(3) Zvolíme pevné z a sledujme dráhu, kterou opisuje s postupujícím časem koncový bod vektoru E v rovině z = konst. Upravíme vztahy (2) a (3)
|
|
- Natálie Žáková
- před 9 lety
- Počet zobrazení:
Transkript
1 Učební tet k přednášce UFY1 Předpokládejme šíření rovinné harmonické vln v kladném směru os z. = i + j kde i, j jsou jednotkové vektor ve směru os respektive a cos ( ) ω ϕ t kz = + () = cos( ωt kz+ ϕ ) (3) (1) Zvolíme pevné z a sledujme dráhu, kterou opisuje s postupujícím časem koncový bod vektoru v rovině z = konst. Upravíme vztah () a (3) ( ωt kz ϕ ) ( ωt kz) ϕ ( ωt kz) = cos + = cos cos sin sinϕ () ( ωt kz ϕ ) ( ωt kz) ϕ ( ωt kz) = cos + = cos cos sin sinϕ (5) Vztah () a (5) vnásobíme sinϕ respektive sinϕ a sečteme je sinϕ sin cos( ) sin ( ) ϕ ωt kz ϕ a ještě je vnásobíme cosϕ respektive = ϕ (6) cosϕ a sečteme cosϕ cos sin ( ) sin ( ) ϕ ωt kz ϕ Rovnice (6) a (7) umocníme a sečteme = ϕ (7) + = cos( ϕ ϕ) sin ( ϕ ϕ) Rovnice (8) je rovnicí elips s azimutem α daným vztahem cos tg α = ( ϕ ϕ ) (8) V obecném případě je ted rovinná harmonická vlna (1) eliptick polarizovaná (obr. 1) koncový bod vektoru opisuje v rovině z = konst. elipsu. Smsl otáčení z rovnice (8) nezjistíme, protože jsme při jejím odvozování vloučili závislost na času. Tvar elips závisí na, a ϕ ϕ. (9) 1
2 Učební tet k přednášce UFY1 α Obr. 1. liptick polarizované světlo. 1. případ ϕ ϕ = -ová a -ová složka jsou ted ve fázi ( ) = ( ) cos ϕ ϕ 1, sin ϕ ϕ = Rovnice (8) se v tomto případě redukuje na tvar + = = (1) což je rovnice přímk. Světlo je v tomto případě lineárně polarizované s azimutem α = arctg (11) tj. koncový bod vektoru (obr. ). opisuje v rovině z = konst. úsečku svírající s osou úhel α α Obr.. Lineárně polarizované světlo pro, ve fázi (červeně) a v protifázi (modře).. případ ϕ ϕ = -ová a -ová složka jsou ted v protifázi cos( ϕ ϕ) = 1, ( ϕ ϕ) sin =
3 Učební tet k přednášce UFY1 Rovnice (8) se v tomto případě redukuje na tvar + + = = (1) I v tomto případě je světlo lineárně polarizované (obr. ). 3. případ ϕ ϕ = -ová a -ová složka jsou fázově posunut o cos( ϕ ϕ) =, ( ϕ ϕ) Rovnice (8) se v tomto případě redukuje na tvar sin = 1 + = 1 což je rovnice elips s hlavní a vedlejší poloosou ležící ve směru souřadných os a. (13) Světlo je eliptick polarizované s azimutem (s hlavní poloosou v ose poloosou v ose ) ) nebo 9 (s hlavní Obr. 3. liptick polarizované světlo pro fázově posunut o.,. případ ϕ ϕ = -ová a -ová složka jsou fázově posunut o a navíc = = Rovnice (8) se v tomto případě redukuje na tvar + = (1) což je rovnice kružnice. Vektor má v tomto případě konstantní amplitudu a rotuje v daném bodu prostoru s úhlovou frekvencí ω. Světlo je v tomto případě kruhově (cirkulárně) polarizované 3
4 Učební tet k přednášce UFY1 Abchom mohli rozhodnout o smslu oběhu, definujme Δ= ϕ ϕ ϕ ϕ = Δ Označme ϕ = ωt kz+ ϕ Potom = cos ϕ = cos( ϕ Δ) Δ < Δ = Δ > Obr.. Závislost ( ) fáze ϕ cos ϕ Δ na ϕ pro Δ= (modrá křivka), Δ = (černá) a Δ= (červená). Je-li Δ>, potom předbíhá (nebo se zpožďuje za ) o Δ (obr. ). Koncový bod se otáčí proti směru hodinových ručiček (obr. 5). Takovou polarizaci označujeme za levotočivou. 3 Obr. 5. Levotočivé kruhově polarizované světlo ( ) Δ=. Vektor v daném bodě s rostoucím časem rotuje proti směru hodinových ručiček.
