Temporální logiky. ČVUT FEL Katedra telekomunikační techniky, K prosince 2017

Rozměr: px
Začít zobrazení ze stránky:

Download "Temporální logiky. ČVUT FEL Katedra telekomunikační techniky, K prosince 2017"

Transkript

1 Temorální logiky Radek Mařík ČVUT FEL Katedra telekomunikační techniky, K rosince 2017 Radek Mařík Temorální logiky 6. rosince / 31

2 Obsah 1 Systém UPPAAL Postu modelování a ověřování 2 Základy temorálních logik Cesty výočtu a čas CTL* logika CTL logika 3 UPPAAL Secifikace ožadavků v UPPAAL 4 Hra NIM Secifikace ožadavků hry NIM Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

3 Systém UPPAAL Postu modelování a ověřování Tvorba automatu [UPP09] Automat očáteční ozice (dvojitá kružnice) Add Location ro řidání ozice Selection Tool ro ojmenování ozice Add Edge ro řidání hrany, rohnutí hran omocí myši v okoĺı konců dolní tabulka Position a Descrition ro analýzu chyb Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

4 Systém UPPAAL Postu modelování a ověřování Komozice systému [UPP09] Systém Systém... sít aralelních časovaných automatů (rocesů). Proces... instance arametrizovaného vzoru. Proces Pozice... jméno, invarianty Hrany... odmínky stráží (x >= 7), synchronizace (go[id]?), řiřazení (x = 0), Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

5 Systém UPPAAL Postu modelování a ověřování Pois vzoru (temlate) [UPP09] Parametrizovaný časový automat jméno, arametry, Lokální deklarace roměnné, synchronizační kanály, konstanty Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

6 Systém UPPAAL Postu modelování a ověřování Pois systému [UPP09] Globální deklarace globální celočíselné roměnné, globální hodiny, synchronizační kanály, konstanty Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

7 Systém UPPAAL Postu modelování a ověřování Definice systému [UPP09] Přiřazení rocesů deklarace instancí rocesu, vzory s úlně/částečně secifikovanými arametry, Definice systému seznam rocesů systému, Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

8 Základy temorálních logik Cesty výočtu a čas Přechody mezi konfiguracemi v Krikeho struktuře [Voj10] P1 P2 a c cs(p1) s 2 unlock(l) lock(l) lock(l) unlock(l) unlocked(l) s 1 b d cs(p2) s 3 mutex l; Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

9 Základy temorálních logik Cesty výočtu a čas Cesta v Krikeho struktuře [Voj10] Cesta Cesta π... v Krikeho struktuře M je nekonečná sekvence stavů π = s 0 s 1 s 3... taková, že i N..R(s i, s i+1 ). Π(M, s)... množina všech cest v M, které začínají v s S Sufix π i cesty π = s 0 s 1 s 3... s i s i+1 s i+2 je cesta π i = s i s i+1 s i+2 začínající v s i. s i = π[i] Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

10 Základy temorálních logik Cesty výočtu a čas Pojem času [Voj10] Abstrakce času Logický čas... racuje s (částečným) usořádáním stavů/událostí v chování systému. Fyzický čas... měření doby uběhlou mezi dvěma stavy/události. Čas ve verifikaci modelů Lineární čas... dovoluje se vyjadřovat ouze o dané lineární trase ve stavovém rostoru. Na všech trasách, x musí být následováno y. Na všech trasách, x musí být následováno y nebo z. Větvící se čas... dovoluje kvantifikovat (existenčně i univerzálně) možné budoucnosti očínaje daným stavem. Na stavový rostor se ohĺıží jako na rozvinutý nekonečný strom. Existuje trasa, kde následující stav je x. Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

11 Základy temorálních logik CTL* logika Výočetní strom [Voj10] Poisuje vlastnosti výočetního stromu unlocked(l) cs(p1) s 2 cs(p1) cs(p2) unlocked(l) s 1 unlocked(l) unlocked(l) cs(p2) s 3 cs(p1) cs(p2) cs(p1) cs(p2) Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

