Unbounded Model Checking
|
|
- Marcela Janečková
- před 6 lety
- Počet zobrazení:
Transkript
1 Unbounded Model Checking Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze 25. října 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 / 15
2 Kde jsme v přednášce Už známe: Metody formální specifikace na základě temporální logiky Modely systémů na základě přechodových systémů/automatů Jak ověřit že určitý model splňuje specifikaci (tj. model checking)? Bounded model checking: Pro LTL formuli φ, pro každé n, = φ implikuje BMC(φ, n) BMC(φ, n) nemůže dokázat = φ ale může počítat protipříklad pokud = φ neplatí. Dnes: Algoritmy které umí dokázat = φ Gs, množina stavů může být nekonečná 2 / 15
3 Model Checking = Gs Verifikace bezpečnosti (Safety verification) = Gs právě když pro každou cestu π, pro každé k 0, π(k) s BMC(Gs, n) pro každý n-prefix π cesty, pro každé k tak, že 0 k n, π(k) s Theorem ([Biere et al., 2003]) pro každý konečný přechodový systém, pro každou LTL formule φ existuje n tak, že pro každé n n, BMC(φ, n ) právě když = φ Zejména: = Gs právě když BMC(Gs, S ) 3 / 15
4 Důkaz Předpokládáme BMC(Gs, S ), = Gs, odvodíme rozpor. not (pro každou cestu π, pro každé k 0, π(k) s) existuje cesta π (tj. protipříklad), existuje k 0, π(k) s Necht π je taková cesta, a k 0 tak, že π(k) s Dokážeme že existuje cesta π, existuje k, tak, že 0 k S, π (k ) s což je v rozporu s BMC(Gs, S ). Pokud k S, π už je hledána cesta. Pokud k > S, pak π musí mít cyklus před k. Takové cykly můžeme odstranit až k S. Tedy: Pro ověřování = Gs stačí ověřit BMC(Gs, S ). Opravdu stačí? S může být obrovské! případ nekonečného počtu stavů? 4 / 15
5 Nekonečný počet stavů Příklad: Počítačové programy bez procedur, množina stavů {1,..., loc} N k, přičemž k je počet proměnných. Tento případ, a hodně dalších: verifikace bezpečnosti nerozhodnutelná Ale: v praxi často funguje Lépe než modelování problému s proměnnými s (konečným) rozsahem {0,..., } Do konce semestru budeme diskutovat další příklady 5 / 15
6 Induktivní verifikace bezpečnosti Chceme dokázat že pro každou cestu π, pro každé k 0, π(k) s Můžeme to ekvivalentním způsobem psát na základě množin: {π(k) π cesta, k N 0 } s Takovou množinu s také nazýváme invariantem Cf.: invariant cyklu Množinu na levé straně nazýváme dosažitelnou množinou (reach set) a píšeme R Jak ověřit R s? Indukce (Strukturální indukce přes výpočetní strom): Důkaz že pro každou cestu π, π(0) s, tj. {π(0) π cesta} s Důkaz že pro každou transici (x, x ) tak, že x s, také x s, t.j. {x (x, x ) T, x s} s 6 / 15
7 Induktivní verifikace bezpečnosti Příklad neinduktivního invariantu Sice je invariant, ale nemůžeme tu skutečnost přímo dokázat indukcí Zkusíme najít jinou množinu V tak, že V s, a navíc V splňuje uvedené podmínky induktivity Občas už máme návrh pro V : expert může hádat určitý V, anebo může být součást dokumentace (viz. assert) Jak ověřit že takový návrh opravdu splňuje podmínky induktivity? 7 / 15
8 Příklad: Jak hádat induktivní invariant 1: r false 2: for i l; i u; i i + 1 do 3: if a[i] = 7 then r true 4: S = {(pc, i, l, u, r, a) pc {1, 2, 3, 4}, i, l, u, Z, r B, a {1,..., n} Z} = G{(pc, i, l, u, r, a) φ} přičemž φ je pc = 4 (r ( k. l k u a[k] = 7)) Je to invariant, ale není induktivní. Proč? {(pc, i, l, u, r, a) r ( k. l k i a[k] = 7)} Ted? 8 / 15