5 Učební tet k přednášce UFY1 směr šíření 3 7 kz = 5 3 z směr rotace Obr. 6. Průběh vektoru v daném čase t pro levotočivě kruhově polarizované světlo. Je-li Δ<, potom předbíhá o Δ (obr. ). Koncový bod se otáčí ve směru hodinových ručiček (obr. 7). Takovou polarizaci označujeme za pravotočivou. 3 Obr. 7. Pravotočivé kruhově polarizované světlo ( Δ= ) hodinových ručiček.. Vektor s rostoucím t rotuje ve směru V komplení reprezentaci můžeme vlnu (1) vjádřit takto i t kz = + e ω ) kde a ( ( ) jsou komplení amplitud (15) 5
6 Učební tet k přednášce UFY1 = i e ϕ = i i je ϕ Potom i i ( ) i( = e i + j e e ϕ ϕ ϕ ωt kz) což je komplení reprezentace eliptick polarizované vln šířící v kladném směru os z. Lineárně polarizovaná vlna bude mít tvar = e i ± j e iϕ ( ω ) i t kz a kruhově polarizovaná vlna bude mít tvar i i t kz = e i ϕ ± i. j e ω ( ) ( ) kde znaménko + platí pro pravotočivě kruhově polarizovanou vlnu a znaménko pro levotočivě kruhově polarizovanou vlnu. Komplení amplitudu lze napsat i ve tvaru tzv. Jonesova vektoru iϕ e = (18) iϕ e Od obecného tvaru Jonesova vektoru (18) lze přejít k normalizovanému tvaru s užitím normalizační podmínk C * = 1 (19) V normalizovaném tvaru nabývají Jonesov vektor pro základní polarizační stav světelné vln jednoduchého tvaru (tab. 1). Z tabulk 1 je zřejmé, že eistují ortogonální polarizační stav (popsané vzájemně ortogonálními Jonesovými vektor dva komplení vektor A a B jsou ortogonální, pokud AB. * = ), takovou dvojici představuje např. horizontálně a vertikálně lineárně polarizované záření, nebo pravo- a levotočivě kruhově polarizované záření. Libovolný polarizační stav může být popsán pomocí lineární kombinace vektorů tvořících ortonormální soubor. Například horizontálně lineárně polarizované záření lze získat jako součet pravo- a levotočivě kruhově polarizovaného záření stejné intenzit = + = = i i rcp lcp h (16) (17) 6
7 Učební tet k přednášce UFY1 Vlastnosti polarizačních prvků můžeme popsat pomocí tzv. Jonesov matice. V Jonesově počtu potom působení polarizačních prvků na světelnou vlnu odpovídá násobení matic. Jako příklad můžeme uvést působení lineárního polarizátoru propouštějícího horizontálně polarizované záření na pravotočivě kruhově polarizovanou vlnu = kde 1 i je Jonesova matice pro lineární horizontální polarizátor. Výsledkem ted je horizontálně lineárně polarizovaná vlna. polarizační stav Jonesův vektor Stokesův vektor grafický smbol lineární polarizace (horizontální) lineární polarizace (vertikální) lineární polarizace svírající 5 o s osou obecná lineární polarizace s azimutem α pravotočivá kruhová polarizace (rcp) levotočivá kruhová polarizace (lcp) obecná eliptická polazizace cosα ± sinα 1 1 i 1 1 i cosα i sin α. e Δ Tab. 1. Jonesov a Stokesov vektor pro některé polarizační stav. 7
8 Učební tet k přednášce UFY1 Jonesův vektor (a ted i Jonesův počet) lze použít pouze pro popis plně polarizovaného záření. V prai se však často setkáváme se zářením částečně polarizovaným či nepolarizovaným. V tomto případě se zavádí pro popis polarizačního stavu záření Stokesův vektor S definovaný takto I Q S = () U V kde I celková intenzita = + (1a) Q= I I = (1b) 9 U = I I = cosδ (kde Δ = ϕ ϕ ) (1c) 5 5 V = I I = sinδ (1d) rcp lcp Povšimněte si, že zatímco komponent Jonesova vektoru jsou amplitud intenzit elektrického pole světelné vln, komponent Stokesova vektoru odpovídají zářivostem (kvadrátům amplitud elektrického pole). Složk mezi dvěma ortogonálními polarizačními stav. QUV,, odpovídají vžd rozdílu v intenzitě Pro úplně polarizované světlo platí I = Q + U + V () pro částečně polarizované světlo ( ) < Q + U + V < I (3) a pro nepolarizované světlo Q= U = V = () 1 a ted Stokesův vektor pro nepolarizované světlo má tvar S nepol =. Složk Stokesova vektoru lze změřit pomocí sad čtř filtrů, z nichž první je izotropní, tj. propouští všechn polarizační komponent stejně, druhý je horizontální lineární polarizátor, třetí lineární polarizátor s osou propustnosti 5 a čtvrtý je cirkulární polarizátor propouštějící pravotočivě kruhově polarizované záření. Stokesov vektor pro některé polarizační stav jsou rovněž uveden v tab. 1. 8