12 Základy temorálních logik CTL* logika CTL* formule [Voj10] Skládá se z atomické výroky logické sojky kvantifikátory cest temorální oerátory Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

13 Základy temorálních logik CTL* logika CTL* kvantifikátory a oerátory [Wik10, Voj10] Kvantifikátory cest oisují strukturu větvení vyočetního stromu E... existuje cesta výočtu z daného stavu. A... ro všechny cesty výočtů z daného stavu. Temorální oerátory určují vlastnosti cesty ve výočetním stromu X ϕ (next time, )... vlastnost ϕ latí ve druhém (následujícím) stavu cesty.. F ϕ (in future, )... vlastnost ϕ latí v nějakém stavu cesty. Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

14 CTL* oerátory Základy temorálních logik [Wik10, Voj10] CTL* logika Temorální oerátory Gϕ (globally, )... vlastnost ϕ latí ve všech stavech cesty. ψuϕ (until)... vlastnost ϕ latí v nějakém stavu cesty a vlastnost ψ latí řinejmenším ve všech ředcházejících stavech této cesty. ψrϕ (release)... vlastnost ϕ musí latit do (a včetně) stavu, kdy začne latit vlastnost ψ, okud takový stav existuje. Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

15 Základy temorálních logik CTL* logika CTL* syntax [Voj10] Necht AP je nerázdná množina atomických výroků. Syntax stavových formuĺı, které jsou ravdivé v daném stavu Jestliže AP, otom je stavová formule. Jestliže ϕ a ψ jsou stavové formule, otom ϕ, ϕ ψ, ϕ ψ jsou stavové formule. Jestliže ϕ je běhová formule, otom Eϕ a Aϕ jsou stavové formule. Syntax běhových formuĺı, které jsou ravdivé odél secifické cesty Jestliže ϕ je stavová formule, ak ϕ je také běhová formule. Jestliže ϕ a ψ jsou běhové formule, ak ϕ, ϕ ψ, ϕ ψ, X ϕ, F ϕ, Gϕ, ϕuψ a ϕrψ jsou běhové formule. CTL* je množina stavových formuĺı generovaných výše uvedenými ravidly. Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

16 Základy temorálních logik CTL* logika CTL* sémantika [Voj10] Necht je dána Krikeho struktura M = (S, T, I, s 0, L) nad množinou atomických výroků AP. Pro stavovou formuli ϕ nad AP, zaisujeme M, s = ϕ fakt, že ϕ latí v s S. Pro běhovou formuli ϕ nad AP, zaisujeme M, π = ϕ fakt, že ϕ latí odél cesty π v M. Necht s S, π je cesta v M, ϕ 1, ϕ 2 jsou stavové formule nad AP, AP, a ψ 1, ψ 2 jsou běhové formule nad AP. Pak relaci = definujeme induktivně následovně: M, s = iff L(s). M, s = ϕ 1 iff M, s = ϕ 1. M, s = ϕ 1 ϕ 2 iff M, s = ϕ 1 nebo M, s = ϕ 2. M, s = ϕ 1 ϕ 2 iff M, s = ϕ 1 a zároveň M, s = ϕ 2. M, s = Eψ 1 iff π Π(M, s).m, s = ψ 1. M, s = Aψ 1 iff π Π(M, s).m, s = ψ 1. Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

17 Základy temorálních logik CTL* logika CTL* sémantika [Voj10] Pokračování definice relace =: M, π = ϕ 1 iff M, s 0 = ϕ 1, s 0 = π[0]. M, π = ψ 1 iff M, π = ψ 1. M, π = ψ 1 ψ 2 iff M, π = ψ 1 nebo M, π = ψ 2. M, π = ψ 1 ψ 2 iff M, π = ψ 1 a zároveň M, π = ψ 2. M, π = X ψ 1 iff M, π 1 = ψ 1. M, π = F ψ 1 iff i 0.M, π i = ψ 1. M, π = Gψ 1 iff i 0.M, π i = ψ 1. M, π = ψ 1 Uψ 2 iff i 0.M, π i = ψ 2 a zároveň 0 j < i.m, π j = ψ 1. M, π = ψ 1 Rψ 2 iff i 0.( 0 j < i.m, π j = ψ 1 M, π i = ψ 2. Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

