Úvod do vybíravosti grafů, Nullstellensatz, polynomiální metoda
|
|
- Štěpán Ivo Ševčík
- před 5 lety
- Počet zobrazení:
Transkript
1 Úvod do vybíravosti grafů, Nullstellensatz, polynomiální metoda Zdeněk Dvořák 12. prosince Vybíravost Přiřazení seznamů grafu G je funkce L, která každému vrcholu G přiřadí množinu barev. L-obarvení je dobré obarvení ϕ grafu G tž. ϕ(v) L(v) pro každý vrchol v V (G). Vybíravost χ l (G) je nejmenší přirozené číslo k takové, že G je L-obarvitelný pro každé přiřazení L seznamů velikosti alespoň k. Pozorování 1. χ l (G) χ(g) χ l (G) d + 1 je-li G d-degenerovaný χ l (C n ) = χ(c n ) Lemma 2. χ l (K n,n n) > n. Důkaz. Necht vrcholy jsou v 1,..., v n a w i1,...,i n pro i 1,..., i n {1,..., n}. Vrcholu v k přiřadíme seznam L(v k ) = {c k,1,..., c k,n }. Vrcholům w přiřadíme všechny n-prvkové seznamy, které protínají seznam každého z vrcholů v 1,..., v n v právě jednom prvku; tedy L(w i1,...,i n ) = {c 1,i1, c 2,i2,..., c n,in }. Obarvímeli vrcholy v 1,..., v n barvami c 1,i1,..., c n,in, pak nelze obarvit w i1,...,i n z jeho seznamu. 2 Vybíravost rovinných grafů Lemma 3. Existují rovinné grafy vybíravosti alespoň 5. Důkaz. Necht G uwv je následující graf: 1
2 z 3 z 1 z 2 u w v Necht L 1,p,a je přiřazení seznamů tž. L 1,p,a (z 1 ) = {1, p, 5, 6}, L 1,p,a (z 2 ) = {a, p, 5, 6} a L 1,p,a (z 3 ) = {1, a, 5, 6}. Pak předbarvení (u, w, v) barvami (1, p, a) nelze rozšířit na L 1,p,a -obarvení grafu G uwv. Necht G uv je graf vzniklý ze dvou kopií G uwv sdílejících cestu uwv. Necht L 1,a je přiřazení seznamů odpovídající L 1,p,a v jedné z kopií a L 1,q,a ve druhé a L 1,a (w) = {1, a, p, q}. Pak předbarvení (u, v) barvami {1, a} nelze rozšířit na L 1,a -obarvení grafu G uv. Necht G vznikne z 16 kopií G uv sdílejících vrcholy u a v. Necht L(u) = {1, 2, 3, 4}, L(v) = {a, b, c, d}, a L odpovídá L(i, l) pro i {1, 2, 3, 4} a l {a, b, c, d} na 16 kopiích G uv. Pak G není L-obarvitelný. Věta 4 (Thomassen). Každý rovinný graf je 5-vybíravý. Platí i následující silnější tvrzení: necht G je rovinný graf, P je cesta s nejvýše dvěma vrcholy obsažená v hranici vnější stěny G, a L je přiřazení seznamů velikosti 5 vrcholům G nesousedícím s vnější stěnou, seznamů velikosti 3 vrcholům G nepatřícím do P a sousedícím s vnější stěnou, a jednoprvkových navzájem různých seznamů vrcholům P. Pak G je L-obarvitelný. Důkaz. Indukcí dle V (G). Bez újmy na obecnosti G je souvislý. Je také 2-souvislý, jinak uvažme G = G 1 G 2, kde G 1 a G 2 se protínají v jednom vrcholu v a P G 1. Z indukčního předpokladu lze L-obarvit G 1, změnit seznam v na jednoprvkový daný obarvením G 1 a rozšířit obarvení na G 2. Necht K je kružnice ohraničující vnější stěnu G. Lze předpokládat, že K je indukovaná: jinak by měla chordu uv a G = G 1 G 2 pro vlastní podgrafy G 1 a G 2 protínající se v hraně uv, tž. P G 1. Z indukčního předpokladu lze L-obarvit G 1, změnit seznamy u a v na jednoprvkové dané obarvením G 1 a rozšířit obarvení na G 2. Lze také předpokládat V (P ) = 2, jinak můžeme smazat barvy ze seznamu některého vrcholu K. Necht V (P ) = {p, q} a v je soused p v K různý od q. Necht {a, b} L(v)\L(p) jsou dvě libovolné barvy. Necht L je přiřazení seznamů tž. L (x) = L(x)\{a, b} pro sousedy x vrcholu v neležící na K, a L (x) = L(x) pro ostatní 2