9 Učební tet k přednášce UFY1 Pro charakterizaci částečně polarizovaného záření, které je vlastně směsí polarizovaného a nepolarizovaného záření se zavádí veličina stupeň polarizace P definovaná jako podíl intenzit polarizovaného záření I pol k celkové intenzitě I pol Inepol + P I pol = I + I pol nepol. (5) Malusův zákon Nechť přirozené (nepolarizované) světlo o zářivosti I dopadá na lineární polarizátor, jehož transmisní osa svírá s vertikálním směrem úhel ϑ (obr. 8). Polarizátorem projde pouze lineárně polarizované světlo (elektrická komponenta světelné vln kmitá v rovině definované směrem šíření a transmisní osou polarizátoru). Vložme do optické dráh druhý lineární polarizátor (analzátor) s vertikální transmisní osou. Označíme-li amplitudu světelné vln prošlé prvním polarizátorem složka rovnoběžná s jeho transmisní osou, bude I ( ϑ), potom analzátorem projde a na detektor dopadne pouze cos ϑ. Zářivost zaznamenaná detektorem potom cε = cos ϑ. (6) I ( ϑ ) I ( ) I Obr. 8. Lineární polarizátor a analzátor Malusův zákon. Zářivost v soustavě dvou lineárních polarizátorů na obr. 8 nabývá maima v případě, že transmisní os obou polarizátorů budou rovnoběžné, ted pokud ϑ = 9
10 Učební tet k přednášce UFY1 cε I ( ) = = I. Vztah (6) potom můžeme přepsat do tvaru, který nazýváme Malusovým zákonem I ( ϑ) I( cos ) = ϑ. (7) V případě ϑ = 9 (tzv. zkřížené polarizátor) bude I ( 9 ) =. Pomocí Malusova zákona a uspořádání na obr. 8 můžeme určit, zda daný optický prvek je či není lineárním polarizátorem. 1
1.7. Mechanické kmitání
1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického
7. Odraz a lom. 7.1 Rovinná rozhraní dielektrik - základní pojmy
Trivium z optiky 45 7 draz a lom V této kapitole se budeme zabývat průchodem (lomem) a odrazem světla od rozhraní dvou homogenních izotropních prostředí Pro jednoduchost se omezíme na rozhraní rovinná
Mechanismy. Vazby členů v mechanismech (v rovině):
Mechanismy Mechanismus klikový, čtyřkloubový, kulisový, západkový a vačkový jsou nejčastějšími mechanismy ve strojích (kromě převodů). Mechanismy obsahují členy (kliky, ojnice, těhlice, křižáky a další).
c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.
9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 7.5.2012 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: - Hodnocení: Mikrovlny Abstrakt V úloze je studováno šíření vln volným
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 7.5.2012 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: - Hodnocení: Mikrovlny Abstrakt V úloze je studováno šíření vln volným
ZÁPISKY Z ANALYTICKÉ GEOMETRIE 1 SOUŘADNICE, BODY
1 Souřadnice, body 1.1 Prostor prostor můžeme chápat jako nějaké prostředí, ve kterém můžeme mít různé věci na různých místech místo, poloha - tohle potřebujeme nějak popsat abychom mohli změřit nebo říci,
Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY
Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 16. ČERVNA 2012 Název zpracovaného celku: NOSNÍKY NOSNÍKY Nosníky jsou zpravidla přímá tělesa (pruty) uloţená na podporách nebo
Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.
7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,
Průniky rotačních ploch
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Průniky rotačních ploch Vypracoval: Vojtěch Trnka Třída: 8. M Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlašuji, že jsem
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla
Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 3. Reálná čísla RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny. K nejvýznamnějším patří množina reálných čísel,
Mezní kalibry. Druhy kalibrů podle přesnosti: - dílenské kalibry - používají ve výrobě, - porovnávací kalibry - pro kontrolu dílenských kalibrů.