18 Základy temorálních logik CTL* logika CTL* základní oerátory [Voj10] Všechny CTL* oerátory lze odvodit z,, X, U a E: Nech AP, true (a false true) ϕ ψ ( ϕ ψ), F ϕ trueuϕ, Gϕ F ϕ, ϕrψ ( ϕu ψ), Aϕ E ϕ. Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

19 Základy temorálních logik CTL logika CTL syntaxe [Voj10] CTL je sublogikou CTL* běhové formule jsou omezeny na X ϕ, F ϕ, Gϕ, ϕuψ a ϕrψ, kde ϕ a ψ jsou stavové formule. Proto ouze 10 modálních CTL oerátorů: AX a EX AX EX AF a EF AF EF AG a EG AG EG Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

20 Základy temorálních logik CTL logika CTL modální oerátory [Voj10] Modální CTL oerátory: AU a EU A[ U q] E[ U q] q q q q AR a ER A[ R q] q E[ R q] q q q q Existují 3 základní CTL modální oerátory - EX, EG a EU: AX ϕ EX ϕ EF ϕ E[trueUϕ] AGϕ EF ϕ AF ϕ EG ϕ A[ϕUψ] E[ ψu( ϕ ψ)] EG ψ A[ϕRψ] E[ ϕu ψ] E[ϕRψ] A[ ϕu ψ] Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

21 UPPAAL Secifikace ožadavků v UPPAAL BNF gramatika secifikačního jazyka [UPP10] BNF gramatika A[]Exression E <> Exression E[]Exression A <> Exression Exression > Exression Poznámky Žadný výraz nesmí mít ostranní efekty. Výraz rocess.location testuje, zda určitý roces je v dané ozici. Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

22 UPPAAL Secifikace ožadavků v UPPAAL Příklady secifikačního jazyka [UPP10] BNF gramatika A[]1 < 2 Invariatně 1 < 2 E <> 1.csand2.cs Pravdivé, okud systém může dosáhnout stavu, ve kterém rocesy 1 a 2 jsou v jejich ozici cs A <> 1.csimlynot2.cs Invariantně rocess 1 v ozici cs imlikuje, že roces 2 není v ozici cs. A[]notdeadlock Invariantně, rocess neobsahuje deadlock. Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

23 Jednoduchá varianta NIM Hra NIM Secifikace ožadavků hry NIM NIM je hra založená na logice a strategii. Hrají 2 hráči. Hráč ři svém tahu odstraní jednu až MAX (2) věci (záalky, rotony) z řady. Vyhrává ten hráč, který odstraní oslední věc. Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

24 Klasická varianta NIM Hra NIM Secifikace ožadavků hry NIM NIM je hra založená na logice a strategii. Hrají 2 hráči. Hráči odebírají objekty z různých hromádek/řad. Hráč musí odstranit ři svém tahu alesoň jeden objekt. Hráč ři svém tahu odstraní libovolný očet objektů, které náleží všechny k jedné hromádce. Základní varianty hry: Normální... Vyhrává ten hráč, který odstraní oslední věc. Prohra... Prohrává ten hráč, který odstraní oslední věc. Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

25 Literatura I Hra NIM Secifikace ožadavků hry NIM UPPAAL 4.0: Small tutorial, November Tool environment for validation and verification of real-time systems (UPPAAL amhlet). htt:// Setember Tomas Vojnar. Formal analysis and verification. Lecture handouts, htt:// August Linear temoral logic. htt://en.wikiedia.org/wiki/linear temoral logic, November Radek Mařík (radek.marik@fel.cvut.cz) Temorální logiky 6. rosince / 31