3 vrcholy x. Pak G v je L -obarvitelný z indukčního předpokladu a vrcholu v lze dát barvu a nebo b jinou než barva jeho souseda v K různého od p (jelikož K je indukovaný cyklus, v má právě dva sousedy v K). 3 Chevalley-Warningova věta a regulární podgrafy Lemma 5. Pro libovolné prvočíslo p a j = 0,..., p 2 platí x j = 0. Důkaz. Rovnice x j = 1 má nejvýše j p 2 řešení v Z p, a proto existuje prvek g 0 takový, že g j 1. Jelikož funkce x gx je bijekcí na Z p, platí gz p = Z p, a proto x j = (gx) j = g j x j. Jelikož g j 1, dostáváme x j = 0. Věta 6. Necht p je prvočíslo a f 1,..., f r jsou polynomy nad Z p v n proměnných, celkových stupňů d 1,..., d r, a necht platí r i=1 d i < n. Pak počet řešení systému f 1 ( x) = 0,..., f r ( x) = 0 je dělitelný p. Důkaz. Z malé Fermatovy věty máme x p 1 = 1 pro každé x Z p \ {0}. Uvažujme polynom f( x) = r p 1 i=1 (1 fi ( x)). Pak f( x) = 1 jestliže x je řešení uvažovaného systému, a jinak f( x) = 0. Chceme tedy ukázat, že x Z f( x) = 0. p n Celkový stupeň polynomu f je nejvýše (p 1) r i=1 d i < (p 1)n. Jelikož f je polynom v n proměnných, v každém jeho členu se tedy vyskytuje proměnná, jejíž stupeň je nejvýše p 2. Existují tedy polynomy g i,j pro i = 1,..., n a 0 j p 2 tž. v g i,j se nevyskytuje proměnná x i a f = p 2 n g i,j x j i. i=1 j=0 3
4 Povšimněme si, že g i,j x j i = Pak x Z n p x Z n p (x 1,...,x i 1,x i+1,...,x n) Z n 1 p q i,j f( x) = p 2 n g i,j x j i r i=1 j=0 p 2 n = g i,j x j i = 0. i=1 j=0 r x i Z p x j i = 0 Věta 7. Necht G je multigraf v němž všechny vrcholy mají stupeň 4 nebo 5. Jestliže G není 4-regulární, pak má 3-regulární podmultigraf. Důkaz. Necht r = V (G). Pro v V (G) si zadefinujme polynom f v = x 2 e. e incidentní s v nad Z 3. Počet proměnných je E(G) > 2r = v V (G) deg(f v), dle Věty 6 je tedy počet řešení systému f v ( x) = 0 pro v V (G) dělitelný 3. Systém má triviální nulové řešení, má tedy i (alespoň dvě) nenulová řešení. Položme X = {e E(G) : x e 0} pro nějaké takové řešení. Jelikož x 2 = 1 pro x Z 3 \ {0} a G má maximální stupeň nejvýše 5, f v ( x) = 0 je ekvivalentní tomu, že v má stupeň 0 nebo 3 v podgrafu (V (G), X). Podmínka že G není 4-regulární je nutná, například trojúhelník se zdvojenými hranami nemá žádný 3-regulární podgraf. 4 Nullstellensatz Použijeme následující základní tvrzení z algebry (lze dokázat indukcí dle počtu proměnných). Lemma 8. Necht p(x 1,..., x n ) je polynom v n proměnných, v němž každý výskyt proměnné x i má stupeň nejvýše d i pro i {1,..., n}, a necht S i je množina komplexních čísel velikosti alespoň d i +1. Jestliže p 0, pak existují hodnoty s 1 S 1,..., s n S n tž. p(s 1,..., s n ) 0. 4
5 Necht G je neorientovaný graf s vrcholy {v 1,..., v n } a G je jeho libovolná orientace. Grafový polynom P G je definován jako P G (x 1,..., x n ) = (x j x i ). (v i,v j ) E( G) Povšimněme si, že P G (c 1,..., c n ) 0 právě když funkce přiřazující vrcholům G barvy c 1,..., c n je dobré obarvení G. Věta 9. Necht G je neorientovaný graf s vrcholy {v 1,..., v n } a G je jeho libovolná orientace. Necht d 1,..., d n jsou přirozená čísla a L je přiřazení seznamů G tž. L(v i ) > d i pro 1 i n. Jestliže se člen x d 1 n se v polynomu P G vyskytuje s nenulovým koeficientem, pak G je L-obarvitelný. Důkaz. Bez újmy na obecnosti L(v i ) = d i + 1 a prvky L(v i ) jsou komplexní čísla. Zadefinujme p i (x) = c L(v i )(x c) pro i = 1,..., n. Pak p i (c) = 0 pro všechna c L(v i ). Necht q i = x di+1 p i ; pak q i je polynom stupně nejvýše d i a q i (c) = c di+1 pro všechna c L(v i ). Necht P je polynom vzniklý