Mezní kalibry Mezními kalibry zjistíme, zda je rozměr součástky v povolených mezích, tj. v toleranci. Mají dobrou a zmetkovou stranu. Zmetková strana je označená červenou barvou. Délka zmetkové části je
Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ mechanismy. Přednáška 8
Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ mechanismy Přednáška 8 Převody s korigovanými ozubenými koly Obsah Převody s korigovanými ozubenými koly Výroba ozubení odvalováním
Matematika pro chemické inženýry. Drahoslava Janovská
Matematika pro chemické inženýry Drahoslava Janovská Přednášky ZS 2011-2012 Fázové portréty soustav nelineárních diferenciálních rovnic Obsah 1 Fázové portréty nelineárních soustav v rovině Klasifikace
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla
Moderní technologie ve studiu aplikované fyiky CZ.1.07/..00/07.0018 4. Komplexní čísla Matematickým důvodem pro avedení komplexních čísel ( latinského complexus složený), byla potřeba rošířit množinu (obor)
( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty
Fyzikální praktikum IV. Měření ryhlosti zvuku a Poissonovy konstanty - verze Úloha č. 9 Měření ryhlosti zvuku a Poissonovy konstanty 1) Pomůky: Kundtova trubie, mikrofon se sondou, milivoltmetr, měřítko,
6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi
6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky od Ing. Magdaleny Čepičkové
Kótování na strojnických výkresech 1.část
Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických
a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.
1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Rovnice a jejich soustavy Petra Směšná žák měří dané veličiny, analyzuje a zpracovává naměřená data, rozumí pojmu řešení soustavy dvou lineárních rovnic,
Téma 9 Těžiště Těžiště rovinných čar Těžiště jednoduchých rovinných obrazců Těžiště složených rovinných obrazců
Stvení sttik, 1.ročník klářského studi Tém 9 Těžiště Těžiště rovinných čr Těžiště jednoduchých rovinných orců Těžiště složených rovinných orců Ktedr stvení mechniky Fkult stvení, VŠB - Technická univerit
UNIVERZITA PALACKÉHO V OLOMOUCI. Přírodovědecká fakulta. Katedra optiky. Jana Grézlová. Obor: Digitální a přístrojová optika.
UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra optiky Jana Grézlová Obor: Digitální a přístrojová optika Optimalizace podmínek použití širokopásmových zrcadel a dichroických filtrů ve spektrometru
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základy paprskové a vlnové optiky, optická vlákna, Učební text Ing. Bc. Jiří Primas Liberec 2011 Materiál vznikl
Seznam některých pokusů, prováděných na přednáškách z předmětu Optika a atomistika
Seznam některých pokusů, prováděných na přednáškách z předmětu Optika a atomistika Seznam bude průběžně doplňován U každého pokusu je uvedeno číslo přednášky, ve které s největší pravděpodobností pokus
3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat?
3..4 Trojúhelní Předpolady: 303 Každé tři různé body neležící v přímce určují trojúhelní. o to je, víme. Ja ho definovat? Př. : Definuj trojúhelní jao průni polorovin. Trojúhelní je průni polorovin, a.
Výroba ozubených kol. Použití ozubených kol. Převody ozubenými koly a tvary ozubených kol
Výroba ozubených kol Použití ozubených kol Ozubenými koly se přenášejí otáčivé pohyby a kroutící momenty. Přenos je zde nucený, protože zuby a zubní mezery do sebe zabírají. Kola mohou mít vnější nebo
3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ),
3.cvičení 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR Bodem A rovnoběžku: Ještě jednu kolmici. Tři úhly, které je možno rozdělit
Definice tolerování. Technická dokumentace Ing. Lukáš Procházka
Technická dokumentace Ing. Lukáš Procházka Téma: geometrické tolerance 1) Definice geometrických tolerancí 2) Všeobecné geometrické tolerance 3) Základny geometrických tolerancí 4) Druhy geometrických
Moravské gymnázium Brno s.r.o. Mgr. Věra Jeřábková, Mgr. Marie Chadimová. Matematika, Mnohoúhelníky, pokračování
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Mgr. Věra Jeřábková, Mgr. Marie Chadimová Tematická oblast Matematika, Mnohoúhelníky, pokračování Ročník 2. Datum
Geometrická optika 1
Geometrická optika 1 Popis pomocí světelných paprsků těmi se šíří energie a informace, zanedbává vlnové vlastnosti světla světelný paprsek = přímka, podél níž se šíří světlo, jeho energie index lomu (základní
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Nevyváženost rotorů rotačních strojů je důsledkem změny polohy (posunutí, naklonění) hlavních os setrvačnosti rotorů vzhledem