Temporální logiky. Czech Technical University Faculty of Electrical Engineering Department of Telecommunication Engineering Prague CZ

Temporální logiky. Czech Technical University Faculty of Electrical Engineering Department of Telecommunication Engineering Prague CZ Temporální logiky Radek Mařík Czech Technical University Faculty of Electrical Engineering Department of Telecommunication Engineering Prague CZ December 5, 2017 Radek Mařík (radek.marik@fel.cvut.cz) Temporální

Více

ČVUT FEL Katedra telekomunikační techniky, K prosince Radek Mařík Ověřování modelů II 6. prosince / 39

ČVUT FEL Katedra telekomunikační techniky, K prosince Radek Mařík Ověřování modelů II 6. prosince / 39 Ověřování modelů II Radek Mařík ČVUT FEL Katedra telekomunikační techniky, K13132 6. prosince 2017 Radek Mařík (radek.marik@fel.cvut.cz) Ověřování modelů II 6. prosince 2017 1 / 39 Obsah 1 Temporální logiky

Více

ČVUT FEL, K December 12, Radek Mařík Ověřování modelů II December 12, / 30

ČVUT FEL, K December 12, Radek Mařík Ověřování modelů II December 12, / 30 Ověřování modelů II Radek Mařík ČVUT FEL, K13133 December 12, 2010 Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II December 12, 2010 1 / 30 Obsah 1 Temporální logiky LTL logika 2 UPPAAL detaily Jazyk

Více

Verifikace Modelů a UPPAAL

Verifikace Modelů a UPPAAL Verifikace Modelů a UPPAAL Radek Mařík ČVUT FEL, K13132 October 2, 2014 Radek Mařík (marikr@fel.cvut.cz) Verifikace Modelů a UPPAAL October 2, 2014 1 / 51 Obsah 1 Úvod Motivace Úvod do verifikace modelů

Více

10. Techniky formální verifikace a validace

10. Techniky formální verifikace a validace Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není

Více

Verifikace Modelů a UPPAAL

Verifikace Modelů a UPPAAL Verifikace Modelů a UPPAAL Radek Mařík ČVUT FEL, K13133 September 6, 2011 Radek Mařík (marikr@felk.cvut.cz) Verifikace Modelů a UPPAAL September 6, 2011 1 / 51 Obsah 1 Úvod Motivace Úvod do verifikace

Více

Unbounded Model Checking

Unbounded Model Checking Unbounded Model Checking Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze 25. října 2011 Evropský sociální fond Praha & EU: Investujeme do

Více

IV113 Validace a verifikace. Převod LTL formule na Büchi automat. Jiří Barnat

IV113 Validace a verifikace. Převod LTL formule na Büchi automat. Jiří Barnat IV113 Validace a verifikace Převod LTL formule na Büchi automat Jiří Barnat Připomenutí IV113 úvod do validace a verifikace: LTL BA str. 2/26 Problém Kripkeho struktura M LTL formule ϕ M = ϕ? Řešení pomocí

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 11 METODY VERIFIKACE SYSTÉMŮ NA ČIPU Hana Kubátov vá doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta 1 informačních

Více

Temporální Logiky. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 / 19

Temporální Logiky. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 / 19 Temporální Logiky Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze 10. října 2011 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23

Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23 Výroková logika Alena Gollová Výroková logika 1/23 Obsah 1 Formule výrokové logiky 2 Alena Gollová Výroková logika 2/23 Formule výrokové logiky Výrok je oznamovací věta, o jejíž pravdivosti lze rozhodnout.

