Plánování: reprezentace problému

Rozměr: px
Začít zobrazení ze stránky:

Download "Plánování: reprezentace problému"

Transkript

1 Plánování: reprezentace problému 15. března Úvod 2 Konceptuální model 3 Množinová reprezentace 4 Klasická reprezentace Zdroj: Roman Barták, přednáška Plánování a rozvrhování, Matematicko-fyzikální fakulta, Karlova univerzita v Praze, http: // kti. ms. mff. cuni. cz/ ~bartak/ planovani

2 Plánování: příklad Plán: zvedni(c) polož_na(c,stůl) zvedni(b) polož_na(b,d) zvedni(c) polož_na(c,b) Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

3 Plánování v kostce Vstup: počáteční (současný) stav světa popis akcí schopných měnit stav světa požadovaný stav světa Výstup: seznam akcí (plán) Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

4 Plánování v kostce Stavové proměnné x {a, b, c}, y {a, b}, z {a, b, c} Počáteční stav {x a, y a, z a} Cílový stav {x c, z b} Akce a.k.a. operátory a 1 : a 2 :... Problém x a, y a x a, z c 3 4 y := b, z := c z := b nalézt posloupnost akcí, které transformují počáteční stav na stav, který je konzistentní s cílovým stavem účelová funkce: součet ceny akcí Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

5 Plánování v kostce: STRIPS plánování Všechny proměnné mají doménu {T, F} V podmínce akce a v cílovém stavu pouze v T Notace a : x T, y T zapsaná jako 5 w := F, y := F, z := T precond(a) = {x, y}, effects + = {z}, effects = {w, y}, cost(a) = 5 Příklad: zvedneme ležící kostku nahoru B precond(lezi-b) = {}, effects + ={nahore-b}, effects = {lezi-b} Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

6 Plánování v kostce: temporální plánování Rozdíly od klasického plánování akce mají dobu trvání řešení nejsou posloupnosti ale rozvrhy akcí akce se mohou překrývat účelová fukce typicky minimalizace makespanu makespan = čas dokončení všech akcí akce mají tři množiny předpokladů at start, over all, at end akce mají dvě množiny důsledků at start, at end Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

7 Plánování v kostce: temporální plánování Stavové proměnné x {a, b, c}, y {a, b}, z {a, b, c} Počáteční stav {x a, y a, z a} Cílový stav {x c, z b} Akce zabírají časový úsek a 1 :... x x at start a, x over all b, y at start at start at end at end := b, x := a, z := c Problém nalézt rozvrh akcí, které transformují počáteční stav na stav, který je konzistentní s cílovým stavem účelová funkce: minimalizace makespanu rozvrhu Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018 a 10

8 Plánování a rozvrhování Plánování (planning) rozhodování, jaké akce jsou potřeba pro dosažení daných cílů téma umělé inteligence složitost často horší než NP-c (obecně nerozhodnutelné) Rozvrhování (scheduling) rozhodování, jak zpracovat dané akce použitím omezených zdrojů a času téma operačního výzkumu složitost typicky NP-c Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

9 Deep Space 1 Start: 24. října 1998 Cíl: Borrelliova kometa Testování 12 nových technologií autonomní vzdálený agent plánuje, provádí a monitoruje akce kosmické lodi na základě obecných příkazů operátora tři zkušební scénáře 12 hodin nízké autonomie (provádění a monitorování) 6 dní vysoké autonomie (snímání kamerou, simulace poruch) 2 dny vysoké autonomie (udržení směru) pozor na backtracking! pozor na deadlock v plánu! Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

10 Plánování: obsah Klasické plánování Konceptuální model Reprezentace problému Plánovací algoritmy plánování se stavovým prostorem plánování s prostorem plánů Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