Metodika výpočtu vlivů poddolování na počítači Program SUBSCH
Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví Prof. Ing. Jan Schenk, CSc. Metodika výpočtu vlivů poddolování na počítači Program SUBSCH
SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G
SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 1O POLOHOVÉ VYTYČOVÁNÍ Pod pojem polohového vytyčování se
MECHANICKÉ KMITÁNÍ A VLNĚNÍ
Modularizace a modernizace studijního programu počáteční přípravy učitele fyziky Studijní modul MECHANICKÉ KMITÁNÍ A VLNĚNÍ Oldřich Lepil Olomouc 01 Zpracováno v rámci řešení projektu Evropského sociálního
Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky
provádí pamětné a písemné početní Čísla přirozená Opakování září, říjen operace v oboru přirozených čísel porovnává a uspořádává čísla celá a Čísla celá, racionální racionální, provádí početní operace
(1) (3) Dále platí [1]:
Pracovní úkol 1. Z přiložených ů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 2. Změřte zvětšení a zorná pole mikroskopu pro všechny možné kombinace ů a ů. Naměřené
Měření momentu setrvačnosti z doby kmitu
Úloha č. 4 Měření momentu setrvačnosti z doby kmitu Úkoly měření:. Určete moment setrvačnosti vybraných těles, kruhové a obdélníkové desky.. Stanovení momentu setrvačnosti proveďte s využitím dvou rozdílných
Difrakce na mřížce. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 7
Úloha č. 7 Difrakce na mřížce Úkoly měření: 1. Prostudujte difrakci na mřížce, štěrbině a dvojštěrbině. 2. Na základě měření určete: a) Vzdálenost štěrbin u zvolených mřížek. b) Změřte a vypočítejte úhlovou
řádově různě rostoucí rostou řádově stejně rychle dvě funkce faktor izomorfismus neorientovaných grafů souvislý graf souvislost komponenta
1) Uveďte alespoň dvě řádově různě rostoucí funkce f(n) takové, že n 2 = O(f(n)) a f(n) = O(n 3 ). 2) Platí-li f(n)=o(g 1 (n)) a f(n)=o(g 2 (n)), znamená to, že g 1 (n) a g 2 (n) rostou řádově stejně rychle
Model dvanáctipulzního usměrňovače
Ladislav Mlynařík 1 Model dvanáctipulzního usměrňovače Klíčová slova: primární proud trakčního usměrňovače, vyšší harmonická, usměrňovač, dvanáctipulzní zapojení usměrňovače, model transformátoru 1 Úvod
Spoje se styčníkovými deskami s prolisovanými trny
cvičení Dřevěné konstrukce Spoje se styčníkovými deskami s prolisovanými trny Úvodní poznámky Styčníkové desky s prolisovanými trny se používají pro spojování dřevěných prvků stejné tloušťky v jedné rovině,
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.3. Demodulátory Demodulace Jako demodulace je označován proces, při kterém se získává z modulovaného vysokofrekvenčního
3.5.8 Otočení. Předpoklady: 3506
3.5.8 Otočení Předpoklady: 3506 efinice úhlu ze základní školy: Úhel je část roviny ohraničená dvojicí polopřímek se společným počátečním bodem (konvexní a nekonvexní úhel). Nevýhody této definice: Nevíme,
Úlohy domácího kola kategorie C
50. ročník Matematické olympiády Úlohy domácího kola kategorie 1. Najděte všechna trojmístná čísla n taková, že poslední trojčíslí čísla n 2 je shodné s číslem n. Student může při řešení úlohy postupovat
Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady
Státní maturita 0 Maturitní testy a zadání jaro 0 Matematika: didaktický test - základní úrove obtíºnosti MAMZDC0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 0. srpna 0 http://www.vachtova.cz/ Obsah Úloha
4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů
4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů Příklad 1: Pracujte v pohledu Shora. Sestrojte kružnici se středem [0,0,0], poloměrem 10 a kružnici
Geodézie. přednáška 3. Nepřímé měření délek. Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.
Geodézie přednáška 3 Nepřímé měření délek Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Nepřímé měření délek při nepřímém měření délek se neměří přímo žádaná
TÉMATICKÝ PLÁN OSV. čte, zapisuje a porovnává přirozená čísla do 20, užívá a zapisuje vztah rovnosti a nerovnosti
TÉMATICKÝ PLÁN MA 1.ročník Očekávaný výstup /dle RVP/ Žák: Konkretizace výstupu, učivo, návrh realizace výstupu PT Číslo a početní operace používá přirozená čísla k modelování reálných situací, počítá
Laserové skenování principy
fialar@kma.zcu.cz Podpořeno z projektu FRVŠ 584/2011 Co je a co umí laserové skenování? Laserové skenovací systémy umožňují bezkontaktní určování prostorových souřadnic, 3D modelování vizualizaci složitých
Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Matematika.
Matematika Matematika pro žáky 6. až 9. ročníku napomáhá k rozvoji paměti, logického myšlení, kritickému usuzování a srozumitelné a věcné argumentaci prostřednictvím matematických problémů. Žáci si prostřednictvím
Vyučovací předmět / ročník: Matematika / 5. Učivo
Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 5. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel
Elektrická měření 4: 4/ Osciloskop (blokové schéma, činnost bloků, zobrazení průběhu na stínítku )
Elektrická měření 4: 4/ Osciloskop (blokové schéma, činnost bloků, zobrazení průběhu na stínítku ) Osciloskop měřicí přístroj umožňující sledování průběhů napětí nebo i jiných elektrických i neelektrických
MECHANIKA TUHÉ TĚLESO
Projekt Efektivní Učení Reformou oblastí gymnaziálního vzělávání je spolufinancován Evropským sociálním fonem a státním rozpočtem České republiky. Implementace ŠVP MECHANIKA TUHÉ TĚLESO Učivo - Tuhé těleso
Plochy stavebně-inženýrské praxe
Plochy stavebně-inženýrské praxe 9. Plochy rourové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 95 98. Persistent
na tyč působit moment síly M, určený ze vztahu (9). Periodu kmitu T tohoto kyvadla lze určit ze vztahu:
Úloha Autoři Zaměření FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE 2. Měření modulu pružnosti v tahu a modulu pružnosti ve smyku Martin Dlask Měřeno 11. 10., 18. 10., 25. 10. 2012 Jakub Šnor SOFE Klasifikace
Komutace a) komutace diod b) komutace tyristor Druhy polovodi ových m Usm ova dav
V- Usměrňovače 1/1 Komutace - je děj, při němž polovodičová součástka (dioda, tyristor) přechází z propustného do závěrného stavu a dochází k tzv. zotavení závěrných vlastností součástky, a) komutace diod
Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia
- - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin
4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0)
4 DVOJMATICOVÉ HRY Strategie Stiskni páku Sed u koryta Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 125 DVOJMATICOVÁ HRA Je-li speciálně množina hráčů Q = {1, 2} a prostory strategií S 1, S 2
Šroubovice a šroubové plochy
Šroubovice a šroubové plochy Mgr. Jan Šafařík Přednáška č. 10 11 přednášková skupina P-B1VS2 učebna Z240 Literatura Základní literatura: Autorský kolektiv Ústavu matematiky a deskriptivní geometrie FaSt
4.5.4 Magnetická indukce
4.5.4 Magnetická indukce Předpoklady: 4501, 4502, 4503 Př. 1: Do homogenního magnetického pole se svislými indukčními čarami položíme svislý vodič s proudem. Urči směr síly, kterou bude na vodič působit
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 OHYB SVĚTLA
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 OHYB SVĚTLA V paprskové optice jsme se zabývali optickým zobrazováním (zrcadly, čočkami a jejich soustavami).
L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméno TUREČEK Daniel Datum měření 3..6 Stud. rok 6/7 Ročník. Datum odevzdání 3..7 Stud. skupina 3 Lab.
Antény. Zpracoval: Ing. Jiří. Sehnal. 1.Napájecí vedení 2.Charakteristické vlastnosti antén a základní druhy antén
ANTÉNY Sehnal Zpracoval: Ing. Jiří Antény 1.Napájecí vedení 2.Charakteristické vlastnosti antén a základní druhy antén Pod pojmem anténa rozumíme obecně prvek, který zprostředkuje přechod elektromagnetické
Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Opakování učiva 2. ročníku Sčítání a odčítání oboru do 100
VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA 3. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Opakování učiva 2. ročníku
Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.]
Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] 1 CÍL KAPITOLY Cílem této kapitoly je naučit uživatele efektivně navrhovat objekty v režimu
5.2.1 Matematika povinný předmět
5.2.1 Matematika povinný předmět Učební plán předmětu 1. ročník 2. ročník 3. ročník 6. ročník 7. ročník 8. ročník 9. ročník 4 4+1 4+1 4+1 4+1 4 4 3+1 4+1 Vzdělávací oblast Matematika a její aplikace v
Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio
Aplikační list Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Ref: 15032007 KM Obsah Vyvažování v jedné rovině bez měření fáze signálu...3 Nevýhody vyvažování jednoduchými přístroji...3
Teleskopie díl pátý (Triedr v astronomii)
Teleskopie díl pátý (Triedr v astronomii) Na první pohled se může zdát, že malé dalekohledy s převracející hranolovou soustavou, tzv. triedry, nejsou pro astronomická pozorování příliš vhodné. Čas od času
Dynamika tuhých těles
Dynamika tuhých těles V reálných technických aplikacích lze model bodového tělesa použít jen v omezené míře. Mnohem častější je použití modelu tuhého tělesa. Tuhé těleso je definováno jako těleso, u něhož
Osvětlovací modely v počítačové grafice
Západočeská univerzita v Plzni Fakulta aplikovaných věd Semestrální práce z předmětu Matematické modelování Osvětlovací modely v počítačové grafice 27. ledna 2008 Martin Dohnal A07060 mdohnal@students.zcu.cz
Seznámení s možnostmi Autodesk Inventoru 2012
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory
Aktivity s GPS 3. Měření některých fyzikálních veličin
Aktivity s GPS 3 Měření některých fyzikálních veličin Autor: L. Dvořák Cílem materiálu je pomoci vyučujícím s přípravou a následně i s provedením terénního cvičení s využitím GPS přijímačů se žáky II.
1 NÁPRAVA De-Dion Představuje přechod mezi tuhou nápravou a nápravou výkyvnou. Používá se (výhradně) jako náprava hnací.
1 NÁPRAVA De-Dion Představuje přechod mezi tuhou nápravou a nápravou výkyvnou. Používá se (výhradně) jako náprava hnací. Skříň rozvodovky spojena s rámem zmenšení neodpružené hmoty. Přenos točivého momentu
Příklad 1.3: Mocnina matice
Řešení stavových modelů, módy, stabilita. Toto cvičení bude věnováno hledání analytického řešení lineárního stavového modelu. V matematickém jazyce je takový model ničím jiným, než sadou lineárních diferenciálních
Matematický model kamery v afinním prostoru
CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Matematický model kamery v afinním prostoru (Verze 1.0.1) Jan Šochman, Tomáš Pajdla sochmj1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz CTU CMP 2002
- 1 - Vzdělávací oblast : matematika a její aplikace Vyučovací předmět : : matematika Ročník: 3.
- 1 - Vzdělávací oblast : matematika a její aplikace Vyučovací předmět : : matematika Ročník: 3. ČÍSLO A POČETNÍ OPERACE Výstup Učivo Průřezová témata Mezipředmětové vztahy Zápis čísel. Čtení a zápisy
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií BAKALÁŘSKÁ PRÁCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií BAKALÁŘSKÁ PRÁCE Brno, 2016 Petr Šimák VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY
Měření základních vlastností OZ
Měření základních vlastností OZ. Zadání: A. Na operačním zesilovači typu MAA 74 a MAC 55 změřte: a) Vstupní zbytkové napětí U D0 b) Amplitudovou frekvenční charakteristiku napěťového přenosu OZ v invertujícím
Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora
Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 Y_32_INOACE_EM_2.13_měření statických parametrů operačního zesilovače Střední odborná škola
MS měření teploty 1. METODY MĚŘENÍ TEPLOTY: Nepřímá Přímá - Termoelektrické snímače - Odporové kovové snímače - Odporové polovodičové
1. METODY MĚŘENÍ TEPLOTY: Nepřímá Přímá - Termoelektrické snímače - Odporové kovové snímače - Odporové polovodičové 1.1. Nepřímá metoda měření teploty Pro nepřímé měření oteplení z přírůstků elektrických
CVIČENÍ č. 8 BERNOULLIHO ROVNICE
CVIČENÍ č. 8 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Z injekční stříkačky je skrze jehlu vytlačovaná voda. Průměr stříkačky je D, průměr jehly d. Určete výtokovou rychlost,
3. Polynomy Verze 338.
3. Polynomy Verze 338. V této kapitole se věnujeme vlastnostem polynomů. Definujeme základní pojmy, které se k nim váží, definujeme algebraické operace s polynomy. Diskutujeme dělitelnost polynomů, existenci
CZ.1.07/1.5.00/34.0304
Barevné modely Barevné modely se používají především pro zjednodušení záznamu barevné informace. Pokud bychom chtěli věrně reprodukovat barvy nějakého objektu, pak bychom museli zaznamenat v každém bodu
Autodesk Inventor 8 vysunutí
Nyní je náčrt posazen rohem do počátku souřadného systému. Autodesk Inventor 8 vysunutí Následující text popisuje vznik 3D modelu pomocí příkazu Vysunout. Vyjdeme z náčrtu na obrázku 1. Obrázek 1: Náčrt
MODUL 3. ELEKTROMAGNETICKÉ POLE
MODUL 3. ELEKTROMAGNETICKÉ POLE 3.1. ELEKTROSTATIKA 3.1.1. ELEKTRICKÝ NÁBOJ SHRNUTÍ Stavební jednotkou látky je atom. Skládá se z protonů, elektronů a neutronů. Elektrony a protony jsou nositeli elementárního
Paprsková a vlnová optika
Modularizace a modernizace studijního programu počáteční přípravy učitele fyziky Univerzita Palackého v Olomouci Přírodovědecká fakulta Paprsková a vlnová optika Ivo Vyšín, Jan Říha Olomouc 2012 Modularizace
Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9.