9 Ověřování podmínky induktivity x. x I x V x x. [(x, x ) T x V ] x V Chtěli bychom používat příslušný řešič: Konečný případ: SAT N, lineární rovnice a nerovnice: MILP Řešič pro teorie poĺı, seznamů atd. Jak zacházet s univerzálním kvantifikátorem? Pokud takové V ještě neznáme? 9 / 15
10 Výpočet induktivní množiny Intuice: V musí splňovat dva podmínky induktivity: V musí obsahovat množinu počátečních stavů I, tudíž začínáme s tím že V I Žádný krok nesmí opustit V. Pokud to dělá, přidáme příslušné stavy let V be a superset of I while there is a transition (x, x ) such that x V, x V and V s do let V be a superset of V {x (x, x ) T, x V } return V s Pozorování: Pokud algoritmus skončí a V s, pak V je induktivní V k-tém cyklu, V je nad-množinou všech stavů které jsou dosažitelné po k krocích. Pokud bereme = místo, a algoritmus skončí, pak V = R. 10 / 15
11 Výpočet induktivní množiny let V be a superset of I while there is a transition (x, x ) such that x V, x V and V s do let V be a superset of V {x (x, x ) T, x V } return V s Terminace: konečný počet stavů? nekonečný počet? Jak velká nad-aproximace? Příliš velká: V sice je invariant, ale ne V s Příliš malá: algoritmus neskončí (v případě nekonečného počtu stavů), anebo representace množiny příliš složitá Obecně: Dosažitelná množina R vždy je induktivní: I R {x (x, x ) T, x R} R 11 / 15
12 Zpětný výpočet Pro všechny algoritmy jsou verze které pracují opačným směrem: zpátky od množiny nebezpečných stavů do množiny iniciálních stavů. Reimplementace není potřeba: I. = S \ s T. = {(x, x) (x, x ) T } Check = G(S \ I ) 12 / 15
13 Libovolné LTL formule V případě konečného počtu stavů jsou metody pro ověřování libovolných LTL (CTL) formuĺı. Nástroje: SPIN, SAL, NuSMV 13 / 15
14 Závěr Indukce je k něčemu! Pomoci indukce můžeme ověřit nekonečný počet cest nekonečné délky! 14 / 15
15 Literature I Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu. Bounded model checking. volume 58 of Advances in Computers, pages Elsevier, doi: DOI: /S (03) K.L. McMillan. Interpolation and SAT-based model checking. In Computer Aided Verification, number 2725 in LNCS, pages 1 13, / 15
Temporální Logiky. Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 / 19
Temporální Logiky Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze 10. října 2011 Evropský sociální fond Praha & EU: Investujeme do vaší
Formální Metody a Specifikace (LS 2011) Formální metody pro kyber-fyzikální systémy
Formální Metody a Specifikace (LS 2011) Přednáška 7: Formální metody pro kyber-fyzikální systémy Stefan Ratschan, Tomáš Dzetkulič Katedra číslicového návrhu Fakulta informačních technologíı České vysoké
Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Logika pro každodenní přežití Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 11 METODY VERIFIKACE SYSTÉMŮ NA ČIPU Hana Kubátov vá doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta 1 informačních
10. Techniky formální verifikace a validace
Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není
Principy indukce a rekursivní algoritmy
Principy indukce a rekursivní algoritmy Jiří Velebil: A7B01MCS 19. září 2011: Indukce 1/20 Příklad Místností rozměru n budeme rozumět šachovnici rozměru 2 n 2 n, ze které je jedno (libovolné) pole vyjmuto.
