u + v = v + u (komutativita sčítání) 4 Pro každé tři prvky u, v, w L platí (u + v) + w = u + (v + w) (asociativita sčítání) 5 Existuje prvek 0 L takový, že pro každý prvek u L platí u + 0 = 0 + u = u (existence nulového prvku) 6 Pro každý prvek u L existuje prvek ( u) L takový, že u + ( u) = ( u) + u = 0 (existence opačného prvku k prvku) 7 Pro každé dva prvky u, v L a pro každý prvek λ T platí λ(u + v) = λu + λv 8 Pro každý prvek u L a pro každé dva prvky λ, α T platí (λ + α)u = λu + αu 9 Pro každý prvek u L a pro každé dva prvky λ, α T platí (λα)u = λ(αu) 10 Pro každý prvek u L platí 1u = u 8
9 Uved me příklady lineárních vektorových prostorů nad tělesem reálných čísel R 1 Množina všech orientovaných úseček v rovině, tj R 2 = {[u 1, u 2 ] T ; u 1, u 2 R} 2 Množina všech orientovaných úseček v prostoru, tj R 3 = {[u 1, u 2, u 3 ] T ; u 1, u 2, u 3 R} 3 Množina všech reálných čísel, tj R = R 1 4 R n = {[u 1, u 2,, u n ] T ; u 1, u 2,, u n R} pro libovolné přirozené n, jestliže sčítání i násobky reálným číslem definujeme po složkách, tj [u 1,, u n ] T + [v 1,, v n ] T = [u 1 + v 1,, u n + v n ] T, λ[u 1,, u n ] T = [λu 1,, λu n ] T pro každé [u 1, u 2,, u n ] T, [v 1, v 2,, v n ] T R n a pro každé λ R 5 M m,n = {A; A je reálná matice typu m/n} pro libovolná přirozená čísla m, n 6 P n = {p(x); p(x) je polynom do stupně n, včetně nulového polynomu} pro libovolné celočíselné n 0 7 P = {p(x); p(x) je polynom} 8 C(a, b) = {f(x); f(x) je reálná funkce, spojitá naintervalu < a, b >} Věta: (základní vlastnosti) Necht L je lineární vektorový prostor nad tělesem T Potom platí: 1 Nulový prvek je určen jednoznačně 2 x, y, z L: jestliže x + y = x + z, potom y = z 3 Ke každému prvku x L je opačný prvek určen jednoznačně 4 x, y, z L: jestliže x + y = z, potom x = z + ( y) 5 x L: 0x = 0, λ T : λ0 = 0 6 x L: ( 1)x = x 7 Jestliže λx = 0, potom bud λ = 0 nebo x = 0 9
10 Necht L je lineární vektorový prostor nad tělesem T, necht v 1, v 2,, v n L, necht λ 1, λ 2,, λ n T Prvek λ 1 v 1 + λ 2 v λ n v n L se nazývá lineární kombinace prvků v 1, v 2,, v n s koeficienty λ 1, λ 2,, λ n Lineární kombinace λ 1 v 1 + λ 2 v λ n v n se nazývá netriviální, jestliže existuje i {1, 2,, n} takové, že λ i 0 (tj existuje alespoň jeden nenulový koeficient) Lineární kombinace λ 1 v 1 + λ 2 v λ n v n se nazývá triviální, jestliže λ i = 0 pro každé i = 1, 2,, n (tj všechny koeficienty jsou nulové) Necht L je lineární vektorový prostor nad tělesem T, necht v 1, v 2,, v n L Prvky v 1, v 2,, v n se nazývají lineárně nezávislé, jestliže každá jejich netriviální lineární kombinace je nenulový prvek Prvky v 1, v 2,, v n se nazývají lineárně závislé, jestliže nejsou lineárně nezávislé, tj jestliže existuje jejich netriviální lineární kombinace, která se rovná nulovému prvku Jak tedy určovat, zda prvky v 1, v 2,, v n lineárního vektorového prostoru L jsou lineárně závislé nebo nezávislé? Napíšeme jejich obecnou lineární kombinaci a položíme ji rovnou nulovému prvku prostoru L, tedy λ 1 v 1 + λ 2 v λ n v n = 0 Určíme, pro které hodnoty koeficientů λ 1,, λ n je rovnost splněna Pokud rovnost platí jen pro λ 1 = 0, λ 2 = 0,, λ n = 0, jsou prvky v 1, v 2,, v n lineárně nezávislé Pokud je rovnost splněna i pro nějaké nenulové hodnoty koeficientů λ 1,, λ n, jsou prvky v 1, v 2,, v n lineárně závislé Věta: (charakterizace lineárně závislých prvků) Necht L je lineární vektorový prostor nad tělesem T, necht v 1, v 2,, v n L jsou prvky tohoto prostoru Prvky v 1, v 2,, v n jsou lineárně závislé právě tehdy, když alespoň jeden z nich se dá vyjádřit jako lineární kombinace ostatních n 1 prvků 10
11 Důsledek: Každá neprázdná podmnožina množiny lineárně nezávislých prvků lineárního vektorového prostoru je opět lineárně nezávislá Řekneme, že neprázdná podmnožina L lineárního vektorového prostoru L nad tělesem T je podprostor prostoru L, jestliže platí: 1 pro každé dva prvky x, y L je x + y L, 2 pro každý prvek x L a pro každý prvek λ T je λx L Necht L je lineární vektorový prostor, necht M = {x 1, x 2,, x k } je konečná podmnožina prostoru L Množina všech lineárních kombinací tvaru λ 1 x 1 +λ 2 x 2 + +λ k v k se nazývá lineární obal konečné množiny M a značí se M Řekneme, že množina M generuje lineární vektorový prostor L nad tělesem T (je množinou generátorů, je generující množinou), jestliže lineární obal množiny M je celý prostor L, tj M = L ( To znamená, že každý prvek prostoru L lze psát jako lineární kombinaci prvků množiny M) Existuje-li konečná generující množina M prostoru L, říkáme, že prostor L je konečně generovaný prostor Dále se budeme věnovat pouze lineárním vektorovým prostorům, které jsou konečně generované 11