Více

Model Checking pro Timed Automata. Jiří Vyskočil 2011

Model Checking pro Timed Automata. Jiří Vyskočil 2011 Model Checking pro Timed Automata Jiří Vyskočil 2011 Časově kritické systémy korektnost fungování vestavěným a distribuovaných systémů závisí na: správném výsledku výpočtu správném načasování prováděných

Více

Verifikace Modelů a UPPAAL

Verifikace Modelů a UPPAAL Verifikace Modelů a UPPAAL Radek Mařík Czech Technical University Faculty of Electrical Engineering Department of Telecommunication Engineering Prague CZ November 7, 2017 Radek Mařík (radek.marik@fel.cvut.cz)

Více

Ověřování modelu pomocí automatů. Tomáš Masopust

Ověřování modelu pomocí automatů. Tomáš Masopust Ověřování modelu pomocí automatů Tomáš Masopust Brno, 2003 Obsah Úvod 3 1 Temporální logiky 5 1.1 Modely................................ 5 1.2 Computation Tree Logic....................... 7 1.3 Linear-time

Více

Výroková logika syntaxe a sémantika

Výroková logika syntaxe a sémantika syntaxe a sémantika Jiří Velebil: AD0B01LGR 2015 Handout 01: & sémantika VL 1/16 1 Proč formální jazyk? 1 Přirozené jazyky jsou složité a často nejednoznačné. 2 Komunikace s formálními nástroji musí být

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

4.2 Syntaxe predikátové logiky

4.2 Syntaxe predikátové logiky 36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a

Více

Výroková a predikátová logika - V

Výroková a predikátová logika - V Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský

Více

Výroková a predikátová logika - VI

Výroková a predikátová logika - VI Výroková a predikátová logika - VI Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VI ZS 2017/2018 1 / 24 Predikátová logika Úvod Predikátová logika Zabývá

Více

7 Jemný úvod do Logiky

7 Jemný úvod do Logiky 7 Jemný úvod do Logiky Základem přesného matematického vyjadřování je správné používání (matematické) logiky a logických úsudků. Logika jako filozofická discipĺına se intenzivně vyvíjí už od dob antiky,

Více

Úvod do predikátové logiky. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 1

Úvod do predikátové logiky. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 1 Úvod do predikátové logiky (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 1 Relace Neuspořádaná vs. uspořádaná dvojice {m, n} je neuspořádaná dvojice. m, n je uspořádaná dvojice. (FLÚ AV ČR) Logika:

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.    horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 20 Predikátová logika Motivace Výroková

Více

Výroková logika. Sémantika výrokové logiky

Výroková logika. Sémantika výrokové logiky Výroková logika Výroková logika se zabývá vztahy mezi dále neanalyzovanými elementárními výroky. Nezabývá se smyslem těchto elementárních výroků, zkoumá pouze vztahy mezi nimi. Elementární výrok je takový

Více

Rezoluce ve výrokové logice

Rezoluce ve výrokové logice Rezoluce ve výrokové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce ve VL 1/13 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. 2 X nesplnitelná iff X = ff. 3 Hledání kritických důsledků X syntakticky.

Více

Cyklické kódy. Alena Gollová, TIK Cyklické kódy 1/23

Cyklické kódy. Alena Gollová, TIK Cyklické kódy 1/23 Cyklické kódy 5. řednáška z algebraického kódování Alena Gollová, TIK Cyklické kódy 1/23 Obsah 1 Cyklické kódy Generující olynom - kódování Kontrolní olynom - objevování chyb Alena Gollová, TIK Cyklické

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro

Více

TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny

TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny TERMIKA VIII Maxwellova rovnovážná rozdělovací funkce rychlostí Joule uv a Thomson uv okus ro reálné lyny 1 Maxwellova rovnovážná rozdělovací funkce rychlostí Maxwellova rychlostní rozdělovací funkce se

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 2 METODY VERIFIKACE SYSTÉMŮ NA ČIPU II doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a

Více

EKONOMETRIE 4. přednáška Modely chování spotřebitele

EKONOMETRIE 4. přednáška Modely chování spotřebitele EKONOMETRIE 4. řednáška Modely chování sotřebitele Rozočtové omezení Sotřebitel ři svém rozhodování resektuje tzv. rozočtové omezení x + x y, kde x i množství i-té sotřební komodity, i cena i-té sotřební

Více

Výroková a predikátová logika - VII

Výroková a predikátová logika - VII Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2013/2014 1 / 21 Sémantika PL Teorie Vlastnosti teorií Teorie

Více

Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Logika pro každodenní přežití Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Další (neklasické) logiky. Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20

Další (neklasické) logiky. Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20 Predikátová logika Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20 Jazyk predikátové logiky Má dvě sorty: 1 Termy: to jsou objekty, o jejichž vlastnostech chceme hovořit. Mohou být proměnné. 2 Formule:

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující

Více

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model Databázové systémy Tomáš Skopal - relační model * relační kalkuly Osnova přednášky relační kalkuly doménový n-ticový Relační kalkuly využití aparátu predikátové logiky 1. řádu pro dotazování rozšíření

Více

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.

Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie. Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010 Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Výroková logika - opakování

Výroková logika - opakování - opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α

Více

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné

Více

Výroková a predikátová logika - VII

Výroková a predikátová logika - VII Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Obsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17

Obsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17 Obsah Předmluva...3 0. Rekapitulace základních pojmů logiky a výrokové logiky...11 0.1 Logika jako věda o vyplývání... 11 1. Uvedení do predikátové logiky...17 1.1 Základní terminologie... 17 1.2 Základní

Více

Predikátová logika: Axiomatizace, sémantické stromy, identita. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13

Predikátová logika: Axiomatizace, sémantické stromy, identita. (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/ / 13 Predikátová logika: Axiomatizace, sémantické stromy, identita (FLÚ AV ČR) Logika: CZ.1.07/2.2.00/28.0216 2013 1 / 13 Axiomatizace predikátové logiky Axiomatizace predikátové logiky Definice Hilbertovský

Více

Základy logiky a teorie množin

Základy logiky a teorie množin Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu

Více

Markovovy řetězce se spojitým časem CTMC (Continuous time Markov Chain)

Markovovy řetězce se spojitým časem CTMC (Continuous time Markov Chain) Markovovy řetězce se soitým časem CTMC (Continuous time Markov Chain) 3 5 1 4 Markovovy rocesy X Diskrétní stavový rostor Soitý obor arametru t { } S e1, e,, en t R t 0 0 t 1 t t 3 t Proces e Markovův

Více

Okruh č.3: Sémantický výklad predikátové logiky

Okruh č.3: Sémantický výklad predikátové logiky Okruh č.3: Sémantický výklad predikátové logiky Predikátová logika 1.řádu formalizuje úsudky o vlastnostech předmětů a vztazích mezi předměty pevně dané předmětné oblasti (univerza). Nebudeme se zabývat

Více

platné nejsou Sokrates je smrtelný. (r) 1/??

platné nejsou Sokrates je smrtelný. (r) 1/?? Predikátová logika plně přejímá výsledky výrokové logiky zabývá se navíc strukturou jednotlivých jednoduchých výroků na základě této analýzy lze odvodit platnost některých výroků, které ve výrokové logice

Více

Úvěr a úvěrové výpočty 1

Úvěr a úvěrové výpočty 1 Modely analýzy a syntézy lánů MAF/KIV) Přednáška 8 Úvěr a úvěrové výočty 1 1 Rovnice úvěru V minulých řednáškách byla ro stav dluhu oužívána rovnice 1), kde ředokládáme, že N > : d = a b + = k > N. d./

Více

Model tenisového utkání

Model tenisového utkání Model tenisového utkání Jan Šustek Semestrální rojekt do ředmětu Náhodné rocesy 2005 V této ráci se budu zabývat modelem tenisového utkání. Vstuními hodnotami budou úsěšnosti odání jednotlivých hráčů,

Více

Logika Libor Barto. Výroková logika

Logika Libor Barto. Výroková logika Logika Libor Barto Výroková logika Definice.(Jazyk výrokové logiky) Ve výrokové logice používáme tyto symboly: (1) Výrokové proměnné: velká písmena, případně opatřená indexy. (2) Výrokovéspojky:,,&,,,....

Více

Predikátová logika. Teoretická informatika Tomáš Foltýnek

Predikátová logika. Teoretická informatika Tomáš Foltýnek Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

Rekurentní rovnice, strukturální indukce

Rekurentní rovnice, strukturální indukce , strukturální indukce Jiří Velebil: Y01DMA 23. února 2010: Strukturální indukce 1/19 Backusova-Naurova forma Například syntaxe formuĺı výrokové logiky kde a At. Poznámky 1 Relaxace BNF. ϕ ::= a tt (ϕ

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Predikátová logika dokončení

Predikátová logika dokončení Predikátová logika dokončení Jiří Velebil: X01DML 1. října 2010: Predikátová logika dokončení 1/18 Syntaktická analýza Jako ve výrokové logice (syntaktické stromy). Každý list úspěšného stromu je obsazen

Více

Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Holomorfní funkce Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Holomorfní funkce 1 / 8 Derivace Definice Necht f je komplexní

Více

2.2 Sémantika predikátové logiky

2.2 Sémantika predikátové logiky 14 [101105-1155] 2.2 Sémantika predikátové logiky Nyní se budeme zabývat sémantikou formulí, tj. jejich významem a pravdivostí. 2.2.1 Interpretace jazyka predikátové logiky. Interpretace predikátové logiky

Více

Rezoluční kalkulus pro logiku prvního řádu

Rezoluční kalkulus pro logiku prvního řádu AD4M33AU Automatické uvažování Rezoluční kalkulus pro logiku prvního řádu Petr Pudlák Logika prvního řádu (Někdy nepřesně nazývaná predikátová logika.) Výhody Vyšší vyjadřovací schopnost jazyka, V podstatě

Více

Třídy složitosti P a NP, NP-úplnost

Třídy složitosti P a NP, NP-úplnost Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T. BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: X01DML 15. října 2010: Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná

Více

Rekurentní rovnice, strukturální indukce

Rekurentní rovnice, strukturální indukce Rekurentní rovnice, strukturální indukce Jiří Velebil: A7B01MCS 26. září 2011: 1/20 Příklad (Parketáž triminy z minulé přednášky) P(n) = počet parket k vyparketování místnosti rozměru n 1 P(1) = 1. 2 P(n

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně

Více

Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky

Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky Matematická logika Lekce 1: Motivace a seznámení s klasickou výrokovou logikou Petr Cintula Ústav informatiky Akademie věd České republiky www.cs.cas.cz/cintula/mal Petr Cintula (ÚI AV ČR) Matematická

Více

Deskripční logika. Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Deskripční logika 37 / 157

Deskripční logika. Petr Křemen FEL ČVUT. Petr Křemen (FEL ČVUT) Deskripční logika 37 / 157 Deskripční logika Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Deskripční logika 37 / 157 Co nás čeká 1 Základy deskripční logiky 2 Jazyk ALC Syntax a sémantika 3 Cyklické a acyklické TBOXy Petr Křemen

Více

Výroková a predikátová logika - VIII

Výroková a predikátová logika - VIII Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2016/2017 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2016/2017 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná iff X =

Více

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky

Více

Výroková a predikátová logika - VIII

Výroková a predikátová logika - VIII Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2017/2018 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko ro odoru jakosti Konzultační středisko statistických metod ři NIS-PJ Analýza zůsobilosti Ing. Vratislav Horálek, DrSc. ředseda TNK 4: Alikace statistických metod Ing. Josef

Více

VISUAL BASIC. Přehled témat

VISUAL BASIC. Přehled témat VISUAL BASIC Přehled témat 1 ÚVOD DO PROGRAMOVÁNÍ Co je to program? Kuchařský předpis, scénář k filmu,... Program posloupnost instrukcí Běh programu: postupné plnění instrukcí zpracovávání vstupních dat

Více

1. Predikátová logika jako prostedek reprezentace znalostí

1. Predikátová logika jako prostedek reprezentace znalostí 1. Predikátová logika jako prostedek reprezentace znalostí 1.1 Historie výrokové logiky Problém explicitních znalostí a údaj, kterých je obrovské množství, vedl ke vzniku výrokové logiky. lovk si obecn

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Dynamické programování

Dynamické programování ALG Dynamické rogramování Nejdelší rostoucí odoslounost Otimální ořadí násobení matic Nejdelší rostoucí odoslounost Z dané oslounosti vyberte co nejdelší rostoucí odoslounost. 5 4 9 5 8 6 7 Řešení: 4 5

Více

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:

Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a

Více

Výroková a predikátová logika - XII

Výroková a predikátová logika - XII Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2018/2019 1 / 15 Rezoluční metoda v PL Rezoluční důkaz Obecné

Více

Sémantika predikátové logiky

Sémantika predikátové logiky Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem

Více

Testování a verifikace softwaru

Testování a verifikace softwaru Testování a verifikace softwaru Radek Mařík ČVUT FEL Katedra telekomunikační techniky, K13132 4. října 2017 Radek Mařík (radek.marik@fel.cvut.cz) Testování a verifikace softwaru 4. října 2017 1 / 6 Vize

Více

7. VÝROBNÍ ČINNOST PODNIKU

7. VÝROBNÍ ČINNOST PODNIKU 7. Výrobní činnost odniku Ekonomika odniku - 2009 7. VÝROBNÍ ČINNOST PODNIKU 7.1. Produkční funkce teoretický základ ekonomiky výroby 7.2. Výrobní kaacita Výrobní činnost je tou činností odniku, která

Více

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů

Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické

Více

Výroková a predikátová logika - X

Výroková a predikátová logika - X Výroková a predikátová logika - X Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - X ZS 2018/2019 1 / 16 Rozšiřování teorií Extenze o definice Rozšiřování

Více

1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7

1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7 1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Jednoduché úsudky, kde VL nestačí Všechny opice mají rády banány Judy je opice Judy má ráda banány Z hlediska VL

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Řídicí struktury jazyka Java Struktura programu Příkazy jazyka Blok příkazů Logické příkazy Ternární logický operátor Verze pro akademický rok 2012/2013 1 Struktura programu

Více

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16 Predikátová logika - přednáška 3 6. 1. 2015 () Predikátová logika - přednáška 3 6. 1. 2015 1 / 16 Věta (o dedukci) Bud L jazyk, T teorie pro L, ϕ L-sentence a ψ L-formule. Pak Věta (o kompaktnosti) T ϕ

Více

Výroková logika. Teoretická informatika Tomáš Foltýnek

Výroková logika. Teoretická informatika Tomáš Foltýnek Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox

Více

Logické programy Deklarativní interpretace

Logické programy Deklarativní interpretace Logické programy Deklarativní interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 7 1 Algebry. (Interpretace termů) Algebra J pro jazyk termů L obsahuje Neprázdnou

Více

Rovnost lze vyjádřit jako predikát, např. můžeme zvolit, že P(x, y) reprezentujetvrzení xjerovnoy.

Rovnost lze vyjádřit jako predikát, např. můžeme zvolit, že P(x, y) reprezentujetvrzení xjerovnoy. Rovnost Jedním z nejdůležitějších druhů relací je rovnost(identita). Prvkyxayjsousirovny,cožzapisujeme x =y, jestližesejednáojedenatentýžprvek. Rovnost lze vyjádřit jako predikát, např. můžeme zvolit,

Více

Matematická indukce a správnost programů. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 13

Matematická indukce a správnost programů. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 13 Matematická indukce a správnost programů doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze c Josef Kolar, 2011 Základy diskrétní matematiky, BI-ZDM ZS

Více

Báze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů

Báze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů Báze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ) Připomeňme, že konečná posloupnost u 1, u 2,, u n vektorů z V je

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více