Vyhněte se katastrofám pomocí výpočetní matematiky
Vyhněte se katastrofám pomocí výpočetní matematiky Stefan Ratschan Ústav informatiky Akademie věd ČR Stefan Ratschan Vyhněte se katastrofám 1 / 29 x. x 2 = 2 Kvíz x. x 2 = 2 x. x 2 7 p q x. x 2 + px +
IV113 Validace a verifikace. Formální verifikace algoritmů. Jiří Barnat
IV113 Validace a verifikace Formální verifikace algoritmů Jiří Barnat Verifikace algoritmů IV113 Úvod do validace a verifikace: Formální verifikace str. 2/29 Validace a Verifikace Jeden z obecných cílů
ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094
10 ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 Matematicko-fyzikální fakulta Univerzita Karlova v Praze 1 ROZHODOVÁNÍ TEORIÍ POMOCÍ SAT ŘEŠIČE (SMT)
Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 / 16
Modelování fyzikálního okoĺı Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze 25. října 2011 Evropský sociální fond Praha & EU: Investujeme
Matematická indukce a správnost programů. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 13
Matematická indukce a správnost programů doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze c Josef Kolar, 2011 Základy diskrétní matematiky, BI-ZDM ZS
Rekurentní rovnice, strukturální indukce
Rekurentní rovnice, strukturální indukce Jiří Velebil: A7B01MCS 26. září 2011: 1/20 Příklad (Parketáž triminy z minulé přednášky) P(n) = počet parket k vyparketování místnosti rozměru n 1 P(1) = 1. 2 P(n
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
Výroková a predikátová logika - V
Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský
Výroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a
Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 / 19
Modelování a Analýza Systémů Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze 19. září 2010 Evropský sociální fond Praha & EU: Investujeme
Rekurentní rovnice, strukturální indukce
, strukturální indukce Jiří Velebil: Y01DMA 23. února 2010: Strukturální indukce 1/19 Backusova-Naurova forma Například syntaxe formuĺı výrokové logiky kde a At. Poznámky 1 Relaxace BNF. ϕ ::= a tt (ϕ
FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
FIT ČVUT MI-LOM Lineární optimalizace a metody Dualita Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Michal Černý, 2011 FIT ČVUT, MI-LOM, M. Černý, 2011: Dualita 2/5 Dualita Evropský
IV113 Validace a verifikace
IV113 Validace a verifikace Lehký úvod do analýzy programů Jiří Barnat Analýza programů IV113 Úvod do validace a verifikace: Analýza programů str. 2/29 Cíle programové analýzy Odvodit vlastnosti programů
Výroková a predikátová logika - X
Výroková a predikátová logika - X Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - X ZS 2018/2019 1 / 16 Rozšiřování teorií Extenze o definice Rozšiřování
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce
Binární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
Třídy složitosti P a NP, NP-úplnost
Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 2 METODY VERIFIKACE SYSTÉMŮ NA ČIPU II doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému
BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag)
Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Výroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2013/2014 1 / 21 Sémantika PL Teorie Vlastnosti teorií Teorie
Výroková a predikátová logika - XIII
Výroková a predikátová logika - XIII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XIII ZS 2013/2014 1 / 13 Úvod Algoritmická (ne)rozhodnutelnost Které
Výroková a predikátová logika - IX
Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 1 / 16 Tablo metoda v PL Důsledky úplnosti Vlastnosti
NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do
Cvičení z logiky II.
Cvičení z logiky II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 https://edux.fit.cvut.cz/courses/bi-mlo/lectures/
Analýza Petriho sítí. Analýza Petriho sítí p.1/28
Analýza Petriho sítí Analýza Petriho sítí p.1/28 1. Základní pojmy Základní problémy analýzy bezpečnost (safeness) omezenost (boundness) konzervativnost (conservation) živost (liveness) Definice 1: Místo
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
Výroková a predikátová logika - IV
Výroková a predikátová logika - IV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IV ZS 2018/2019 1 / 17 Tablo metoda Tablo Tablo - příklady F (((p q)
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
( 2 ) ( 8) Nerovnice, úpravy nerovnic. Předpoklady: 2114, Nerovnice například 2x
..5 Nerovnice, úpravy nerovnic Předpoklady:, 03 Nerovnice například 3 < + 5 - zápis nerovnosti hodnot dvou výrazů. Za můžeme dosazovat různá čísla, tím měníme hodnoty obou výrazů. Hledáme takové, aby nerovnost
Výroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková
3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
ŘÍKÁME, ŽE FUNKCE JE ČÁSTEČNĚ SPRÁVNÁ (PARTIALLY CORRECT), POKUD KDYŽ JE SPLNĚNA PRECONDITION
ŘÍKÁME, ŽE FUNKCE JE ČÁSTEČNĚ SPRÁVNÁ (PARTIALLY CORRECT), POKUD KDYŽ JE SPLNĚNA PRECONDITION FUNKCE PŘI JEJÍM ZAVOLÁNÍ, JEJÍ POSTCONDITION JE SPLNĚNA PŘI NÁVRATU Z FUNKCE (POKUD NASTANE) OBECNĚ FUNKCE
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23
Výroková logika Alena Gollová Výroková logika 1/23 Obsah 1 Formule výrokové logiky 2 Alena Gollová Výroková logika 2/23 Formule výrokové logiky Výrok je oznamovací věta, o jejíž pravdivosti lze rozhodnout.
NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NEJKRATŠÍ CESTY I Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 7 Evropský sociální fond Praha & EU: Investujeme do vaší
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou
Výroková a predikátová logika - IX
Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2013/2014 1 / 15 Korektnost a úplnost Důsledky Vlastnosti teorií
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Splnitelnost množin Definice Množina
PODOBÁ SE JAZYKU C S NĚKTERÝMI OMEZENÍMI GLOBÁLNÍ PROMĚNNÉ. NSWI162: Sémantika programů 2
PI JE JEDNODUCHÝ IMPERATIVNÍ PROGRAMOVACÍ JAZYK OBSAHUJE PODPORU ANOTACÍ NEOBSAHUJE NĚKTERÉ TYPICKÉ KONSTRUKTY PROGRAMOVACÍCH JAZYKŮ JAKO JSOU REFERENCE, UKAZATELE, GLOBÁLNÍ PROMĚNNÉ PODOBÁ SE JAZYKU C
Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr
Seminář z IVT Algoritmizace Slovanské gymnázium Olomouc Tomáš Kühr Algoritmizace - o čem to je? Zatím jsme se zabývali především tím, jak určitý postup zapsat v konkrétním programovacím jazyce (např. C#)
Algoritmy. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 15. dubna / 39
Algoritmy Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 15. dubna 2018 1/ 39 Algoritmy Příklad: Popis algoritmu pomocí pseudokódu: Algoritmus 1: Algoritmus pro nalezení největšího prvku v poli 1 Find-Max(A,n):
V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2
Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných
Matematická logika. Miroslav Kolařík
Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky
IV113 Validace a verifikace. Detekce akceptujícího cyklu. Jiří Barnat
IV113 Validace a verifikace Detekce akceptujícího cyklu Jiří Barnat Připomenutí V113 Úvod do validace a verifikace: Detekce akceptujícího cyklu str. 2/37 Problém Kripkeho struktura M LTL formule ϕ M =
4. Trojúhelníkový rozklad p. 1/20
4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet
Základy matematiky pro FEK
Základy matematiky pro FEK 1. přednáška 22.9.2016 Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 19 Organizační pokyny přednášející:
Testování a verifikace softwaru
Testování a verifikace softwaru Radek Mařík ČVUT FEL Katedra telekomunikační techniky, K13132 4. října 2017 Radek Mařík (radek.marik@fel.cvut.cz) Testování a verifikace softwaru 4. října 2017 1 / 6 Vize
IV113 Validace a verifikace. Převod LTL formule na Büchi automat. Jiří Barnat
IV113 Validace a verifikace Převod LTL formule na Büchi automat Jiří Barnat Připomenutí IV113 úvod do validace a verifikace: LTL BA str. 2/26 Problém Kripkeho struktura M LTL formule ϕ M = ϕ? Řešení pomocí
Aproximace funkcí. Numerické metody 6. května FJFI ČVUT v Praze
Aproximace funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Dělení Interpolace 1D Více dimenzí Minimalizace Důvody 1 Dělení Dělení - Získané data zadané data 2 Dělení - Získané data Obecně
Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice)
- 7.1 - Kapitola 7: Návrh relačních databází Nástrahy návrhu relačních databází Dekompozice (rozklad) Normalizace použitím funkčních závislostí Nástrahy relačního návrhu Návrh relačních databází vyžaduje
ČVUT FEL Katedra telekomunikační techniky, K prosince Radek Mařík Ověřování modelů II 6. prosince / 39
Ověřování modelů II Radek Mařík ČVUT FEL Katedra telekomunikační techniky, K13132 6. prosince 2017 Radek Mařík (radek.marik@fel.cvut.cz) Ověřování modelů II 6. prosince 2017 1 / 39 Obsah 1 Temporální logiky
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 23 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 23 biologové často potřebují najít často se opakující sekvence DNA tyto sekvence bývají relativně krátké,
Třída PTIME a třída NPTIME. NP-úplnost.
VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 20 Predikátová logika Motivace Výroková
Principy indukce a rekurentní rovnice
Principy indukce a rekurentní rovnice Jiří Velebil: X01DML 22. října 2010: Indukce 1/15 Příklad Místností rozměru n budeme rozumět šachovnici rozměru 2 n 2 n, ze které je jedno (libovolné) pole vyjmuto.
x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.
1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné
Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek
Hranová konzistence Arc consistency AC Nejprve se zabýváme binárními CSP podmínka odpovídá hraně v grafu podmínek Hrana (V i, V j ) je hranově konzistentní, právě když pro každou hodnotu x z aktuální domény
Příklad z učebnice matematiky pro základní školu:
Příklad z učebnice matematiky pro základní školu: Součet trojnásobku neznámého čísla zvětšeného o dva a dvojnásobku neznámého čísla zmenšeného o pět se rovná čtyřnásobku neznámého čísla zvětšeného o jedna.