12 Necht L je konečně generovaný lineární vektorový prostor nad tělesem T Lineárně nezávislá, generující množina (konečná) prostoru L se nazývá báze prostoru L Věta: (o existenci lineárně nezávislé podmnožiny generátorů) Necht L je nenulový, konečně generovaný lineární vektorový prostor, necht konečná množina M je množina generátorů prostoru L Potom existuje podmnožina N M, která je bází prostoru L Důsledek: (o existenci báze) V každém nenulovém, konečně generovaném lineárním vektorovém prostoru existuje báze Věta: (Steinitzova věta o výměně) Necht L je nenulový lineární vektorový prostor nad tělesem T, necht M = {g 1, g 2,, g m } je množina generátorů prostoru L, necht N = {b 1, b 2,, b n } je množina lineárně nezávislých prvků prostoru L Potom n m a některých n prvků množiny M lze nahradit prvky množiny N tak, že vzniklá množina opět generuje prostor L Tato Steinitzova věta má řadu důležitých důsledků, některé uvedeme v následujících větách Věta: (počet prvků báze) Každé dvě báze nenulového, konečně generovaného lineárního vektorového prostoru mají stejný počet prvků Tato věta umožňuje definovat pojem dimenze prostoru Počet prvků báze konečně generovaného lineárního vektorového prostoru se nazývá dimenze prostoru L a značí dim L Je-li L nulový (triviální) prostor, definuje se dim L = 0 Věta: (věta o doplnění báze) Každou neprázdnou, lineárně nezávislou množinu nenulového, konečně generovaného prostoru L lze doplnit na bázi prostoru L 12
13 Důsledek: Je-li dim L = n, n N, a prvky v 1, v 2,, v n L jsou lineárně nezávislé, potom prvky v 1, v 2,, v n tvoří jednu možnou bázi prostoru L Věta: (jednoznačnost vyjádření prvku v dané bázi) Každý prvek lineárního vektorového prostoru L lze jednoznačně vyjádřit jako lineární kombinaci prvků báze, tj je-li L nenulový, konečně generovaný lineární vektorový prostor nad tělesem T, dále b 1, b 2,, b n je báze prostoru L, a x L je libovolný prvek prostoru L, potom pokud je prvek x zapsán dvěma způsoby jako lineární kombinace prvků báze, tj x = λ 1 b 1 + λ 2 b λ n b n, x = α 1 b 1 + α 2 b α n b n, potom musí platit rovnost λ i = α i pro každé i = 1,, n Necht L je nenulový, konečně generovaný lineární vektorový prostor nad tělesem T, necht b 1, b 2,, b n je báze prostoru L Je-li x L libovolný prvek, potom jednoznačně určené koeficienty λ 1, λ 2,, λ n v lineární kombinaci x = λ 1 b 1 +λ 2 b 2 + +λ n b n budeme nazývat souřadnice prvku x v bázi b 1, b 2,, b n Píšeme x = [λ 1, λ 2,, λ n ] T a tento vektor nazýváme souřadnicovým vektorem prvku x Jakmile začneme využívat pojem souřadnic prvku v dané bázi, musíme předpokládat, že pořadí prvků v bázi je pevně dané, tj předpokládáme, že se jedná o uspořádanou bázi 13
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
VĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
Lineární algebra - I. část (vektory, matice a jejich využití)
Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory
Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Základní pojmy teorie množin Vektorové prostory
Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru
1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
6.1 Vektorový prostor
6 Vektorový prostor, vektory Lineární závislost vektorů 6.1 Vektorový prostor Nechť je dán soubor nějakých prvků, v němž je dána jistá struktura vztahů mezi jednotlivými prvky nebo v němž jsou předepsána
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
3 Lineární kombinace vektorů. Lineární závislost a nezávislost
3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
EUKLIDOVSKÉ PROSTORY
EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,
Lineární algebra. Matice, operace s maticemi
Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.
Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak
Číselné vektory, matice, determinanty
Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny
1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35
1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný
2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.
Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R
Matematika 2 pro PEF PaE
Vektorové prostory 1 / 17 Matematika 2 pro PEF PaE 8. Vektorové prostory Přemysl Jedlička Katedra matematiky, TF ČZU Vektorové prostory Vektorové prostory a podprostory 2 / 17 vektorového prostoru Množina
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,
PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
Báze a dimenze vektorových prostorů
Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
Lineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád),
1 LINEÁRNÍ ALGEBRA 1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),
ALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).
Matice Definice 4.1 Necht (T ; +, je číselné těleso, m, n N a dále necht a ij T pro všechny indexy i = 1, 2,..., m a j = 1, 2,..., n. Potom schéma a 11 a 12... a 1n a 21 a 22... a 2n... = (a ij m n a m1
AVDAT Vektory a matice
AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x
Matematika. Kamila Hasilová. Matematika 1/34
Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
Vektorový prostor. d) Ke každému prvku u V n existuje tzv. opačný prvek u, pro který platí, že u + u = o (vektor u nazýváme opačný vektor k vektoru u)
Hodnost matice Vektorový prostor Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání vektorů a reálný násobek vektoru, přičemž platí: a) V n je uzavřenou množinou vůči
Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT
Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT 2 0 1 8 Obsah 1 Vektorové prostory 1 1 Vektorový prostor, podprostory........................ 1 2 Generování podprostor u............................
1 Soustavy lineárních rovnic
1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem
Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT
Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT 2 0 1 7 Obsah 1 Vektorové prostory 2 1 Vektorový prostor, podprostory........................ 2 2 Generování podprostor u............................
(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.
Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k
Základy matematiky pro FEK
Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních
Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR
DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y
Vektory a matice. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Vektory a matice Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
Lineární algebra : Báze a dimenze
Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,
Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n,
Soutavy lineárních algebraických rovnic Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n, X R n je sloupcový vektor n neznámých x 1,..., x n, B R m je daný sloupcový vektor pravých stran
ftp://math.feld.cvut.cz/pub/olsak/linal/
Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/
z textu Lineární algebra
2 Úvodní poznámky Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0
Vzhledem k tomu, že jsem to psala ve velkém spěchu, mohou se vyskytnout nějaké chybičky. Pokud nějaké najdu, opravím je hned po prázdninách. Zadání A. 1. Vektory u, v, w jsou lineárně nezávislé. Rozhodněte,
Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná
Soustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
Matice. a m1 a m2... a mn
Matice Nechť (R, +, ) je okruh a nechť m, n jsou přirozená čísla Matice typu m/n nad okruhem (R, +, ) vznikne, když libovolných m n prvků z R naskládáme do obdélníkového schematu o m řádcích a n sloupcích
Lineární (ne)závislost
Kapitola 6 Lineární (ne)závislost Také tuto kapitolu zahájíme základní definicí. Definice 6.1 Předpokládáme, že V je vektorový prostor nad tělesem T. Říkáme, že posloupnost vektorů x 1, x 2,..., x n prostoru
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi
2.2. Cíle Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi Předpokládané znalosti Předpokladem zvládnutí
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
VEKTOROVÝ PROSTOR. Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání, odčítání vektorů a reálný násobek vektoru.
VEKTOROVÝ PROSTOR Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání, odčítání vektorů a reálný násobek vektoru. Soubor n-složkových vektorů je libovolná skupina vektorů,
1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...
[1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.
Úvodní informace Soustavy lineárních rovnic. 12. února 2018
Úvodní informace Soustavy lineárních rovnic Přednáška první 12. února 2018 Obsah 1 Úvodní informace 2 Soustavy lineárních rovnic 3 Matice Frobeniova věta Úvodní informace Olga Majlingová : Na Okraji, místnost
Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.
Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a
IB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
2.6. Vlastní čísla a vlastní vektory matice
26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť
ALGEBRA. Téma 4: Grupy, okruhy a pole
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,
Lineární prostory. - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem
Lineární prostory - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem - volné vektory a operace s nimi(sčítání, násobení reálným číslem) -ve 2 nebove 3 vázanévektorysespolečnýmpočátkem
a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a
Zadání A. 1. Polynom P (x) má v uspořádané bázi (x 2 + x 1, 2x 2 x 1, x 2 + x + 2) souřadnice (1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). Nejprve si spočítáme
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29
Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010
7. Důležité pojmy ve vektorových prostorech
7. Důležité pojmy ve vektorových prostorech Definice: Nechť Vje vektorový prostor a množina vektorů {v 1, v 2,, v n } je podmnožinou V. Pak součet skalárních násobků těchto vektorů, tj. a 1 v 1 + a 2 v
Lineární algebra : Lineární (ne)závislost
Lineární algebra : Lineární (ne)závislost (4. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií
ALGEBRA A TEORETICKÁ ARITMETIKA. 1. část - Lineární algebra. doc.rndr. Jarmila Novotná, CSc. doc.rndr. Milan Trch, CSc.
ALGEBRA A TEORETICKÁ ARITMETIKA 1. část - Lineární algebra doc.rndr. Jarmila Novotná, CSc. doc.rndr. Milan Trch, CSc. Obsah 1 Aritmetické vektory 2 1.1 Základní pojmy............................ 2 1.2
Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy
1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném