Analytická metoda aneb Využití vektorů v geometrii
|
|
- Marek Šmíd
- před 8 lety
- Počet zobrazení:
Transkript
1 KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor (souřadnicový vektor) o, o nulový vektor E 2, E 3 eukleidovská rovina, eukleidovský rostor, B, C,... body, q,... římky ϱ, σ,... roviny α, β,..., úhel, odchylka, ϱ ϱ P q = ϱ σ q, ϱ q, ϱ XY,,,,,ϱ bod leží na římce, res. v rovině ϱ římka leží v rovině ϱ bod P je růsečík římek a q římka je růsečnice rovin ϱ a σ římka je rovnoběžná s římkou q, res. s rovinou ϱ římka je kolmá na římku q, res. na rovinu ϱ velikost úsečky XY, velikost vektoru, res. vzdálenost bodu od římky, res. od roviny ϱ Vektor Volný vektor rerezentujeme orientovanou úsečkou, jež vychází z očátečního bodu, jde do koncového bodu a může být omocí osunutí řemístěna do libovolné jiné olohy v rostoru (res. v rovině) viz obr. 1. Pokud je očáteční bod evně umístěn do očátku soustavy souřadnic, otom daný vázaný vektor nazýváme olohový vektor, res. rádiusvektor (koncového) bodu. Bod i jeho rádiusvektor mají stejné souřadnice osané (aritmetickým) souřadnicovým vektorem a = (a 1,a 2,a 3 ) (ochoitelně v rovině máme jen dvě souřadnice (a 1,a 2 )), řičemž souřadnice bodu se zravidla zaisují = [a 1,a 2,a 3 ]. Souřadnicemi volného vektoru rozumíme souřadnice říslušného rádiusvektoru, který byl získán osunutím očátečního bodu do očátku soustavy souřadnic. y B u = B br. 1: Volný vektor. br. 2: Polohový vektor bodu.
2 Uvažujme vektor u = B s očátečním bodem, koncovým bodem B a odovídajícími rádiusvektory a. Jelikož latí + B= (viz sčítání vektorů), ro souřadnice vektoru u ihned dostáváme (b 1 a 1,b 2 a 2,b 3 a 3 ). To nás oravňuje cháat vektor jako rozdíl bodů, tj. u = B= B. Nulový vektor Nulový vektor o je vektor, jehož očáteční a koncový bod slývají, tj. jakožto rádiusvektor oisuje očátek soustavy souřadnic. Jeho souřadnice jsou o = (0, 0, 0). Velikost vektoru Velikost vektoru o souřadnicích (a 1,a 2,a 3 ) lze s využitím Pythagorovy věty vyočítat odle vztahu = a a2 2 + a2 3. Vektor mající velikost rovnu jedné se nazývá jednotkový vektor; ouze nulový vektor o má velikost rovnu nule. Vzdálenost bodů,b (tj. délka úsečky B) je rovna velikosti vektoru B, tj. B = B = B = (b 1 a 1 ) 2 + (b 2 a 2 ) 2 + (b 3 a 3 ) 2. y = a a 2 2 a 2 z a 3 d = a 2 = 1 + a 2 2 a a2 2 + a2 3 a 1 a 1 a 2 d br. 3: Velikost vektoru v E 2. br. 4: Velikost vektoru v E 3. Základní oerace s vektory Součtem dvou vektorů a rozumíme vektor c = +, jež sestrojíme tak, že očáteční bod druhého vektoru umístíme do koncového bodu rvního vektoru (rovnoběžníkové ravidlo) viz obr. 5. Pokud jsou dány souřadnice obou vektorů a = (a 1,a 2,a 3 ) a b = (b 1,b 2,b 3 ), otom latí c = (c 1,c 2,c 3 ) = (a 1 + b 1,a 2 + b 2,a 3 + b 3 ). Násobek vektoru reálným číslem k je vektor k, jež určíme sestrojením obrazu koncového bodu vektoru ve stejnolehlosti se středem v očátečním bodě a koeficientem k viz obr. 6. Násobení záorným číslem obrací orientaci vektoru; seciálně ro k = 1 získáváme tzv. oačný vektor, ro nějž latí + ( ) = o. S využitím souřadnic dostáváme ka = k(a 1,a 2,a 3 ) = (ka 1,ka 2,ka 3 ). Dále zřejmě latí 0 = o a 1 =. Jelikož sčítání vektorů a násobení vektoru číslem odovídá sčítání a násobení v každé souřadnici, otom latí následující vztahy: k( + ) = k + k a (k + l) = k + l. Kolineární, komlanární Dva vektory, nazýváme kolineární, okud je lze umístit na jednu římku neboli rávě když y
3 c c c 2 ( 1) ( 2) 1 2 br. 5: Součet vektorů c = +. br. 6: Násobek vektoru. je jeden z nich násobkem druhého, tj. latí = k. Pro k > 0 hovoříme o souhlasně kolineárních vektorech, ro k < 0 o nesouhlasně kolineárních vektorech. Tři vektory,, c nazýváme komlanární, okud je lze umístit do jedné roviny neboli rávě když lze jeden z nich (nař. c) vyjádřit jako lineární kombinaci zbývajících dvou, tj. c = k+l. Skalární součin vektorů Skalární součin dvou vektorů a se souřadnicemi (a 1,a 2,a 3 ) a (b 1,b 2,b 3 ) je reálné číslo definované vztahem b = a 1 b 1 + a 2 b 2 + a 3 b 3. S využitím maticového násobení lze b zasat b 1 b = (a 1,a 2,a 3 ) b 2 = a b, b 3 kde a, b jsou nyní (tj. ro účely maticového násobení) brány jako sloucové vektory. Pokud vektory a mají velikosti a a svírají úhel ϕ 0,180, otom ro výočet skalárního součinu dostáváme vztah b = cos ϕ. Výše uvedený vzorec se dá snadno oužít ro výočet velikosti úhlu dvou nenulových vektorů. rtogonální (kolmé) vektory, ( ) svírají úhel ϕ = 90, tj. cos ϕ = 0, a roto jejich skalární součin je roven nule. Vektorový součin vektorů Ve trojrozměrném rostoru je definován vektorový součin vektorů a se souřadnicemi (a 1,a 2,a 3 ) a (b 1,b 2,b 3 ) vztahem c = = i j k a 1 a 2 a 3 = a 2 a 3 i a 1 a 3 j + a 1 a 2 b 2 b 3 b 1 b 3 b 1 b k, neboli 2 b 1 b 2 b 3 c = (a 2 b 3 a 3 b 2,a 3 b 1 a 1 b 3,a 1 b 2 a 2 b 1 ), kde i, j, k jsou jednotkové vektory ležící na osách,y,z, tj. vektory se souřadnicemi (1,0,0), (0,1,0), (0,0,1). Vektor c = je kolmý na oba vektory,. Pokud jsou, kolineární, otom = o. Pro velikost vektorového součinu latí = sin ϕ.
4 ϕ < 90 ϕ = 90 c = 90 < ϕ < 180 ϕ = 180 ϕ c = br. 7: dchylka vektorů. br. 8: Vektorový součin. Přímka Přímka je jednoznačně určena dvěma různými body a B. Vektor u = B (a každý jeho nenulový násobek) nazýváme směrový vektor římky. Pokud k bodu řičteme libovolný t-násobek vektoru u = B, dostaneme koncový bod X = + t u = + t(b ), který rovněž leží na římce. Výše uvedené vyjádření se nazývá arametrická rovnice římky, kde t R je tzv. arametr. Různé hodnoty arametru dávají různé body římky; nař. ro t = 0, res. t = 1/2, res. t = 1 dostáváme bod, střed S úsečky B, bod B. Výše uvedenou rerezentaci je možné oužít jak v rovině, tak v rostoru = a 1 + tu 1, y = a 2 + tu 2, res. = a 1 + tu 1, y = a 2 + tu 2, z = a 3 + tu 3. Seciálně ro t 0, res. t 0, res. 0 t 1 oisují výše uvedené rovnice olořímku B, res. oačnou olořímku k olořímce B, res. úsečku B. V rovině(!) lze římku osat i nearametricky. Necht vektor n o souřadnicích (a, b) je vektor kolmý ke směrovému vektoru u o souřadnicích (u 1,u 2 ); takovýto vektor se nazývá normálový vektor římky nař. můžeme volit (a,b) = ( u 2,u 1 )). Je-li X libovolný a evně zvolený bod římky, otom latí n (X ) = (a,b) ( a 1,y a 2 ) = 0. Po roznásobení a řeznačení c = (aa 1 + ba 2 ) dostáváme obecnou rovnici římky v rovině ve tvaru a + by + c = 0, (a,b) (0,0). Rovina Rovina ϱ je jednoznačně určena třemi nekolineárními body, B a C, které určují dva nekolineární vektory u = B a v = C. Pokud k bodu řičteme libovolnou lineární kombinaci vektorů u, v, dostaneme koncový bod X = + t u + r v = + t(b ) + r(c ),
5 y t 0 u 0 t 1 B t 1 X br. 9: Směrový vektor římky. n = u v X u v C ϱ B br. 10: Normálový vektor roviny. který rovněž leží v rovině ϱ. Výše uvedené vyjádření se nazývá arametrická rovnice roviny ϱ s arametry t,r R. Různé dvojice hodnot arametrů (t,r) dávají různé body roviny; nař. ro (0,0), res. (1,0, res. (0,1) dostáváme bod, res. bod B, res. bod C. Rozesáním do souřadnic dostáváme = a 1 + tu 1 + rv 1, y = a 2 + tu 2 + rv 2, z = a 3 + tu 3 + rv 3. Normálový vektor roviny, tj. vektor kolmý ke všem vektorům roviny ϱ, sočítáme jakožto vektorový součin n = u v. Každá římka se směrovým vektorem k n, k 0 (tj. kolmá na rovinu) se nazývá normála roviny ϱ. Je-li X libovolný a evně zvolený bod roviny ϱ, otom latí n (X ) = (a,b,c) ( a 1,y a 2,z a 3 ) = 0. Po roznásobení a řeznačení d = (aa 1 +ba 2 +ca 3 ) dostáváme obecnou rovnici roviny v rostoru ve tvaru a + by + cz + d = 0, (a,b,c) (0,0,0). Vzájemná oloha římek a rovin V rovině mohou být římky bud to rovnoběžné (různé, oř. slývající), anebo různoběžné (rotínající se ve solečném bodě, tzv. růsečíku). V trojrozměrném rostoru navíc řibývá situace, kdy jsou římky mimoběžné nemají žádný solečný bod a neleží v jedné rovině. Přímka a rovina v rostoru mohou být incidentní (římka leží v rovině), rovnoběžné, oř. různoběžné (rotínající se ve solečném bodě, tzv. růsečíku). Dvě roviny v rostoru jsou bud to rovnoběžné (různé, oř. slývající), anebo různoběžné (rotínající se ve solečné římce, tzv. růsečnici). Vzájemnou olohu dvou (nebo více) geometrických útvarů určujeme řešením soustavy jejich rovnic ro římky a roviny jde o rovnice lineární. Kolmost římek a rovin Dvě římky, q jsou kolmé (ortogonální), okud jsou jejich směrové vektory (v rovině i normálové vektory) ortogonální. V trojrozměrném rostoru je tedy definována i kolmost dvou mimoběžek! Přímka a rovina ϱ jsou kolmé, jsou-li směrový vektor římky a normálový vektor roviny kolineární. Přímka se otom nazývá normála roviny a rovina se nazývá normálová rovina římky. Dvě roviny ϱ,σ jsou kolmé (ortogonální), okud jsou jejich normálové vektory ortogonální.
6 q k P br. 11: Vzdálenost dvou mimoběžek. ϱ br. 12: Vzdálenost bodu od roviny. Vzdálenosti Vzdálenost dvou libovolných geometrických útvarů U, V definujeme U, V = min { XY : X U,Y V }. Pokud mají geometrické útvary nerázdný růnik, je tedy jejich vzdálenost 0. Je-li jedním z útvarů bod a druhým římka, res. rovina ϱ, otom se úloha řevádí na vzdálenost daného bodu a jeho ortogonálního růmětu do římky, oř. do roviny ϱ, jenž se určí omocí normálové roviny σ římky ( σ, σ ), res. omocí normály k roviny ϱ ( k, k ϱ). dchylky Narozdíl od odchylky dvou vektorů ϕ 0,180, je odchylka dvou geometrických útvarů definovaná α 0,90. Při využití odchylky vektorů tedy musíme vždy uvažovat α = min { ϕ,180 ϕ }. Počítáme-li odchylku římek, q, určíme ϕ jakožto odchylku jejich směrových vektorů. V trojrozměrném rostoru je tedy definována odchylka i ro dvě mimoběžky! dchylka dvou rovin ϱ,σ je rovna odchylce jejich normál. dchylku římky od roviny ϱ určíme jakožto dolněk (do ravého úhlu) odchylky dané římky a normály dané roviny. v q n 90 α u α = ϕ v ϕ α u q ϱ α br. 13: dchylka dvou římek. br. 14: dchylka římky a roviny.
s p nazýváme směrový vektor přímky p, t je parametr bodu
MATE ZS 2013 KONZ 3A Analytická geometrie lineárních útvarů v rovině a v rostoru Přímka v rovině 1 Parametrická rovnice římky v rovině: t R s o : X = A + t s, kde, Vektor s nazýváme směrový vektor římky,
Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R
Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,
6. ANALYTICKÁ GEOMETRIE
Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Rovnice přímky v prostoru
Rovnice přímky v prostoru Každá přímka v prostoru je jednoznačně zadána dvěma body. K vyjádření všech bodů přímky lze použít parametrické rovnice. Parametrická rovnice přímky p Pokud A, B jsou dva různé
1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.
1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
19 Eukleidovský bodový prostor
19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21
2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému
ANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
1 Analytická geometrie
1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při
. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
11 Vzdálenost podprostorů
11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu
3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY
3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY V této kapitole se dozvíte: jak popsat bod v rovině a v prostoru; vzorec na výpočet vzdálenosti dvou bodů; základní tvary rovnice přímky
3.2. ANALYTICKÁ GEOMETRIE ROVINY
3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou
M - Příprava na 1. čtvrtletku pro třídu 4ODK
M - Příprava na 1. čtvrtletku pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu povoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
5.1.8 Vzájemná poloha rovin
5.1.8 Vzájemná oloha rovin Předoklady: 5107 Př. 1: Kolik solečných bodů mohou mít dvě roviny? Každou možnost dokumentuj omocí dvou rovin určených vrcholy krychle a urči vzájemnou olohu rovin. Mohou nastat
6.1 Vektorový prostor
6 Vektorový prostor, vektory Lineární závislost vektorů 6.1 Vektorový prostor Nechť je dán soubor nějakých prvků, v němž je dána jistá struktura vztahů mezi jednotlivými prvky nebo v němž jsou předepsána
VEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN
VEKTORY A ANALYTICKÁ GEOMETRIE PAVLÍNA RAČKOVÁ JAROMÍR KUBEN Brno 2014 Verze 30. listopadu 2014 1 Volné a vázané vektory v rovině a prostoru 1.1 Kartézská soustava souřadnic, souřadnice bodu, vzdálenost
7 Analytická geometrie v rovině
7 Analytická geometrie v rovině Myslím, tedy jsem (René Descartes) 71 Úsečka V kapitole 51 jsme zavedli pojem souřadnice v rovině pro potřeby konstrukce grafů funkcí Pomocí souřadnic lze ovšem popisovat
VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A
VEKTORY Vektorem se rozumí množina všech orientovaných úseček, které mají stejnou velikost, směr a orientaci, což vidíme na obr. 1. Jedna konkrétní orientovaná úsečka se nazývá umístění vektoru na obr.
6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
1 Připomenutí vybraných pojmů
1 Připomenutí vybraných pojmů 1.1 Grupa Definice 1 ((Komutativní) grupa). Grupou (M, ) rozumíme množinu M spolu s operací na M, která má tyto vlastnosti: i) x, y M; x y M, Operace je neomezeně definovaná
Matematika I 12a Euklidovská geometrie
Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky
Roviny. 3.) MP O[5;7] Rovina je dána body A[-2;3;3], B[-4;1;5] a C[-7;4;1]. Zobrazte stopy roviny.
Roviny.) MP O 6 Zobrazte stoy rovin 6 ;3) a (-5;45 ;0 )..) MP O[9;5] Zobrazte stoy rovin (-4;h;4) a (5;;h). 3.) MP O[5;7] Rovina je dána body A[-;3;3], B[-4;;5] a C[-7;4;]. Zobrazte stoy roviny. 4.) MP
S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A
S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,
Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.
Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,
M - Příprava na 12. zápočtový test
M - Příprava na 1. zápočtový test Určeno pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
Vzorce počítačové grafiky
Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,
= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty
STROMTRI STROMTRI = prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty xióm je jednoduché názorné tvrzení, které se nedokazuje.
Lingebraické kapitolky - Analytická geometrie
Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V
2. kapitola: Euklidovské prostory
2. kapitola: Euklidovské prostory 2.1 Definice. Euklidovským n-rozměrným prostorem rozumíme neprázdnou množinu E n spolu s vektorovým prostorem V n a přiřazením, které každému bodu a z E n a každému vektoru
ZÁKLADNÍ PLANIMETRICKÉ POJMY
ZÁKLADNÍ PLANIMETRICKÉ POJMY Základní geometrické pojmy jsou bod, přímka a rovina. Geometrie je chápána jako část matematiky, která se zabývá studiem geometrických útvarů v rovině. Body určujeme jako průsečíky
9 Kolmost vektorových podprostorů
9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
8. Parametrické vyjádření a. Repetitorium z matematiky
8. Parametrické vyjádření a obecná rovnice přímky a roviny Repetitorium z matematiky Podzim 2012 Ivana Medková Osnova: 1 Geometrie v rovině 1. 1 Parametrické vyjádření přímky 1. 2 Obecná rovnice přímky
FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 VYBRANÉ ČÁSTI A APLIKACE VEKTOROVÉHO POČTU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Základní vlastnosti eukleidovského prostoru
Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.
MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Parametrický popis křivek
MATEMATIKA ŘÍKLADY NA RCVIČENÍ arametrický ois křivek 1 Jedánakřivka k(t)=[t t+ ; t 3 3t], t R. Nakresletečástkřivk kro t 3 ;3.Naišterovnicetečenkřivkvbodech k( 1), k(1) a k(). Dosazením několika hodnot
x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.
1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné
Dá se ukázat, že vzdálenost dvou bodů má tyto vlastnosti: 2.2 Vektor, souřadnice vektoru a algebraické operace s vektory
Vektorový počet.1 Eklidovský prostor E 3 Eklidovský prostor E 3 je prostor spořádaných trojic (tj. bodů), v němž je definována vzdálenost dvo jeho bodů A, B (značíme ji AB ). Vzdálenost bodů A = [a 1,
Necht L je lineární prostor nad R. Operaci : L L R nazýváme
Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
M - Příprava na 4. čtvrtletku - třídy 1P, 1VK.
M - Příprava na 4. čtvrtletku - třídy 1P, 1VK. Učebnice určená pro přípravu na 4. čtvrtletní písemnou práci. Obsahuje učivo března až června. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a
FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 VYBRANÉ ČÁSTI A APLIKACE VEKTOROVÉHO POČTU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA
Matematika I, část I Vzájemná poloha lineárních útvarů v E 3
3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů
3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0.
M1 Prog4 D1 1) Určete vektor c kolmý na vektory a = 2 i 3 j + k, b = i + 2 j 4 k. 2) Napište obecnou a parametrické rovnice roviny, která prochází bodem A[ 1; 1; 2] a je kolmá ke dvěma rovinám ρ : x 2y
AB = 3 CB B A = 3 (B C) C = 1 (4B A) C = 4; k ]
1. část 1. (u 1, u 2, u, u 4 ) je kladná báze orientovaného vektorového prostoru V 4. Rozhodněte, zda vektory (u, 2u 1 + u 4, u 4 u, u 2 ) tvoří kladnou, resp. zápornou bázi V 4. 0 2 0 0 0 0 0 1 0 2 0
6. Vektorový počet Studijní text. 6. Vektorový počet
6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Analytická geometrie (AG)
Analytická geometrie (AG) - zkoumá geometrické útvary pomocí algebraických a analytických metod Je založena na vektorech a soustavě souřadnic, rozděluje se na AG v rovině a v prostoru. Analytická geometrie
1.3.3 Přímky a polopřímky
1.3.3 římky a olořímky ředoklady: 010302 edagogická oznámka: oslední říklad je oakování řeočtu řes jednotku. okud hodina robíhá dobře, dostanete se k němu řed koncem hodiny. edagogická oznámka: Nakreslím
3. Silové působení na hmotné objekty
SÍL OENT SÍLY - 10-3. Silové ůsobení na hmotné objekty 3.1 Síla a její osuvné účinky V této kaitole si oíšeme vlastnosti silových účinků ůsobících na konstrukce a reálné mechanické soustavy. Zavedeme kvantitativní
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
Syntetická geometrie I
Shodnost Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Definice (Vzdálenost) Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB
8 Podobná (ekviformní) zobrazení v rovině
Typeset by LATEX2ε 1 8 Podobná (ekviformní) zobrazení v rovině 8.1 Stejnolehlost (homotetie) v rovině Definice 8.1.1. Nechť jsou dány 3 různé kolineární body A, B, C. Dělicím poměrem λ = (ABC) rozumíme
Obrázek 101: Podobné útvary
14 Podobná zobrazení Obrázek 101: Podobné útvary Definice 10. [Podobné zobrazení] Geometrické zobrazení f se nazývá podobné zobrazení, jestliže existuje kladné reálné číslo k tak, že pro každé dva body
Cyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
Syntetická geometrie I
Shodnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB = BA pozitivně definitní
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.
4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,
Parametrická rovnice přímky v rovině
Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ07/500/34080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím ICT
7.2.12 Vektorový součin I
7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII V úvodu analytické geometrie jsme vysvětlili, že její hlavní snahou je popsat geometrické útvary (body, vektory, přímky, kružnice,...) pomocí čísel nebo proměnných.
Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
Euklidovské prostory. Euklidovský prostor dimense 3
Euklidovské prostory Euklides nebo také Eukleides byl řecký matematik žijící kolem roku 300 př.n.l. Jeho nejznámějším dílem jsou Základy, ve kterých vybudoval geometrii způsobem definice- věta- důkaz.
PLANIMETRIE úvodní pojmy
PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést
3.1.1 Přímka a její části
3.1.1 Přímka a její části Předoklady: Pedagogická oznámka: Úvod do geometrie atří z hlediska výuky mezi nejroblematičtější části středoškolské matematiky. Několik rvních hodin obsahuje oakování ojmů a
Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.
6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,
Syntetická geometrie I
Kolineace Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Incidence Incidence je základní vztah - nedefinujeme ji. Bod leží na přímce = Přímka prochází bodem = Bod je incidentní s přímkou. Definice
6 Samodružné body a směry afinity
6 Samodružné body a směry afinity Samodružnými body a směry zobrazení rozumíme body a směry, které se v zobrazují samy na sebe. Například otočení R(S má jediný samodružný bod, střed S, anemá žádný samodružný
Analytická geometrie. c ÚM FSI VUT v Brně
19. září 2007 Příklad 1. Příklad 2. Příklad 3. Příklad 1. Určete obecnou rovnici roviny, která prochází body A = [0, 1, 2], B = [ 1, 0, 3], C = [3, 1, 0]. Příklad 1. A = [0, 1, 2], B = [ 1, 0, 3], C =
Analytická geometrie
Analytická geometrie Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Vektory - opakování 2 1.1 Teorie........................................... 2 1.1.1 Pojem vektor a jeho souřadnice, umístění
M - Analytická geometrie pro třídu 4ODK
M - Analytická geometrie pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE Tento dokument
V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:
Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární
X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
Metrické vlastnosti v prostoru
Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii
VEKTOR. Vymyslete alespoň tři příklady vektorových a skalárních fyzikálních veličin. vektorové: 1. skalární
VEKTOR Úvod Vektor je abstraktní pojem sloužící k vyjádření jistého směru a velikosti. S vektorovými veličinami se setkáváme například ve fyzice. Jde o veličiny, u nichž je rozhodující nejen velikost,
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ
VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ
MATEMATIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ VERONIKA CHRASTINOVÁ MODUL 3 VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ VERONIKA CHRASTINOVÁ MATEMATIKA MODUL 3 VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA c Veronika
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
CVIČENÍ Z ELEKTRONIKY
Střední růmyslová škola elektrotechnická Pardubice CVIČENÍ Z ELEKRONIKY Harmonická analýza Příjmení : Česák Číslo úlohy : Jméno : Petr Datum zadání :.1.97 Školní rok : 1997/98 Datum odevzdání : 11.1.97
ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Definice 28 (Ortogonální doplněk vektorového podprostoru). V k V n ; V k V. (Pech:AGLÚ/str D.5.1)
14.3 Kolmost podprostorů 14.3.1 Ortogonální doplněk vektorového prostou Ve vektorovém prostoru dimenze 3 je ortogonálním doplňkem roviny (přesněji vektorového prostoru dimenze ) přímka na ní kolmá (vektorový
Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
1.5.2 Mechanická práce II
.5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a
Aritmetické vektory. Martina Šimůnková. Katedra aplikované matematiky. 16. března 2008
Aritmetické vektory Martina Šimůnková Katedra aplikované matematiky 16. března 2008 Martina Šimůnková (KAP) Aritmetické vektory 16. března 2008 1/ 34 Úvod 1Úvod Definice aritmetických vektorů a operací