5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo M9101 provádí početní operace
CL232. Převodník RS232 na proudovou smyčku. S galvanickým oddělením, vysokou komunikační rychlostí a se zvýšenou odolností proti rušení
Převodník RS232 na proudovou smyčku S galvanickým oddělením, vysokou komunikační rychlostí a se zvýšenou odolností proti rušení 28. dubna 2011 w w w. p a p o u c h. c o m CL232 Katalogový list Vytvořen:
9. Lineárně elastická lomová mechanika K-koncepce. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík
9. Lineárně elastická lomová mechanika K-koncepce Únava a lomová mechanika Faktor intenzity napětí Předpokládáme ostrou trhlinu namáhanou třemi základními módy zatížení Zredukujeme-li obecnou trojrozměrnou
MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ MATEMATIKA I ZÁKLADY LINEÁRNÍ ALGEBRY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε, Podpořeno projektem
Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:
Mongeovo promítání základní úlohy metrické (skutečná velikost úsečky - sklápění, kolmice k rovině, vzdálenost bodu od roviny, vzdálenost bodu od přímky, rovina kolmá k přímce, otáčení roviny, trojúhelník
Matematický KLOKAN 2009 www.matematickyklokan.net. kategorie Benjamín
Matematický KLOKAN 2009 www.matematickyklokan.net kategorie Benjamín Úlohy za 3 body 1. Hodnota kterého výrazu je sudé číslo? (A) 200 + 9 (B) 200 9 (C) 200 9 (D) 2 + 0 + 0 + 9 (E) 2 0 + 0 + 9 2. Kolik
PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM... Úloha č. Název: Pracoval: stud. skup. dne Odevzdal dne: Možný počet bodů Udělený počet bodů Práce při měření 0 5 Teoretická
1. Člun o hmotnosti m = 50 kg startuje kolmo ke břehu a pohybuje se dále v tomto směru konstantní rychlostí v 0 = 2 m.s -1 vůči vodě. Současně je unášen podél břehu proudem vody, který na něj působí silou
Matematika. Charakteristika vyučovacího předmětu. Výchovné a vzdělávací strategie pro rozvíjení klíčových kompetencí žáků
Vzdělávací obor: Matematika a její aplikace Matematika Obsahové, časové a organizační vymezení Charakteristika vyučovacího předmětu 1.-2. ročník 4 hodiny týdně 3.-5. ročník 5 hodin týdně Vzdělávací obsah
Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu
1 Tutoriál č. 3 Exponenciála matice a její užití řešení Cauchyovy úlohy pro lineární systémy užitím fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 0.1 Exponenciála matice a její užití
Vlastnosti a zkoušení materiálů. Přednáška č.2 Poruchy krystalické mřížky
Vlastnosti a zkoušení materiálů Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů
Jaké možné scénáře konce světa nabízejí jeho předpovídači a jsou tyto hrozby reálné?
Jaké možné scénáře konce světa nabízejí jeho předpovídači a jsou tyto hrozby reálné? Předpovídání konce světa je pravěpodobně stejně staré jako lidstvo samo, opakuje se často a pravidelně. Nejčastěji zmiňované
matematika vás má it naupravidl
VÝZNAM Algebrický výrz se zvádí intuitivn bez p esn ího vmezení v kolizi s názv dvoj len, troj len, mnoho len. Stále se udr uje fle ná p edstv, e ísl ozn ují mno ství, e jsou zobecn ním vnímné skute nosti.
Tematický plán pro školní rok 2015/16 Předmět: Matematika Vyučující: Mgr. Iveta Jedličková Týdenní dotace hodin: 5 hodin Ročník: pátý
ČASOVÉ OBDOBÍ Září Říjen KONKRÉTNÍ VÝSTUPY KONKRÉTNÍ UČIVO PRŮŘEZOVÁ TÉMATA Umí zapsat a přečíst čísla do 1 000 000 Porovnává čísla do 1 000 000 Zaokrouhluje čísla na tisíce, desetitisíce, statisíce Umí