Temporální logiky. Czech Technical University Faculty of Electrical Engineering Department of Telecommunication Engineering Prague CZ
Temporální logiky Radek Mařík Czech Technical University Faculty of Electrical Engineering Department of Telecommunication Engineering Prague CZ December 5, 2017 Radek Mařík (radek.marik@fel.cvut.cz) Temporální
Model Checking pro Timed Automata. Jiří Vyskočil 2011
Model Checking pro Timed Automata Jiří Vyskočil 2011 Časově kritické systémy korektnost fungování vestavěným a distribuovaných systémů závisí na: správném výsledku výpočtu správném načasování prováděných
Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16
Predikátová logika - přednáška 3 6. 1. 2015 () Predikátová logika - přednáška 3 6. 1. 2015 1 / 16 Věta (o dedukci) Bud L jazyk, T teorie pro L, ϕ L-sentence a ψ L-formule. Pak Věta (o kompaktnosti) T ϕ
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
Matematická indukce. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 3
doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze c Josef Kolar, 2011 Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 3 Evropský sociální fond.
Usuzování za neurčitosti
Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích
8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
12. VHDL pro verifikaci - Testbench I
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 12. VHDL pro verifikaci - Testbench I Praktika návrhu číslicových obvodů Dr.-Ing. Martin Novotný Katedra číslicového návrhu Fakulta informačních
Dijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
ČVUT FEL, K December 12, Radek Mařík Ověřování modelů II December 12, / 30
Ověřování modelů II Radek Mařík ČVUT FEL, K13133 December 12, 2010 Radek Mařík (marikr@felk.cvut.cz) Ověřování modelů II December 12, 2010 1 / 30 Obsah 1 Temporální logiky LTL logika 2 UPPAAL detaily Jazyk
Základy algoritmizace
Algoritmus Toto je sice na první pohled pravdivá, ale při bližším prozkoumání nepřesná definice. Například některé matematické postupy by této definici vyhovovaly, ale nejsou algoritmy. Přesné znění definice
Výroková a predikátová logika - XII
Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2018/2019 1 / 15 Rezoluční metoda v PL Rezoluční důkaz Obecné
Použití dalších heuristik
Použití dalších heuristik zkracování cesty při FIND-SET UNION podle hodností Datové struktury... p[x] - předchůdce uzlu x MAKE-SET(x) p[x] := x hod[x] := 0 hod[x] - hodnost (aprox. výšky) UNION(x,y) LINK(FIND-SET(x),
Výpočet globálního stavu
PDV 09 2017/2018 Výpočet globálního stavu Michal Jakob michal.jakob@fel.cvut.cz Centrum umělé inteligence, katedra počítačů, FEL ČVUT Globální Stav Globální stav: množina lokální stavů procesů v DS a stavů
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané
Základy logiky a teorie množin
Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu
Matematická logika. Miroslav Kolařík
Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)
Numerické řešení nelineárních rovnic
Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html
prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010
Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy
Základy elementární teorie čísel
Základy elementární teorie čísel Jiří Velebil: X01DML 29. října 2010: Základy elementární teorie čísel 1/14 Definice Řekneme, že přirozené číslo a dělí přirozené číslo b (značíme a b), pokud existuje přirozené
Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty.
Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. (A7B01MCS) I. Matematická indukce a rekurse. Indukční principy patří
Základy elementární teorie čísel
Základy elementární teorie čísel Jiří Velebil: A7B01MCS 3. října 2011: Základy elementární teorie čísel 1/15 Dělení se zbytkem v oboru celých čísel Ať a, b jsou libovolná celá čísla, b 0. Pak existují
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší
Algoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
Verifikace Modelů a UPPAAL
Verifikace Modelů a UPPAAL Radek Mařík Czech Technical University Faculty of Electrical Engineering Department of Telecommunication Engineering Prague CZ November 7, 2017 Radek Mařík (radek.marik@fel.cvut.cz)
označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,
Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání
Základy teorie množin
1 Základy teorie množin Z minula: 1. Cantorovu větu (x P(x)) 2. základní vlastnosti disjunktního sjednocení, kartézského součinu a množinové mocniny (z hlediska relací, ) 3. vztah P(a) a 2 4. větu (2 a
Hilbertovský axiomatický systém
Hilbertovský axiomatický systém Predikátová logika H 1 Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 24. října 2008 Specifikace H 1 Jazyk L H1 přejímáme jazyk predikátové logiky