11 Formalizace: konceptuální model Plánování se zabývá volbou a organizací akcí, které mění stav systému Systém Σ modelující stavy a přechody: množina stavů S (rekurzivně spočetná) množina akcí A (rekurzivně spočetná) plánovač kontroluje akce! no-op (prázná akce) množina událostí E (rekurzivě spočetná) událost mimo kontrolu plánovače! neutrální událost ε přechodová funkce γ : S A E P(S) někdy se akce a události aplikují odděleně γ : S (A E) P(S) Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

12 Cíle plánování Cílem plánování je zjistit, jaké akce a na které stavy se mají aplikovat, abychom za dané situace dosáhli požadovaných cílů. Co je cílem plánování? cílový stav nebo množina cílových stavů splnění dané podmínky nad posloupností stavů, přes které systém prochází např. stavy, kterým se vyhnout, nebo stavy, které se musí navštívit optimalizace dané objektivní funkce nad posloupností stavů např. maximum nebo součet ohodnocení stavů Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

13 Příklad Σ = (S, A, E, γ) S = {s 0,..., s 5 } E = {} resp. {ε} A = {move1, move2, put, take, load, unload} γ: obrázek počáteční stav: s 0 cíl: s 5 Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

14 Předpoklady: zjednodušení modelu Systém je konečný Systém je plně pozorovatelný máme úplné informace o stavu systému Systém je deterministický s S u (A E) : γ(s, u) 1 Systém je statický množina událostí je prázdná, E = Cíle jsou omezené cílem je dosažení některého stavu z množiny cílových stavů Plány jsou sekvenční plánem je úplně uspořádaná posloupnost akcí Čas je implicitní akce i události jsou instantní (okamžité, tj. nemají žádné trvání) Plánujeme offline stav systému se nemění v průběhu plánování Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

15 Klasické plánování (STRIPS plánování) Pracujeme s deterministickým, statickým, konečným a plně pozorovatelným stavovým modelem s omezenými cíli a implicitním časem Σ = (S, A, γ). Plánovací problém P = (Σ, s 0, g): s 0 je počáteční stav g charakterizuje cílové stavy Řešením plánovacího problému P je posloupnost akcí a 1, a 2,..., a k odpovídající posloupnosti stavů s 0, s 1,..., s k takové, že 1 s i = γ(s i 1, a i ), 2 s k splňuje g Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

16 Zjednodušení? Plánování ve zjednodušeném modelu je pouhé hledání cesty v grafu. Je to opravdu tak jednoduché? 5 míst, 3 hromady na každém místě, 100 kontejnerů, 3 roboti stavů, tj krát více než jsou největší odhady počtu částic ve vesmíru Co tedy potřebujeme? Jak tedy reprezentovat stavy a akce tak, aby nebylo třeba vyjmenovat množiny A a S? nemůžeme přímo pracovat s stavy... Jak efektivně hledat řešení plánovacího problému? Jak najít cestu v grafu s uzly? Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

17 Klasické plánování: množinová reprezentace Stav systému je popsán množinou výroků např. {onground, at2} Každá akce je syntaktický výraz specifikující: jaké výroky musí patřit do stavu, aby na něj byla akce aplikovatelná např. take: {onground} jaké výroky akce přidá nebo smaže, aby vytvořila nový stav např. take: {onground}, {holding} + Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

18 Množinová reprezentace: plánovací doména Nechť L = {p 1,..., p n } je konečná množina výrokových symbolů (jazyk). Plánovací doména Σ nad L je trojice (S, A, γ): S P(L), tj. stav s je podmnožina L popisující, jaké výroky platí pokud p s, potom p ve stavu s platí pokud p s, potom p ve stavu s neplatí Akce a A je trojice podmnožin L a = (precond(a), effects (a), effects + (a)) effects (a) effects + (a) = akce a je použitelná na stav s, pokud precond(a) s Přechodová funkce γ: γ(s, a) = (s effects (a)) effects + (a), je-li a použitelná na s Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

19 Množinová reprezentace: plánovací problém Plánovací problém P je trojice (Σ, s 0, g): Σ = (S, A, γ) je plánovací doména nad L s 0 je počáteční stav, s 0 S g L je množina cílových výroků S g = {s S g s} je množina cílových stavů Plán π je posloupnost akcí a 1, a 2,..., a k délka plánu π je k = π stav produkovaný plánem π (zobecnění funkce γ) γ(s, π) = s, je-li k = 0 (plán π je prázdný) γ(s, π) = γ(γ(s, a 1 ), a 2,..., a k ), je-li k > 0 a a 1 je použitelná na s γ(s, π) nedefinováno v ostatních případech Plán π je řešením P právě když g γ(s 0, π) redundantní řešení: obsahuje vlastní podposloupnost, která je také řešením P minimální řešení: neexistuje řešení P s kratší délkou Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

20 Množinová reprezentace: příklad L = {onground, onrobot, holding, at1, at2} s 0 = {onground, at2} g = {onrobot} load = ( {holding, at1}, {holding}, {onrobot}) take, move1, load, move2 je plán, ale není minimální (není nutné move2, v g není podmínka na location) Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

21 Množinová reprezentace: vlastnosti Srozumitelnost přehlednější než výčet stavů Kolik stavů pro n kontejnerů? Výpočty přechodová funkce se snadno realizuje pomocí množinových operací pokud precond(a) s, potom γ(s, a) = (s effects (a)) effects + (a) Expresivita některé množiny výroků neodpovídají žádnému stavu např. {holding, onrobot, at} některé stavové prostory stejně mají obrovskou množinovou reprezentaci Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

22 Klasická reprezentace Klasická reprezentace zobecňuje množinovou reprezentaci směrem k predikátové logice: Přesněji: stavy jsou množiny logických atomů, které jsou v dané interpretaci buď pravda nebo nepravda akce jsou reprezentovány plánovacími operátory, které mění pravdivostní hodnotu těchto atomů L (jazyk) je konečná množina predikátových symbolů a konstant (nemáme funkce!) atom je predikátový symbol s argumenty např. on(c3, c1) můžeme používat proměnné např. on(x,y) Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

23 Klasická reprezentace: reprezentace stavů Stav je množina instanciovaných atomů (bez proměnných). Opět jich je konečně mnoho! Pravdivostní hodnota některých atomů se mění flexibilní atomy (fluent) např. at(r1,loc2) Některé atomy nemění svoji pravdivostní hodnotu s různými stavy neměnné atomy (rigid) např. adjacent(loc1,loc2) Předpoklad uzavřeného světa (closed world assuption): atom, který není ve stavu explicitně uveden, neplatí! Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

24 Klasická reprezentace: plánovací operátory Operátor o je trojice: (name(o), precond(o), effects(o)) name(o): jméno operátoru ve tvaru n(x 1,..., x k ) n: symbol operátoru (jednoznačný pro každý operátor) x 1,..., x k : symboly proměnných (parametry operátoru) musí obsahovat všechny symboly proměnných v operátoru! precond(o): předpoklady literály, které musí být splnitelné, aby šlo operátor použít effects(o): důsledky literály, které se stanou pravdivými aplikací operátoru nesmí být něměnné atomy! Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

25 Klasická reprezentace: akce Akce jsou plně instanciované operátory za proměnné jsou dosazeny konstanty Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

26 Klasická reprezentace: aplikace akce Notace: S + = {pozitivní atomy v S} S = {atomy, jejichž negace je v S} Akce a je použitelná na stav s právě když precond + (a) s precond (a) s = Výsledkem aplikace akce a na s je γ(s, a) = (s effects (a)) effects + (a) Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

27 Klasická reprezentace: plánovací doména Nechť L je jazyk a O je množina operátorů. Plánovací doména Σ nad jazykem L a s operátory O je trojice (S, A, γ): stavy S P({všechny instanciované atomy nad L}) akce A = {všechny instanciované operátory z O nad L} akce a je použitelná na stav s, pokud precond + (a) s precond (a) s = přechodová funkce γ: γ(s, a) = (s effects (a)) effects + (a), je-li a použitelná na s S je uzavřená vzhledem ke γ pokud s S, potom pro každou akci a aplikovatelnou na s platí γ(s, a) S Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

28 Klasická reprezentace: plánovací problém Plánovací problém P je trojice (Σ, s 0, g): Σ = (S, A, γ) je plánovací doména s 0 je počáteční stav, s 0 S g L je množina instanciovaných literálů stav s splňuje g právě tehdy, když g + s g s = S g = {s S s splňuje g} je množina cílových stavů Zápis plánovacího problému je trojice (O, s 0, g) Plán π je posloupnost akcí a 1, a 2,..., a k Plán π je řešením P, právě když γ(s 0, π) splňuje g Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

29 Klasická reprezentace: ukázka plánu Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

30 Srovnání reprezentací Vyjadřovací síla obou reprezentací je stejná (co lze reprezentovat množinově, lze i klasicky a naopak) Při převodu z klasické na množinovou reprezentaci ale může dojít k exponenciálnímu nárůstu velikosti. Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

31 Domácí úkol (nebodovaný) Navrhněte množinovou a klasickou reprezentaci pro svět kostek. Svět kostek (the blocks world) nekonečně velký stůl, konečný počet kostek poloha kostky na stole nás nezajímá kostka může ležet buď na stole nebo na jiné kostce při plánování chceme přesouvat kostky tak, že v dané chvíli můžeme držet maximálně jednu kostku Příklad: Hana Rudová, FI MU IV126: Plánování: reprezentace problému března 2018

Plánováníá a rozvrhování

Plánováníá a rozvrhování Plánováníá a rozvrhování Roman Barták, KTIML roman.bartak@mff.cuni.cz cz http://ktiml.mff.cuni.cz/~bartak Co nás čeká? Plánování, konečně! Klasické plánování Konceptuální model Reprezentace problému Plánovací

Více

Plánování se stavovým prostorem

Plánování se stavovým prostorem Plánování se stavovým prostorem 22. března 2018 1 Opakování: plánovací problém a reprezentace 2 Dopředné plánování 3 Zpětné plánování 4 Doménově závislé plánování Zdroj: Roman Barták, přednáška Plánování

Více

Plánování v prostoru plánů

Plánování v prostoru plánů Plánování v prostoru plánů 5. dubna 2018 Zdroj: Roman Barták, přednáška Umělá inteligence II, Matematicko-fyzikální fakulta, Karlova univerzita v Praze, 2014. http: // kti. ms. mff. cuni. cz/ ~bartak/

Více

Plánováníá a rozvrhování

Plánováníá a rozvrhování Plánováníá a rozvrhování Roman Barták, KTIML roman.bartak@mff.cuni.cz cz http://ktiml.mff.cuni.cz/~bartak Na úvod Dosud prezentované plánovací systémy používaly adhoc algoritmy, tj. speciální plánovací

Více

Úvod do rozvrhování. 21. února Příklady. 2 Terminologie. 3 Klasifikace rozvrhovacích problémů. 4 Složitost.

Úvod do rozvrhování. 21. února Příklady. 2 Terminologie. 3 Klasifikace rozvrhovacích problémů. 4 Složitost. Úvod do rozvrhování 21. února 2019 1 Příklady 2 Terminologie 3 Klasifikace rozvrhovacích problémů 4 Složitost 5 Reálné problémy Hana Rudová, FI MU: Úvod do rozvrhování 2 21. února 2019 Definice pojmu rozvrhování

Více

Základy umělé inteligence

Základy umělé inteligence Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 11 METODY VERIFIKACE SYSTÉMŮ NA ČIPU Hana Kubátov vá doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta 1 informačních

Více

Úvod do rozvrhování. 20. února Příklady a reálné problémy. 2 Terminologie. 3 Klasifikace rozvrhovacích problémů.

Úvod do rozvrhování. 20. února Příklady a reálné problémy. 2 Terminologie. 3 Klasifikace rozvrhovacích problémů. Úvod do rozvrhování 20. února 2018 1 Příklady a reálné problémy 2 Terminologie 3 Klasifikace rozvrhovacích problémů 4 Složitost Hana Rudová, FI MU: Úvod do rozvrhování 2 20. února 2018 Definice pojmu rozvrhování

Více

Výroková a predikátová logika - V

Výroková a predikátová logika - V Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

LOGICKÉ OBVODY 2 kombinační obvody, minimalizace

LOGICKÉ OBVODY 2 kombinační obvody, minimalizace LOGICKÉ OBVODY 2 kombinační obvody, minimalizace logické obvody kombinační logické funkce a jejich reprezentace formy popisu tabulka, n-rozměrné krychle algebraický zápis mapy 9..28 Logické obvody - 2

Více

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

10. Techniky formální verifikace a validace

10. Techniky formální verifikace a validace Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou

Více

Třídy složitosti P a NP, NP-úplnost

Třídy složitosti P a NP, NP-úplnost Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není

Více

Obsah. 16. dubna Koncepční model STRIPS PDDL. Stavový prostor. Plánovací grafy CVUT FEL, K Reprezentace

Obsah. 16. dubna Koncepční model STRIPS PDDL. Stavový prostor. Plánovací grafy CVUT FEL, K Reprezentace Klasické plánování Radek Mařík CVUT FEL, K13133 16. dubna 24 Radek Mařík (marikr@felk.cvut.cz) Klasické plánování 16. dubna 24 1 / 77 Obsah 1 Pojem plánování Definice Koncepční model Typologie plánovačů

Více

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška: Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní

Více

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA

3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Plánování úloh na jednom stroji

Plánování úloh na jednom stroji Plánování úloh na jednom stroji 15. dubna 2015 1 Úvod 2 Řídící pravidla 3 Metoda větví a mezí 4 Paprskové prohledávání Jeden stroj a paralelní stroj Dekompoziční problémy pro složité (flexible) job shop

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky

Více

Y36SAP Y36SAP-2. Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka Kubátová Y36SAP-Logické obvody 1.

Y36SAP Y36SAP-2. Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka Kubátová Y36SAP-Logické obvody 1. Y36SAP 26.2.27 Y36SAP-2 Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka 27-Kubátová Y36SAP-Logické obvody Logický obvod Vstupy a výstupy nabývají pouze hodnot nebo Kombinační obvod popsán

Více

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1 Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit

Více

Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet.

Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet. Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Dnešní program Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu

Více

Seminář z umělé inteligence. Otakar Trunda

Seminář z umělé inteligence. Otakar Trunda Seminář z umělé inteligence Otakar Trunda Plánování Vstup: Satisficing task: počáteční stav, cílové stavy, přípustné akce Optimization task: počáteční stav, cílové stavy, přípustné akce, ceny akcí Výstup:

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková

Více

4. NP-úplné (NPC) a NP-těžké (NPH) problémy

4. NP-úplné (NPC) a NP-těžké (NPH) problémy Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA 4. NP-úplné (NPC) a NP-těžké (NPH) problémy Karpova redukce

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Prolog PROgramming in LOGic část predikátové logiky prvního řádu rozvoj začíná po roce 1970 Robert Kowalski teoretické základy Alain Colmerauer, David

Prolog PROgramming in LOGic část predikátové logiky prvního řádu rozvoj začíná po roce 1970 Robert Kowalski teoretické základy Alain Colmerauer, David Úvod do Prologu Prolog PROgramming in LOGic část predikátové logiky prvního řádu rozvoj začíná po roce 1970 Robert Kowalski teoretické základy Alain Colmerauer, David Warren (Warren Abstract Machine) implementace

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky

Více

Rezoluce ve výrokové logice

Rezoluce ve výrokové logice Rezoluce ve výrokové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce ve VL 1/13 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. 2 X nesplnitelná iff X = ff. 3 Hledání kritických důsledků X syntakticky.

Více

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka Metody tvorby ontologií a sémantický web Martin Malčík, Rostislav Miarka Obsah Reprezentace znalostí Ontologie a sémantický web Tvorba ontologií Hierarchie znalostí (D.R.Tobin) Data jakékoliv znakové řetězce

Více

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky

Více

Plánování projektu. 3. dubna Úvod. 2 Reprezentace projektu. 3 Neomezené zdroje. 4 Variabilní doba trvání. 5 Přidání pracovní síly

Plánování projektu. 3. dubna Úvod. 2 Reprezentace projektu. 3 Neomezené zdroje. 4 Variabilní doba trvání. 5 Přidání pracovní síly Plánování proektu 3. dubna 2018 1 Úvod 2 Reprezentace proektu 3 Neomezené zdroe 4 Variabilní doba trvání 5 Přidání pracovní síly Problémy plánování proektu Zprostředkování, instalace a testování rozsáhlého

Více

Logika. 6. Axiomatický systém výrokové logiky

Logika. 6. Axiomatický systém výrokové logiky Logika 6. Axiomatický systém výrokové logiky RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,

Více

Logika a logické programování

Logika a logické programování Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho

Více

Výroková a predikátová logika - IV

Výroková a predikátová logika - IV Výroková a predikátová logika - IV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IV ZS 2018/2019 1 / 17 Tablo metoda Tablo Tablo - příklady F (((p q)

Více

Znalosti budeme nejčastěji vyjadřovat v predikátové logice prvního řádu. Metody:

Znalosti budeme nejčastěji vyjadřovat v predikátové logice prvního řádu. Metody: Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Znalosti v učení Umíme se učit funkce vstup výstup. Jedinou dodatečnou znalost, kterou jsme využili, byl

Více

a4b33zui Základy umělé inteligence

a4b33zui Základy umělé inteligence LS 2011 Jméno: a4b33zui Základy umělé inteligence 10.6.2011 O1 O2 O3 O4 O5 Total (50) Instrukce: Na vypracování máte 90 min, můžete použít vlastní materiály nebo poznámky. Použití počítače nebo mobilního

Více

Okruh č.3: Sémantický výklad predikátové logiky

Okruh č.3: Sémantický výklad predikátové logiky Okruh č.3: Sémantický výklad predikátové logiky Predikátová logika 1.řádu formalizuje úsudky o vlastnostech předmětů a vztazích mezi předměty pevně dané předmětné oblasti (univerza). Nebudeme se zabývat

Více

Teorie rozhodování (decision theory)

Teorie rozhodování (decision theory) Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Teorie pravděpodobnosti (probability theory) popisuje v co má agent věřit na základě pozorování. Teorie

Více

Plánováníá a rozvrhování. časem

Plánováníá a rozvrhování.   časem Plánováníá a rozvrhování Roman Barták, KTIML roman.bartak@mff.cuni.cz cz http://ktiml.mff.cuni.cz/~bartak Plánování á s časem Přístupy Plánování s časovými ý operátory Při popisu akce říkáme, kdy mají

Více

Logické operace. Datový typ bool. Relační operátory. Logické operátory. IAJCE Přednáška č. 3. může nabýt hodnot: o true o false

Logické operace. Datový typ bool. Relační operátory. Logické operátory. IAJCE Přednáška č. 3. může nabýt hodnot: o true o false Logické operace Datový typ bool může nabýt hodnot: o true o false Relační operátory pravda, 1, nepravda, 0, hodnoty všech primitivních datových typů (int, double ) jsou uspořádané lze je porovnávat binární

Více

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie. Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní

Více

Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek

Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek Otázka 06 - Y01MLO Zadání Predikátová logika, formule predikátové logiky, sentence, interpretace jazyka predikátové logiky, splnitelné sentence, tautologie, kontradikce, tautologicky ekvivalentní formule.

Více

Predikátová logika. prvního řádu

Predikátová logika. prvního řádu Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)

Více

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz

Více

Výroková logika - opakování

Výroková logika - opakování - opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α

Více

Metody návrhu algoritmů, příklady. IB111 Programování a algoritmizace

Metody návrhu algoritmů, příklady. IB111 Programování a algoritmizace Metody návrhu algoritmů, příklady IB111 Programování a algoritmizace 2011 Návrhu algoritmů vybrané metody: hladové algoritmy dynamické programování rekurze hrubá síla tato přednáška: především ilustrativní

Více

Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky

Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky Matematická logika Lekce 1: Motivace a seznámení s klasickou výrokovou logikou Petr Cintula Ústav informatiky Akademie věd České republiky www.cs.cas.cz/cintula/mal Petr Cintula (ÚI AV ČR) Matematická

Více

Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů

Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému

Více

Umělá inteligence I. Roman Barták, KTIML. roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak

Umělá inteligence I. Roman Barták, KTIML. roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Na úvod Agent s reflexy pouze převádí současný vjem na jednu akci. Agent s cílem umí plánovat několik akcí

Více

Intervalová data a výpočet některých statistik

Intervalová data a výpočet některých statistik Intervalová data a výpočet některých statistik Milan Hladík 1 Michal Černý 2 1 Katedra aplikované matematiky Matematicko-fyzikální fakulta Univerzita Karlova 2 Katedra ekonometrie Fakulta informatiky a

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 1. přednáška 22.9.2016 Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 19 Organizační pokyny přednášející:

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: X01DML 15. října 2010: Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná

Více

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává. 1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

Více

Výroková a predikátová logika - XIII

Výroková a predikátová logika - XIII Výroková a predikátová logika - XIII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XIII ZS 2013/2014 1 / 13 Úvod Algoritmická (ne)rozhodnutelnost Které

Více

Aplikace: Znalostní báze

Aplikace: Znalostní báze Aplikace: Znalostní báze 1 Znalostní báze je systém, který dostává fakta o prostředí a dotazy o něm. Znalostní báze je agentem ve větším systému, který obsahuje prostředí (také agent), správce (agent),

Více

NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

Výroková logika. Teoretická informatika Tomáš Foltýnek

Výroková logika. Teoretická informatika Tomáš Foltýnek Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná iff X =

Více

platné nejsou Sokrates je smrtelný. (r) 1/??

platné nejsou Sokrates je smrtelný. (r) 1/?? Predikátová logika plně přejímá výsledky výrokové logiky zabývá se navíc strukturou jednotlivých jednoduchých výroků na základě této analýzy lze odvodit platnost některých výroků, které ve výrokové logice

Více

Výroková a predikátová logika - VI

Výroková a predikátová logika - VI Výroková a predikátová logika - VI Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VI ZS 2017/2018 1 / 24 Predikátová logika Úvod Predikátová logika Zabývá

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

Dijkstrův algoritmus

Dijkstrův algoritmus Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Třída PTIME a třída NPTIME. NP-úplnost.

Třída PTIME a třída NPTIME. NP-úplnost. VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní

Více

Výroková logika. Sémantika výrokové logiky

Výroková logika. Sémantika výrokové logiky Výroková logika Výroková logika se zabývá vztahy mezi dále neanalyzovanými elementárními výroky. Nezabývá se smyslem těchto elementárních výroků, zkoumá pouze vztahy mezi nimi. Elementární výrok je takový

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento

Více

Zada ní 1. Semina rní pra ce z pr edme tu Matematický software (KI/MSW)

Zada ní 1. Semina rní pra ce z pr edme tu Matematický software (KI/MSW) Zada ní. Semina rní pra ce z pr edme tu Matematický software (KI/MSW) Datum zadání: 5.. 06 Podmínky vypracování: - Seminární práce se skládá z programové části (kódy v Matlabu) a textové části (protokol

