Employing Evolutionary Algorithms for Classification of Astrophysical Spectra
|
|
- Alžběta Gabriela Dvořáková
- před 6 lety
- Počet zobrazení:
Transkript
1 Employing Evolutionary Algorithms for Classification of Astrophysical Spectra 1
2 Cíle Astronomické cíle Klasifikace Be hvězd do podtříd Na základě spektroskopie Odlišné tvary spekter odpovídají odlišné geometrii objektu Informatické cíle Automatizovat metody klasifikace Aplikovat na velké kolekce (SDSS) Důraz na výkon klasifikačního mechanismu Lze v rozumném čase spočítat klasifikaci na statisícových kolekcích? Generalizace na jiné spektroskopické problémy 2
3 Ideální tvar spektra Be hvězdy Jasně viditelná emisní čára (H-alpha atomární vodík) Dvojitý vrchol daný rotací zářícího plynového disku Les absorpčních čar vlevo od emisní je relativně nevýrazný Většinou voda v zemské atmosféře 3
4 Méně ideální tvar spektra Be hvězdy 2 1,8 1,6 1,4 1,2 1 0,8 0,6 0,4 0, Vzdálenější hvězda horší odstup od pozadí Efekt atmosféry výrazně ovlivňuje tvar spektra Rozpoznání emisní čáry je stále možné Přesné měření parametrů emisné čáry je ztíženo 4
5 Méně ideální tvar spektra Be hvězdy 1,2 1,15 1,1 1,05 1 0,95 0,9 0,85 0, Vzdálenější hvězda horší odstup od pozadí Přesné měření parametrů emisní čáry je ztíženo FWHM = šířka čáry v polovině výšky Kde to je? 5
6 Zdroje spektroskopických dat Ondřejovská spektra 2m dalekohled Dedikovaný pro spektroskopii Velmi přesná měření Manuální výběr objektů Stovky jasných objektů Automatické zpracování Normalizace Sloane Digital Sky Survey 2.6 m dalekohled Vícevláknová spektroskopie Měří cca 1000 objektů najednou Společné expoziční parametry Nelze měřit jasné objekty Menší rozlišení Automatický výběr objektů Statisíce slabých objektů Automatické zpracování Odečtení pozadí oblohy Volná vlákna Zdvojnásobuje šum 6
7 Původní snaha Přenesení Ondřejovských metod na SDSS Nutná plná automatizace Objekty jsou slabší Původní techniky nefungují Neexistuje objekt měřený oběma kolekcemi Jiné techniky předzpracování, jiné rozlišení Důsledek: Nemáme učitele pro případné učení Závěr: Hledejme zcela jiné přístupy Učení bez učitele 7
8 Nové cíle Hlavní problém velkých kolekcí: Slabé objekty Photon-counting noise měříme Poissonovo rozdělení Rozptyl úměrný odmocnině intenzity signálu Stejně šumí i odečítaný jas oblohy rozptyl nezávislý na intenzitě užitečného signálu Rozptyl ale známe - můžeme odhadnout spolehlivost extrahovaných informací 8
9 Rozpoznávání slabých signálů 1,3 1,2 1,1 1 0,9 0,8 0, Je to čára nebo náhodná fluktuace Slabší čáry jsou řádově stejně vysoké jako směrodatná odchylka Pro jednotlivé čáry neumíme odpovědět 9
10 Rozpoznávání slabých signálů 1,3 1,2 1,1 1 0,9 0,8 0, Pro jednotlivé čáry neumíme odpovědět Pro soubory čar je odpověď spolehlivější Dokážeme rozhodnout, zda měření odpovídá předpokládanému spektru Existují syntetická spektra generovaná na základě fyzikálních zákonů Prostor parametrů je ovšem dost velký 10
11 Nové cíle Jiná myšlenka: Kdybychom měli několik podobných objektů, můžeme měření sečíst Užitečný signál roste rychleji než šum Ve velkém množství objektů se nějaké podobné objekty najdou Problémy: Jak najdeme podobné objekty? To je náš hlavní cíl jsme v kruhu Úplně stejné objekty nenajdeme Odlišná intenzita daná různými vzdálenostmi Odlišný Dopplerovský posuv daný různými rychlostmi 11
12 Návrh řešení Syntetická spektra Parametry spekter generovány evolučními algoritmy Fitness = odchylka od naměřeného spektra Evoluce trefuje všechna naměřená spektra najednou Syntetické spektrum přežívá, pokud je dobrou aproximací alespoň jednoho naměřeného spektra Hledání podobných spekter Příbuzenský vztah mezi syntetickými spektry Jsou-li měřená spektra dobře aproximována příbuznými syntetickými spektry, budou podobná Obrácená implikace neplatí, to nám ale nemusí vadit Skutečnou klasifikaci uděláme později, na základě syntetických spekter 12
13 Komplikace Nedokážeme porovávat všechna syntetická spektra se všemi měřeními Náhodný výběr + evoluce Měřené objekty nejsou identické Při porovnávání se syntetickým spektrem je nutná další transformace Odpovídá vzdálenosti, rychlosti a teplotě objektu Silně zjednodušená fyzika dostatečně pokrývá malé odchylky Parametry transformace podléhají evoluci 13
14 Evoluční mechanismus Koevoluce dvou tříd organismů Syntetická spektra Chromozom = množina čar (pozice, šířka, intenzita) Párování Dvojice syntetické + naměřené spektrum Tři číselné parametry transformace mezi syntetickým a naměřeným spektrem 14
15 Evoluční mechanismus Výpočet fitness Porovnání transformovaného syntetického spektra s naměřeným Fitness = normalizovaná kvadratická odchylka Každé naměřené spektrum leží v několika párech Páry s nejlepší fitness jsou vybrány k přežití Každé syntetické spektrum se účastní v několika párech Fitness spektra = počet přežívajících párů 15
16 Schéma výpočtu fitness Základní spektra se ve skutečnosti nepočítají Transformace probíhá přímo na seznamech čar Syntetická spektra se škálují v rámci výpočtu fitness Multiplikační koeficient hledán metodou nejmenších čtverců Minimální residuum = fitness 16
17 Evoluční mechanismus Generování populace Nepřeživší páry zanikají Syntetická spektra se špatnou fitness nezanikají, ale nemají potomky Syntetická spektra s dostatečnou fitness generují potomky Náhodná mutace, případně křížení Vztah předek-potomek je zaznamenán Přeživší páry generují potomky Náhodná mutace parametrů transformace Přestěhování k jinému syntetickému spektru Páry s dobrou fitness k náhodně vybranému potomku syntetického spektra Ostatní páry k náhodně vybranému sourozenci syntetického spektra 17
18 Evoluce Syntetická spektra Párování Naměřená spektra 18
19 Evoluce Syntetická spektra Fitness párování Naměřená spektra 19
20 Evoluce Syntetická spektra Eliminace párování Naměřená spektra 20
21 Evoluce Fitness spekter Eliminace párování Naměřená spektra 21
22 Evoluce Potomci spekter Nová párování Naměřená spektra 22
23 Algoritmus evoluce 23
24 Výpočetní náročnost Paralelní algoritmus pro SMP a NUMA Naměřená spektra uložena na disku Populace uloženy v paměti Syntetická spektra jsou reprezentována seznamy čar Kritické součásti Rychlý přístup k disku Cache-awareness SIMD instrukce Výkonnost Kritickým místem je generování transformovaného spektra pro každý pár Cca párů za sekundu per core (Intel i7) Rychlost diskového přístupu může být omezujícím faktorem Čtení spekter z disku je 20 až 50-krát pomalejší než generování syntetických Pro méně než 50 párů na naměřené spektrum zdržuje disk Michal Brabec, David Bednárek: Programming parallel pipelines using non-parallel C# code 24
25 Výpočetní náročnost Výkonnost Kritickým místem je generování transformovaného spektra pro každý pár Cca párů za sekundu per core (Intel i7) Rychlost diskového přístupu může být omezujícím faktorem Pro méně než 50 párů na naměřené spektrum Spektra musejí být předzpracována do vhodné podoby Extrémní test Kompletní ročník SDSS = naměřených spekter 100 párů pro každé naměřené spektrum = párů 6 * 4 core NUMA machine 1 generace za méně než 3 minuty Je to dost nebo málo? Michal Brabec, David Bednárek: Programming parallel pipelines using non-parallel C# code 25
26 Závěr (srpen 2014) Stav Máme funkční paralelní implementaci evolučního algoritmu Výkon dostačuje k provádění experimentů na středně velkých kolekcích To je nejdůležitější výsledek dosavadní práce Pro původní cíl (Be hvězdy) není třeba řešit celou SDSS Výsledky evolučního algoritmu? Chybí nám metodika hodnocení nemáme průnik kolekcí ani další klasifikátor Work in progress Spektra s větším počtem čar konvergují pomalu nebo vůbec Zrychlení pomocí propagace fitness až k jednotlivým čarám Místo náhodné inicializace použití spekter z Ondřejovské kolekce Selection bias? Future work Aplikace na celou SDSS Zobecnění evoluční metody 26
27 Novější výsledky Syntetické spektrum má nevyhovující spojité pozadí Počítalo se s křivkou záření absolutně černého tělesa Tomu ale odpovídají jen některé hvězdy Je nutné dovolit obecnější křivku Příliš mnoho parametrů - další komplikace pro evoluci Lepší nápad: Úprava výpočtu fitness tak, aby ignorovala spojité pozadí Složitější matematika - stihneme to spočítat? Spektra s větším počtem čar konvergují pomalu nebo vůbec Zrychlení pomocí propagace fitness až k jednotlivým čarám Velký zásah do algoritmu evoluce - třetí druh organismu Složitější matematika - stihneme to spočítat? Místo náhodné inicializace použití spekter z Ondřejovské kolekce To nepomohlo, problém není v nalezení přibližně odpovídajícího spektra 27
28 Novější výsledky Úprava výpočtu fitness tak, aby ignorovala spojité pozadí Problém: Normalizace samotného měření nefunguje Normalizace měření vede ke křivce se střední hodnotou 1 Syntetická spektra jsou křivky s hodnotami menšími než 1 Bez přizpůsobení multiplikativní konstantou nikdy nenajdeme shodu Potřebná multiplikativní konstanta je v různých částech spektra různá Je nutné normalizovat pro každou dvojici měřené-syntetické spektrum Hledáme multiplikativní konstantu metodou nejmenších čtverců Konstanta má být v různých částech spektra jiná Hledá se vždy pro lokální výřez ze spektra (cca 60 bodů) Konstanty musí spojitě navazovat Hledáme M konstant, každou spočtenou z K bodů v okolí Umíme to v čase úměrném celkovému počtu bodů spektra, nezávisle na K 28
29 Paralelní a vektorová implementace Nejdůležitější triky pro dosažení vysokého výkonu Použití SIMD instrukcí Nutnost zarovnání dat Použití předvypočtených průběhů křivek Úspora CPU ale zvýšení počtu paměťových přístupů Náhrada interpolace zvýšeným počtem vzorků Použito i k vyřešení zarovnání SIMD dat Cache-aware algoritmus pro výpočet syntetických spekter Obtížné nalezení optimálních parametrů Používání pseudonáhodných postupů namísto přesných Náhodný výběr s váhami namísto Top-K Snadnější paralelizace Lineární algoritmus pro interpolaci pozadí Inspirace: FFT 29
30 Výpočet fitness 30
31 Paralelní a vektorová implementace Softwarově inženýrské problémy Vhodné technologie? C++ xmmintrin.h - intrinsic functions for SSE/AVX Intel TBB - paralelizace Intel MKL - paralelizovatelné náhodné generátory Asynchronous I/O pro rychlý diskový přístup Technologie nejsou příliš kompatibilní C vs. C++, závislost na OS, nekompatibilita s překladači Nutná znalost fyzických parametrů výpočetního prostředí Cache-aware algoritmus (cache-oblivious verze neexistuje) Stupeň vektorizace (SSE: 4, AVX: 8) Je šance, že by tohle všechno mohlo být řešeno automaticky? Cíl: Knihovna pro méně znalé programátory Evoluční algoritmy vyžadují experimentování Existují lidé, kteří rozumějí všem potřebným doménám? Spektroskopie + numerická matematika + evoluční algoritmy + paralelní programování 31
Lineární klasifikátory
Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout
Pokročilé operace s obrazem
Získávání a analýza obrazové informace Pokročilé operace s obrazem Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU) Získávání
REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB
62 REGRESNÍ ANALÝZA V PROSTŘEDÍ MATLAB BEZOUŠKA VLADISLAV Abstrakt: Text se zabývá jednoduchým řešením metody nejmenších čtverců v prostředí Matlab pro obecné víceparametrové aproximační funkce. Celý postup
Paralelní a distribuované výpočty (B4B36PDV)
Paralelní a distribuované výpočty (B4B36PDV) Branislav Bošanský, Michal Jakob bosansky@fel.cvut.cz Artificial Intelligence Center Department of Computer Science Faculty of Electrical Engineering Czech
Algoritmy a struktury neuropočítačů ASN - P11
Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova
Jasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
VOLBA ČASOVÝCH OKEN A PŘEKRYTÍ PRO VÝPOČET SPEKTER ŠIROKOPÁSMOVÝCH SIGNÁLŮ
VOLBA ČASOVÝCH OKEN A PŘEKRYTÍ PRO VÝPOČET SPEKTER ŠIROKOPÁSOVÝCH SIGNÁLŮ Jiří TŮA, VŠB Technická univerzita Ostrava Petr Czyž, Halla Visteon Autopal Services, sro Nový Jičín 2 Anotace: Referát se zabývá
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Přehled paralelních architektur. Dělení paralelních architektur Flynnova taxonomie Komunikační modely paralelních architektur
Přehled paralelních architektur Přehled paralelních architektur Dělení paralelních architektur Flynnova taxonomie Komunikační modely paralelních architektur Přehled I. paralelní počítače se konstruují
Genetické algoritmy. Informační a komunikační technologie ve zdravotnictví
Genetické algoritmy Informační a komunikační technologie ve zdravotnictví Přehled přednášky Úvod Historie Základní pojmy Principy genetických algoritmů Možnosti použití Související metody AI Příklad problém
Obecné momenty prosté tvary
Obecné momenty prosté tvary První obecný moment: (Σy i )/n, i=1 n aritmetický průměr, těžiště dat y Druhý obecný moment: (Σy i2 )/n, i=1 n y 2 Obecné momenty prosté tvary Příklad 1 pokračování: y = (3+4+2+3+2+3+3+3)/8
TERMINOLOGIE ... NAMĚŘENÁ DATA. Radek Mareček PŘEDZPRACOVÁNÍ DAT. funkční skeny
PŘEDZPRACOVÁNÍ DAT Radek Mareček TERMINOLOGIE Session soubor skenů nasnímaných během jednoho běhu stimulačního paradigmatu (řádově desítky až stovky skenů) Sken jeden nasnímaný objem... Voxel elementární
Geometrické transformace
1/15 Předzpracování v prostoru obrazů Geometrické transformace Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/
Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011
Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Základní statistické modely Statistické vyhodnocování exp. dat M. Čada ~ cada
Základní statistické modely 1 Statistika Matematická statistika se zabývá interpretací získaných náhodných dat. Snažíme se přiřadit statistickému souboru vhodnou distribuční funkci a najít základní číselné
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
Michal Wiglasz* 1. Úvod
http:excel.fit.vutbr.cz Souběžné učení v koevolučních algoritmech Michal Wiglasz* Abstrakt Kartézské genetické programování (CGP) se využívá zejména pro automatizovaný návrh číslicových obvodů, ale ukázalo
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
Numerické metody a programování. Lekce 8
Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:
Trénování sítě pomocí učení s učitelem
Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup
A0M33EOA: Evoluční optimalizační algoritmy
A0M33EOA: Evoluční optimalizační algoritmy Zkouškový test Pátek 8. února 2011 Vaše jméno: Známka, kterou byste si z předmětu sami dali, a její zdůvodnění: Otázka: 1 2 3 4 5 6 7 8 Celkem Body: 1 3 2 1 4
Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X
