Systém rizikové analýzy při sta4ckém návrhu podzemního díla. Jan Pruška
|
|
- Františka Zemanová
- před 6 lety
- Počet zobrazení:
Transkript
1 Systém rizikové analýzy při sta4ckém návrhu podzemního díla Jan Pruška
2 Definice spolehlivos. Spolehlivost = schopnost systému (konstrukce) zachovávat požadované vlastnos4 po celou dobu životnos4 = pravděpodobnost, že požadované vlastnos4 budou zachovány (p s ) p s = 1 p f kde p f je pravděpodobnost poruchy.
3 Definování rizika Riziko je pravděpodobnost vzniku nežádoucího jevu během přípravy, realizace a provozování podzemních staveb Riziko H (hazard): H = p f * C f kde C f je průměrná očekávaná hmotná škoda, ke které by došlo při vzniku poruchy.
4 Druhy rizik Rizika technického řešení Rizika geotechnických poměrů zájmového území Rizika výstavby podzemního díla Rizika provozní
5 EN Zásady navrhování konstrukcí EN 1990: Alterna(vně lze použít návrh založený přímo na pravděpodobnostních metodách Stochas4cký návrh je nutné vždy porovnat s výpočtem metodou dílčích koeficientů
6 EN Navrhování geotechnických konstrukcí EN 1997: Charakteris4cké hodnoty geotechnických parametrů Pokud se použijí sta4s4cké metody, charakteris4cká hodnota se má odvodit tak, že vypočtená pravděpodobnost horší hodnoty řídící výskyt uvažovaného mezního stavu není větší než 5%. Pokud se při výběru charakteris4ckých hodnot vlastnos] základové půdy použijí sta4s4cké metody, mají takové metody rozlišovat mezi místním a regionálním odběrem vzorků a mají dovolit uži] apriori znalos] srovnatelných vlastnos] základové půdy
7 Riziko horninového prostředí Hledáme odpověď na otázku: Jaké vstupní parametry mají být použity v matema(cké analýze? Zohlednění variability geologického prostředí spolehlivé stanovení pravděpodobnos4 poruchy přizpůsobení konstrukce akceptovatelné míře rizika
8 Determinis.cký a pravděpodobnostní přístup Determinis4cky formulovaná podmínka spolehlivos4: R N E N Pravděpodobnostní přístup (funkce spolehlivos4): R E 0 kde R (odpor konstrukce = únosnost) a E (vnější za]žení) jsou náhodné veličiny s hustotami pravděpodobnos4 f R (r) a f E (e).
9 Metody řešení spolehlivos. lze rozdělit na dvě základní skupiny: - aproximační metody - simulační metody: Monte Carlo LHS - La4n Hypercube Sampling (Metoda la4nských hyperkrychlí)
10 Výhody LHS Koncept založen na metodě Monte Carlo metoda používající výběru vrstev zachovává mezní rozdělení pravděpodobnos4 pro každou simulovanou proměnnou snižuje počet nutných výpočtů pro dosažení adekvátní přesnos4
11 Výstup LHS La4nský čtyřhran je čtvercová síť popisující pozicí výběrů, kdy je v každé řadě a sloupci pouze jeden vzorek (výběr). La4nská hyperkrychle je zobecnění La4nského čtyřhranu každý vzorek je pouze jeden v jedné řadě (v intervalu jedné osy)
12 Obecný princip LHS Pro proměnné spočteme distribuční funkce, ty normujeme na interval <0,1> a rozdělíme na N nepřekrývajících se intervalů o stejné pravděpodobnos4 (zde N = 5),
13 Obecný princip LHS Z N hodnot získaných pro každý typ simulované náhodné proměnné (jejich počet je K), sestavíme ma4ci N*K a zpětně spočteme skutečné hodnoty (odnormování). N hodnot proměnných je spárováno náhodným způsobem navzájem
14 Obecný princip LHS Princip Sestavení ma4ce - Náhodné permutace
15 Výsledná sada dat
16 Obecný princip LHS Vzorky mohu také normalizovat kde u j a σ j jsou střední hodnota a směrodatná odchylka j- té proměnné
17 LHS mean vs LHS median srovnání metod výběru vzorků
18 Vliv počtu simulací N Střední hodnota Směrodatná odchylka
19 Vliv počtu simulací N Střední hodnota Směrodatná odchylka
20 Zohlednění korelací mezi proměnnými Většina postupů je implementací sta4s4cké korelace formou záměny pořadí vzorků u jednotlivých proměnných a nemění již jejich hodnoty. Metody: Pearsonův lineární korelační koeficientu Spearmanův koeficient pořadové korelace Metoda žíhání
21 Porovnání postupů determinis.cké a stochas.cké analýzy
22 Nevýhody LHS Ob]žnější získávaní naměřených dat a jejich zpracování sta4s4ckým sonwarem QC- Expert, Anthill apod. Nutnost použít algoritmus LHS se zohledněním korelací Více výpočtů řešené úlohy (pro N simulací)
23 Výhody LHS značného snížení počtu simulací opro4 standardní metodě Monte Carlo při zachování vysoké přesnos4 odhadů zachovává pravděpodobnostní rozdělení přiřazené všem simulovaným proměnným zohledňuje korelovanost mezi proměnnými.
24 Závěr Využi] metody LHS pro sta4cké výpočty podzemních staveb může výrazně zpřesnit představu o předpokládaném chování posuzované konstrukce (zejména pak o pravděpodobnos4 výskytu extrémních stavů).
25 Poděkování Tento příspěvek byl zpracován s podporou grantu TAČR TA Pravděpodobnostní hodnocení vstupních parametru horninového masivu a spolehlivostní analýza podzemních konstrukcí s využi]m numerických metod
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.
Téma 4: Stratifikované a pokročilé simulační metody
0.007 0.006 0.005 0.004 0.003 0.002 0.001 Dlouhodobé nahodilé Std Distribution: Gumbel Min. EV I Mean Requested: 140 Obtained: 141 Std Requested: 75.5 Obtained: 73.2-100 0 100 200 300 Mean Std Téma 4:
4. Na obrázku je rozdělovací funkce (hustota pravděpodobnosti) náhodné veličiny X. Jakou hodnotu musí mít parametr k?
A 1. Stanovte pravděpodobnost, že náhodná veličina X nabyde hodnoty menší než 6: P( X 6). Veličina X má rozdělení se střední hodnotou 6 a směrodatnou odchylkou 5: N(6,5). a) 0 b) 1/3 c) ½ 2. Je možné,
Téma 3 Metoda LHS, programový systém Atena-Sara-Freet
Spolehlivost a bezpečnost staveb, 4.ročník bakalářského studia Téma 3 Metoda LHS, programový systém Atena-Sara-Freet Parametrická rozdělení Metoda Latin Hypercube Sampling (LHS) aplikovaná v programu Freet
Cvičení 9. Posudek únosnosti ohýbaného prutu metodou LHS v programu FREET. Software FREET Simulace metodou LHS
Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia obor Konstrukce staveb Cvičení 9 Posudek únosnosti ohýbaného prutu metodou LHS v programu FREET Software FREET Simulace metodou LHS
Cvičení 3. Posudek únosnosti ohýbaného prutu. Software FREET Simulace metodou Monte Carlo Simulace metodou LHS
Spolehlivost a bezpečnost staveb, 4. ročník bakalářského studia (všechny obory) Cvičení 3 Posudek únosnosti ohýbaného prutu Software FREET Simulace metodou Monte Carlo Simulace metodou LHS Katedra stavební
Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí
Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola
Simulace. Simulace dat. Parametry
Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 5 Aproximační techniky 2012 Spolehlivost
Téma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí
Téma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební
Pravděpodobnostní analýzy metodou Latin Hypercube Sampling
1 Pravděpodobnostní analýzy metodou Latin Hypercube Sampling T. Svoboda & M. Hilar. 3G Consulting Engineers, Prague, Czech Republic ABSTRAKT: Metoda Latin Hypercube Sampling je numerická simulační metoda
Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí
Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi
Téma 3: Metoda Monte Carlo
y Náhodná proměnná D Téma 3: Metoda Monte Carlo Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia 1,0 1,00 0,80 0,60 0,40 0,0 0,00 0,00 0,0 0,40 0,60 0,80 1,00
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Stochastické modelování (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
Aktuální trendy v oblasti modelování
Aktuální trendy v oblasti modelování Vladimír Červenka Radomír Pukl Červenka Consulting, Praha 1 Modelování betonové a železobetonové konstrukce - tunelové (definitivní) ostění Metoda konečných prvků,
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 4: FReET úvod
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 4: FReET úvod Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 4 FReET - úvod 2012 Spolehlivost konstrukcí, Drahomír
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
spolehlivosti stavebních nosných konstrukcí
Principy posuzování spolehlivosti stavebních nosných konstrukcí Spolehlivost a bezpečnost staveb 4. ročník bakalářského studia Ing. Martin Krejsa, Ph.D. Katedra stavební mechaniky Fakulta stavební Vysoká
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
Cvičení 2. Vyjádření náhodně proměnných veličin, Posudek spolehlivosti metodou SBRA, Posudek metodou LHS.
Spolehlivost a bezpečnost staveb 4. ročník bakalářského studia Cvičení 2 Vyjádření náhodně proměnných veličin, Posudek spolehlivosti metodou SBRA, Posudek metodou LHS. Zpracování naměřených dat Tvorba
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb
Stanovení nejistot při výpočtu kontaminace zasaženého území
Stanovení nejistot při výpočtu kontaminace zasaženého území Michal Balatka Abstrakt Hodnocení ekologického rizika kontaminovaných území představuje komplexní úlohu, která vyžaduje celou řadu vstupních
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Pokročilé metody geostatistiky v R-projektu
ČVUT V PRAZE, Fakulta stavební, Geoinformatika Pokročilé metody geostatistiky v R-projektu Autoři: Vedoucí projektu: RNDr. Dr. Nosková Jana Studentská grantová soutěž ČVUT 2011 Praha, 2011 Geostatistika
MOŽNOSTI VYUŽITÍ METODY LHS PŘI NUMERICKÉM MODELOVÁNÍ STABILITY TUNELU
IV. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Posudek - poruchy - havárie 173 3.až..3 Dům techniky Ostrava ISBN 8--1551-7 MOŽNOSTI VYUŽITÍ METODY LHS PŘI NUMERICKÉM MODELOVÁNÍ STABILITY
8. Normální rozdělení
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti
2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení
2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků
SPOLEHLIVOSTNÍ ANALÝZA STAVEBNÍCH KONSTRUKCÍ - APLIKACE
IV. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Posudek - poruchy - havárie 163 23.až 24.4.2003 Dům techniky Ostrava ISBN 80-02-01551-7 SPOLEHLIVOSTNÍ ANALÝZA STAVEBNÍCH KONSTRUKCÍ - APLIKACE
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Protokol č. 5. Vytyčovací údaje zkusných ploch
Protokol č. 5 Vytyčovací údaje zkusných ploch Zadání: Ve vybraném porostu bylo prováděno zjišťování zásob za použití reprezentativní metody kruhových zkusných ploch. Na těchto zkusných plochách byl zjišťován
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
Téma 5: Přímý Optimalizovaný Pravděpodobnostní Výpočet POPV
Téma 5: Přímý Optimalizovaný Pravděpodobnostní Výpočet POPV Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola
VYUŽITÍ NAMĚŘENÝCH HODNOT PŘI ŘEŠENÍ ÚLOH PŘÍMÝM DETERMINOVANÝM PRAVDĚPODOBNOSTNÍM VÝPOČTEM
Proceedings of the 6 th International Conference on New Trends in Statics and Dynamics of Buildings October 18-19, 2007 Bratislava, Slovakia Faculty of Civil Engineering STU Bratislava Slovak Society of
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Statistické vyhodnocení zkoušek betonového kompozitu
Statistické vyhodnocení zkoušek betonového kompozitu Thákurova 7, 166 29 Praha 6 Dejvice Česká republika Program přednášek a cvičení Výuka: Středa 10:00-11:40, C -204 Přednášky a cvičení: Statistické vyhodnocení
Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování
Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování doc. Ing. Miloslav Kepka, CSc. ZČU v Plzni, Fakulta strojní, Katedra konstruování strojů
Porovnání dvou výběrů
Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů
Value at Risk. Karolína Maňáková
Value at Risk Karolína Maňáková Value at risk Historická metoda Model-Building přístup Lineární model variance a kovariance Metoda Monte Carlo Stress testing a Back testing Potenciální ztráta s danou pravděpodobností
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
NUMERICKÝ VÝPOČET SPOLEHLIVOSTI OCELOVÉ KONSTRUKCE
UERICKÝ VÝPOČET SPOLEHLIVOSTI OCELOVÉ KOSTRUKCE Doc. Ing. Petr Janas, CSc. a Ing. artin Krejsa, Ph.D. Vysoká škola báňská Technická univerzita Ostrava, Fakulta stavební, Katedra stavební mechaniky, Ludvíka
Simulační modely. Kdy použít simulaci?
Simulační modely Simulace z lat. Simulare (napodobení). Princip simulace spočívá v sestavení modelu reálného systému a provádění opakovaných experimentů s tímto modelem. Simulaci je nutno považovat za
Úvod do problematiky měření
1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Metoda Monte Carlo a její aplikace v problematice oceňování technologií. Manuál k programu
Metoda Monte Carlo a její aplikace v problematice oceňování technologií Manuál k programu This software was created under the state subsidy of the Czech Republic within the research and development project
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Budeme předpokládat, že X a Y jsou kvalitativní náhodné veličiny, obor hodnot X obsahuje r hodnot (kategorií,
Změna hodnoty pozice v důsledku změn tržních cen.
Tržní riziko Změna hodnoty pozice v důsledku změn tržních cen. Akciové riziko Měnové riziko Komoditní riziko Úrokové riziko Odvozená rizika... riz. volatility, riz. korelace Pozice (saldo hodnoty očekávaných
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
LINEÁRNÍ REGRESE. Lineární regresní model
LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)
1 ÚVOD - PRAVDĚPODOBNOST PORUCHY JAKO NÁHODNÁ VELIČINA
Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.23 Petr KONEČNÝ 1 VLIV POČTU PROMĚNNÝCH NA PŘESNOST ODHADU PRAVDĚPODOBNOSTI
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0
VLIV STATISTICKÉ ZÁVISLOSTI NÁHODNÝCH VELIČIN NA SPOLEHLIVOST KONSTRUKCE
IV. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Posudek - poruchy - havárie 25 23.až 24.4.2003 Dům techniky Ostrava ISBN 80-02-055-7 VLIV STATISTICKÉ ZÁVISLOSTI NÁHODNÝCH VELIČIN NA SPOLEHLIVOST
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
VYUŽITÍ STATISTIKY PRO NUMERICKÉ MODELOVÁNÍ PODZEMNÍCH STAVEB USE OF STATISTICS FOR NUMERICAL MODELLING OF UNDERGROUND CONSTRUCTION
Geotechnické problémy líniových stavieb, Bratislava 30.- 31. máj 2011 VYUŽITÍ STATISTIKY PRO NUMERICKÉ MODELOVÁNÍ PODZEMNÍCH STAVEB USE OF STATISTICS FOR NUMERICAL MODELLING OF UNDERGROUND CONSTRUCTION
Mnohorozměrná statistická data
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém
Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
Korelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
Cvičení 8. Posudek spolehlivosti metodou SBRA. Prostý nosník vystavený spojitému zatížení
Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia obor Konstrukce staveb Cvičení 8 Posudek spolehlivosti metodou SBRA Prostý nosník vystavený spojitému zatížení Katedra stavební mechaniky
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
CENY A NÁJEMNÉ RODINNÝCH DOMŮ. ZÁVISLOST CENY A NÁJEMNÉHO m 2 BYTU NA JEHO VELIKOSTI
Regionální disparity v dostupnosti bydlení, jejich socioekonomické důsledky a návrhy opatření na snížení regionálních disparit WD - VÝZKUM PRO ŘEŠENÍ REGIONÁLNÍCH DISPARIT - BYDLENÍ CENY A NÁJEMNÉ RODINNÝCH
SIMULAČNÍ POSUZOVÁNÍ SPOLEHLIVOSTI PŘI KORELOVANÝCH VELIČINÁCH
IV. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Posudek - poruchy - havárie 151 23.až 24.4.2003 Dům techniky Ostrava ISBN 80-02-01551-7 SIMULAČNÍ POSUZOVÁNÍ SPOLEHLIVOSTI PŘI KORELOVANÝCH
1. Přednáška. Ing. Miroslav Šulai, MBA
N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy
Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
Změna hodnoty pozice v důsledku změn tržních cen.
Tržní riziko Změna hodnoty pozice v důsledku změn tržních cen. Akciové riziko Měnové riziko Komoditní riziko Úrokové riziko Odvozená rizika... riz. volatility, riz. korelace Pozice (saldo hodnoty očekávaných
Nové úpravy simulační metody Latin Hypercube Sampling
Nové úpravy simulační metody Latin Hypercube Sampling a možnosti využití Miroslav Vořechovský 1 Abstract A new technique is proposed to improve the performance of Latin hypercube sampling. To reduce error
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření
VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ # Nejistoty měření Přesnost měření Klasický způsob vyjádření přesnosti měření chyba měření: Absolutní chyba X = X M X(S) Relativní chyba δ X = X(M) X(S) - X(M) je naměřená hodnota
Regulační diagramy (RD)
Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 8 Normové předpisy 2012 Spolehlivost konstrukcí,
3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT
PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v
Model pro simulaci staví na výpočtu hrubého domácího produktu výdajovou metodou:
Model vývoje HDP ČR Definice problému Očekávaný vývoj hrubého domácího produktu jakožto základní makroekonomické veličiny ovlivňuje chování tržních subjektů, které v důsledku očekávání modulují své chování
Mnohorozměrná statistická data
Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná
TLOUŠŤKOVÁ A VÝŠKOVÁ STRUKTURA A JEJÍ MODELOVÁNÍ
TLOUŠŤKOVÁ A VÝŠKOVÁ STRUKTURA A JEJÍ MODELOVÁNÍ 1 Vlastnosti tloušťkové struktury porostu tloušťky mají vyšší variabilitu než výšky světlomilné dřeviny mají křivku početností tlouštěk špičatější a s menší
Diskrétní náhodná veličina
Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné
ANALÝZA STABILITY SVAHU POMOCÍ RANDOM FINITE ELEMENT METHOD
ANALÝZA STABILITY SVAHU POMOCÍ RANDOM FINITE ELEMENT METHOD Mgr. Radek Suchomel Univerzita Karlova v Praze Mgr. David Mašín, MPhil., PhD. Univerzita Karlova v Praze Slope stability analysis using random