Více

Dynamické programování

Dynamické programování Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)

Více

brmiversity: Um lá inteligence a teoretická informatika

brmiversity: Um lá inteligence a teoretická informatika brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 14 Petr Baudi² pasky@ucw.cz brmlab 2011 Outline 1 Um lá inteligence 2 Datové struktury 3 Vy íslitelnost Automatické plánování Projek ní

Více

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Jednoduché úsudky, kde VL nestačí Všechny opice mají rády banány Judy je opice Judy má ráda banány Z hlediska VL

Více

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model Databázové systémy Tomáš Skopal - relační model * relační kalkuly Osnova přednášky relační kalkuly doménový n-ticový Relační kalkuly využití aparátu predikátové logiky 1. řádu pro dotazování rozšíření

Více

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T. BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné

Více

u odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming

u odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming Průběžná písemná práce Průběžná písemná práce Obsah: Průběžná písemná práce Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ délka pro vypracování: 25 minut nejsou povoleny žádné materiály

Více

Informační systémy plánování výroby - pokročilé rozvrhování

Informační systémy plánování výroby - pokročilé rozvrhování Tento materiál vznikl jako součást projektu EduCom, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Informační systémy plánování výroby - pokročilé rozvrhování Technická univerzita

Více

Modely Herbrandovské interpretace

Modely Herbrandovské interpretace Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší

Více

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod

Více

Základní pojmy matematické logiky

Základní pojmy matematické logiky KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je

Více

Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla

Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla Ramseyovy věty Martin Mareš Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla na mé letošní přednášce z Kombinatoriky a grafů I Předpokládá, že čtenář se již seznámil se základní

Více

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška první Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

Prohledávání do šířky = algoritmus vlny

Prohledávání do šířky = algoritmus vlny Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé

Více

Výroková logika syntaxe a sémantika

Výroková logika syntaxe a sémantika syntaxe a sémantika Jiří Velebil: AD0B01LGR 2015 Handout 01: & sémantika VL 1/16 1 Proč formální jazyk? 1 Přirozené jazyky jsou složité a často nejednoznačné. 2 Komunikace s formálními nástroji musí být

Více

Cvičení ke kursu Vyčíslitelnost

Cvičení ke kursu Vyčíslitelnost Cvičení ke kursu Vyčíslitelnost (23. prosince 2017) 1. Odvoďte funkci [x, y, z] x y z ze základních funkcí pomocí operace. 2. Dokažte, že relace nesoudělnosti je 0. Dokažte, že grafy funkcí Mod a Div jsou

Více

Sekvenční logické obvody

Sekvenční logické obvody Sekvenční logické obvody Sekvenční logické obvody - úvod Sledujme chování jednoduchého logického obvodu se zpětnou vazbou Sekvenční obvody - paměťové členy, klopné obvody flip-flop Asynchronní klopné obvody

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,

Více

Co je obsahem? O čem bude přednáška? plánování a rozvrhování. ono se to někde používá? aplikace? řešící algoritmy.

Co je obsahem? O čem bude přednáška? plánování a rozvrhování. ono se to někde používá? aplikace? řešící algoritmy. Plánováníá a rozvrhování Roman Barták, KTIML roman.bartak@mff.cuni.cz cz http://ktiml.mff.cuni.cz/~bartak Co je obsahem? plánování a rozvrhování ale co to vlastně je plánování a rozvrhování? Přednáška

Více

Turingovy stroje. Teoretická informatika Tomáš Foltýnek

Turingovy stroje. Teoretická informatika Tomáš Foltýnek Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,

Více

LOGIKA VÝROKOVÁ LOGIKA

LOGIKA VÝROKOVÁ LOGIKA LOGIKA Popisuje pravidla odvozování jedněch tvrzení z druhých. Je to myšlenková cesta ke správným závěrům. Vznikla jako součást filosofie. Zakladatelem byl Aristoteles. VÝROKOVÁ LOGIKA Obsahuje syntaktická,

Více