Náhodný vektor Náhodný vektor zatím jsme sledovali jednu náhodnou veličinu, její rozdělení a charakteristiky často potřebujeme vyšetřovat vzájemný vztah několika náhodných veličin musíme sledovat jejich
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
magnetizace M(t) potom, co těsně po rychlé změně získal vzorek magnetizaci M 0. T 1, (2)
1 Pracovní úkoly Pulsní metoda MR (část základní) 1. astavení optimálních excitačních podmínek signálu FID 1 H ve vzorku pryže 2. Měření závislosti amplitudy signálu FID 1 H ve vzorku pryže na délce excitačního
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
Emergence chování robotických agentů: neuroevoluce
Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové
doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Frekvenční spektrum Dělení frekvenčního pásma (počet čar) Průměrování Časovou váhovou funkci Elias Tomeh / Snímek 2 Vzorkovací
Intervalová data a výpočet některých statistik
Intervalová data a výpočet některých statistik Milan Hladík 1 Michal Černý 2 1 Katedra aplikované matematiky Matematicko-fyzikální fakulta Univerzita Karlova 2 Katedra ekonometrie Fakulta informatiky a
Obsah přednášky Jaká asi bude chyba modelu na nových datech?
Obsah přednášky Jaká asi bude chyba modelu na nových datech? Chyba modelu Bootstrap Cross Validation Vapnik-Chervonenkisova dimenze 2 Chyba skutečná a trénovací Máme 30 záznamů, rozhodli jsme se na jejich
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
Úvod do problematiky měření
1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek
Systém rizikové analýzy při sta4ckém návrhu podzemního díla. Jan Pruška
Systém rizikové analýzy při sta4ckém návrhu podzemního díla Jan Pruška Definice spolehlivos. Spolehlivost = schopnost systému (konstrukce) zachovávat požadované vlastnos4 po celou dobu životnos4 = pravděpodobnost,
OPS Paralelní systémy, seznam pojmů, klasifikace
Moorův zákon (polovina 60. let) : Výpočetní výkon a počet tranzistorů na jeden CPU chip integrovaného obvodu mikroprocesoru se každý jeden až dva roky zdvojnásobí; cena se zmenší na polovinu. Paralelismus
ČVUT FEL X36PAA - Problémy a algoritmy. 4. úloha - Experimentální hodnocení algoritmů pro řešení problému batohu
ČVUT FEL X36PAA - Problémy a algoritmy 4. úloha - Experimentální hodnocení algoritmů pro řešení problému batohu Jméno: Marek Handl Datum: 3. 2. 29 Cvičení: Pondělí 9: Zadání Prozkoumejte citlivost metod
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
8. Sběr a zpracování technologických proměnných
8. Sběr a zpracování technologických proměnných Účel: dodat v částečně předzpracovaném a pro další použití vhodném tvaru ucelenou informaci o procesu pro následnou analyzu průběhu procesu a pro rozhodování
Jak se matematika poučila v biologii
Jak se matematika poučila v biologii René Kalus IT4Innovations, VŠB TUO Role matematiky v (nejen) přírodních vědách Matematika inspirující a sloužící jazyk pro komunikaci s přírodou V 4 3 r 3 Matematika
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
Kristýna Bémová. 13. prosince 2007
Křivky v počítačové grafice Kristýna Bémová Univerzita Karlova v Praze 13. prosince 2007 Kristýna Bémová (MFF UK) Křivky v počítačové grafice 13. prosince 2007 1 / 36 Pojmy - křivky a jejich parametrické
Základy navrhování průmyslových experimentů DOE
Základy navrhování průmyslových experimentů DOE cílová hodnota V. Vícefaktoriální experimenty Gejza Dohnal střední hodnota cílová hodnota Vícefaktoriální návrhy experimentů počet faktorů: počet úrovní:
Optimalizace osazování odběrných míst inteligentními plynoměry
Optimalizace osazování odběrných míst inteligentními plynoměry Ondřej Konár, Marek Brabec, Ivan Kasanický, Marek Malý, Emil Pelikán Ústav informatiky AV ČR, v.v.i. ROBUST 2012 Němčičky 14. září 2012 Měření
Vstupní signál protne zvolenou úroveň. Na základě získaných údajů se dá spočítat perioda signálu a kmitočet. Obrázek č.2
2. Vzorkovací metoda Určení kmitočtu z vzorkovaného průběhu. Tato metoda založena na pozorování vstupního signálu pomocí osciloskopu a nastavení určité úrovně, pro zjednodušování považujeme úroveň nastavenou
algoritmus»postup06«p e t r B y c z a n s k i Ú s t a v g e o n i k y A V
Hledání lokálního maxima funkce algoritmus»postup06«p e t r B y c z a n s k i Ú s t a v g e o n i k y A V Č R Abstrakt : Lokální maximum diferencovatelné funkce je hledáno postupnou změnou argumentu. V
Posouzení přesnosti měření
Přesnost měření Posouzení přesnosti měření Hodnotu kvantitativně popsaného parametru jakéhokoliv objektu zjistíme jedině měřením. Reálné měření má vždy omezenou přesnost V minulosti sloužila k posouzení
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Martin Lísal. Úvod do MPI
Martin Lísal září 2003 PARALELNÍ POČÍTÁNÍ Úvod do MPI 1 1 Co je to paralelní počítání? Paralelní počítání je počítání na paralelních počítačích či jinak řečeno využití více než jednoho procesoru při výpočtu
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK FYZIKÁLNÍ PRAKTIKUM III Úloha číslo: 16 Název: Měření indexu lomu Fraunhoferovou metodou Vypracoval: Ondřej Hlaváč stud. skup.: F dne:
vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291
Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených
Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.
Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně
Měření závislosti statistických dat
5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě
Vybrané partie z obrácených úloh. obrácených úloh (MG452P73)
Vybrané partie z obrácených úloh obrácených úloh (MG452P73) Obsah přednášky Klasifikace obrácených úloh a základní pojmy Lineární inverzní problém, prostor parametrů a dat Gaussovy transformace, normální
Měření dat Filtrace dat, Kalmanův filtr
Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-03-21 16:45 Obsah
Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc
Neuronové sítě a možnosti jejich využití Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc 1. Biologický neuron Osnova 2. Neuronové sítě Umělý neuron
Numerické modelování interakce proudění a pružného tělesa v lidském vokálním traktu
Numerické modelování interakce proudění a pružného tělesa v lidském vokálním traktu Vedoucí práce: doc. Ing. Petr Šidlof, Ph.D. Bc. Petra Tisovská 22. května 2018 Studentská 2 461 17 Liberec 2 petra.tisovska@tul.cz
Jednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3
Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý
ADA Semestrální práce. Harmonické modelování signálů
České vysoké učení technické v Praze ADA Semestrální práce Harmonické modelování signálů Jiří Kořínek 31.12.2005 1. Zadání Proveďte rozklad signálu do harmonických komponent (řeč, hudba). Syntetizujte
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
Protokol č. 5. Vytyčovací údaje zkusných ploch
Protokol č. 5 Vytyčovací údaje zkusných ploch Zadání: Ve vybraném porostu bylo prováděno zjišťování zásob za použití reprezentativní metody kruhových zkusných ploch. Na těchto zkusných plochách byl zjišťován
Interpolace pomocí splajnu
Interpolace pomocí splajnu Interpolace pomocí splajnu Připomenutí U interpolace požadujeme, aby graf aproximující funkce procházel všemi uzlovými body. Interpolační polynom aproximující funkce je polynom
Univerzita Pardubice. Fakulta chemicko-technologická Katedra analytické chemie. Licenční studium Statistické zpracování dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Statistické zpracování dat Semestrální práce Interpolace, aproximace a spline 2007 Jindřich Freisleben Obsah
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
IB109 Návrh a implementace paralelních systémů. Organizace kurzu a úvod. Jiří Barnat
IB109 Návrh a implementace paralelních systémů Organizace kurzu a úvod Jiří Barnat Sekce IB109 Návrh a implementace paralelních systémů: Organizace kurzu a úvod str. 2/32 Organizace kurzu Organizace kurzu
Náhodné signály. Honza Černocký, ÚPGM
Náhodné signály Honza Černocký, ÚPGM Signály ve škole a v reálném světě Deterministické Rovnice Obrázek Algoritmus Kus kódu } Můžeme vypočítat Málo informace! Náhodné Nevíme přesně Pokaždé jiné Především
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
Evoluční výpočetní techniky (EVT)
Evoluční výpočetní techniky (EVT) - Nacházejí svoji inspiraci v přírodních vývojových procesech - Stejně jako přírodní jevy mají silnou náhodnou složku, která nezanedbatelným způsobem ovlivňuje jejich
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
Číslicové zpracování signálů a Fourierova analýza.
Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Využití lineární halogenové žárovky pro demonstrační experimenty
Využití lineární halogenové žárovky pro demonstrační experimenty ZDENĚK BOCHNÍČEK Přírodovědecká fakulta Masarykovy univerzity, Brno Úvod Zařazení optických experimentů do výuky často přináší technické
Odhad stavu matematického modelu křižovatek
Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita
Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany
3 Metoda nejmenších čtverců 3 Metoda nejmenších čtverců Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 73-80. Jedná se o třetí možnou metodu aproximace,
FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth
FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického
Stavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ
ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ (1.1, 1.2 a 1.3) Ing. Pavel VYLEGALA 2014 Rozdělení snímačů Snímače se dají rozdělit podle mnoha hledisek. Základním rozdělení: Snímače
Užití systému Matlab při optimalizaci intenzity tepelného záření na povrchu formy
Užití systému Matlab při optimalizaci intenzity tepelného záření na povrchu formy Radek Srb 1) Jaroslav Mlýnek 2) 1) Fakulta mechatroniky, informatiky a mezioborových studií 2) Fakulta přírodovědně-humanitní
IB109 Návrh a implementace paralelních systémů. Organizace kurzu a úvod. RNDr. Jiří Barnat, Ph.D.
IB109 Návrh a implementace paralelních systémů Organizace kurzu a úvod RNDr. Jiří Barnat, Ph.D. Sekce B109 Návrh a implementace paralelních systémů: Organizace kurzu a úvod str. 2/25 Organizace kurzu Organizace
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_148_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz CO SE SKRÝVÁ V DATECH data sbíráme proto, abychom porozuměli
Číselné charakteristiky a jejich výpočet
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky
0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí
Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox
Matematický ústav UK Matematicko-fyzikální fakulta
Geometrické modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta 2. října 2018 Zbyněk Šír (MÚ UK) - Geometrické modelování 2. října 2018 1 / 15 Obsah dnešní přednášky Co je to geometrické
Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren
Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren Projekt TA ČR č. TA01020457: Výzkum, vývoj a validace univerzální technologie pro potřeby moderních