z P G opakovanou substitucí q i za x di+1 pro i {1,..., n}. Pak P (c 1,..., c n ) = P G (c 1,..., c n ) pro libovolná c 1 L(v 1 ),..., c n L(v n ) a stupeň proměnné x i v P je nejvýše d i. Navíc koeficient x d 1 n je stejný v P jako v P G, jelikož všechny členy P G mají stejný celkový stupeň (rovný E(G) ) a substituce vytváří pouze členy menšího stupně. Proto P 0 a P G (c 1,..., c n ) = P (c 1,..., c n ) 0 pro nějaké c 1 L(v 1 ),..., c n L(v n ) z Lemmatu 8. Pak obarvení vrcholů G barvami c 1,..., c n je dobré L- obarvení. Necht G je pevná orientace grafu G, a necht G je orientace G, která se od G liší na právě p hranách. Pak definujme sgn( G ) = ( 1) p. Pozorování 10. Necht G je neorientovaný graf s vrcholy {v 1,..., v n } a G je jeho libovolná pevná orientace. Necht O d1,...,d n je množina všech orientací grafu G v nichž v i má vstupní stupeň d i pro i = 1,..., n. Koeficient členu x d 1 n v polynomu P G je až na znaménko roven sgn( G ). G O d1,...,dn Každé dvě orientace se stejnými vstupními stupni se liší obrácením hran v nějakém Eulerovském podgrafu. Dostáváme tedy následující. Důsledek 11. Necht G je neorientovaný graf s vrcholy {v 1,..., v n } a G je jeho libovolná orientace tž. v i má vstupní stupeň d i pro každé i. Necht E je 5
6 množina všech podmnožin E( G) tvořících Eulerovský podgraf. Pak koeficient členu x d 1 n v polynomu P G je až na znaménko roven ( 1) X. X E Je-li G bipartitní, pak každý Eulerovský podgraf jeho orientace má sudý počet hran (a nějaký takový existuje prázdný), proto dostáváme následující. Důsledek 12. Necht G je neorientovaný bipartitní graf s vrcholy {v 1,..., v n } a G je jeho libovolná orientace tž. v i má vstupní stupeň d i pro každé i. Pak koeficient členu x d 1 n v polynomu P G je nenulový, a tedy G lze L-obarvit pro libovolné přiřazení seznamů L tž. L(v i ) > d i pro každé i. Speciálně rovinné bipartitní grafy mají orientaci s vstupním stupněm nejvýše 2, a jsou tedy 3-vybíravé. 6
Vybíravost grafů, Nullstellensatz, jádra
Vybíravost grafů, Nullstellensatz, jádra Zdeněk Dvořák 10. prosince 2018 1 Vybíravost Přiřazení seznamů grafu G je funkce L, která každému vrcholu G přiřadí množinu barev. L-obarvení je dobré obarvení
Barevnost grafů MFF UK
Barevnost grafů Z. Dvořák MFF UK Plán vztah mezi barevností a maximálním stupněm (Brooksova věta) hranová barevnost (Vizingova věta) příště: vztah mezi barevností a klikovostí, perfektní grafy Barevnost
Stromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom,
Stromové rozklady Zdeněk Dvořák 25. října 2017 Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, β je funkce přiřazující každému vrcholu T podmnožinu vrcholů v G, pro každé
Vrcholová barevnost grafu
Vrcholová barevnost grafu Definice: Necht G = (V, E) je obyčejný graf a k N. Zobrazení φ : V {1, 2,..., k} nazýváme k-vrcholovým obarvením grafu G. Pokud φ(u) φ(v) pro každou hranu {u, v} E, nazveme k-vrcholové
1 Seznamová barevnost úplných bipartitních
Barvení grafů pravděpodobnotní důazy Zdeně Dvořá 7. proince 208 Seznamová barevnot úplných bipartitních grafů Hypergraf je (labě) -obarvitelný, jetliže exituje jeho obarvení barvami neobahující monochromaticou
Hypergrafové removal lemma a Szemérediho
Hypergrafové removal lemma a Szemérediho věta Zdeněk Dvořák 7. prosince 207 Hypergrafové removal lemma a jeho důsledek Definice. Dvojice (V, E) je k-uniformní hypergraf, je-li E množina neuspořádaných
Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje
Definice 1 eulerovský Definice 2 poloeulerovský
Dále budeme předpokládat, že každý graf je obyčejný a má aspoň tři uzly. Definice 1 Graf G se nazývá eulerovský, existuje-li v něm uzavřený tah, který obsahuje každou hranu v G. Definice 2 Graf G se nazývá
10 Přednáška ze
10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský
1 Nenulové toky. 1.1 Úvod. 1.2 Definice
1 Nenulové toky 1.1 Úvod Naším výchozím bodem bude grafová dualita. Nechť G je graf s daným vnořením v rovině, které určuje jeho duální graf G. V rámci duality si navzájem odpovídají například následující
TGH09 - Barvení grafů
TGH09 - Barvení grafů Jan Březina Technical University of Liberec 15. dubna 2013 Problém: Najít obarvení států na mapě tak, aby žádné sousední státy neměli stejnou barvu. Motivační problém Problém: Najít
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
René Grežďo. Vrcholové barvení grafu
Západočeská univerzita v Plzni Fakulta aplikovaných věd BAKALÁŘSKÁ PRÁCE René Grežďo Vrcholové barvení grafu Katedra matematiky Vedoucí bakalářské práce: Studijní program: Studijní obor: RNDr. Jan Ekstein,
Teorie grafů Jirka Fink
Teorie grafů Jirka Fink Nejprve malý množinový úvod Definice. Množinu {Y; Y X} všech podmnožin množiny X nazýváme potenční množinoumnožiny Xaznačíme2 X. Definice. Množinu {Y; Y X, Y =n}všech n-prvkovýchpodmnožinmnožiny
H {{u, v} : u,v U u v }
Obyčejný graf Obyčejný graf je dvojice G= U, H, kde U je konečná množina uzlů (vrcholů) a H {{u, v} : u,v U u v } je (konečná) množina hran. O hraně h={u, v} říkáme, že je incidentní s uzly u a v nebo
Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout
Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní graf má stromovou šířku nejvýše k, a je-li tomu tak, také vrátí příslušný stromový rozklad. Poznamenejme, že je-li k součástí vstupu,
Jan Březina. 7. března 2017
TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 7. března 2017 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,
TEORIE GRAFŮ TEORIE GRAFŮ 1
TEORIE GRAFŮ 1 TEORIE GRAFŮ Přednášející: RNDr. Jiří Taufer, CSc. Fakulta dopravní ČVUT v Praze, letní semestr 1998/99 Zpracoval: Radim Perkner, tamtéž, v květnu 1999 ZÁKLADNÍ POJMY Říkáme, že je dán prostý
Základy teorie množin
1 Základy teorie množin Z minula: 1. Cantorovu větu (x P(x)) 2. základní vlastnosti disjunktního sjednocení, kartézského součinu a množinové mocniny (z hlediska relací, ) 3. vztah P(a) a 2 4. větu (2 a
Výroková a predikátová logika - IV
Výroková a predikátová logika - IV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IV ZS 2018/2019 1 / 17 Tablo metoda Tablo Tablo - příklady F (((p q)
4 Pojem grafu, ve zkratce
Petr Hliněný, FI MU Brno, 2014 1 / 24 FI: IB000: Pojem grafu 4 Pojem grafu, ve zkratce Třebaže grafy jsou jen jednou z mnoha struktur v matematice a vlastně pouze speciálním případem binárních relací,
Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?
Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti
grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa
grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde
Další NP-úplné problémy
Další NP-úplné problémy Známe SAT, CNF, 3CNF, k-klika... a ještě následující easy NP-úplný problém: Existence Certifikátu (CERT ) Instance: M, x, t, kde M je DTS, x je řetězec, t číslo zakódované jako
Příklady z Kombinatoriky a grafů I - LS 2015/2016
Příklady z Kombinatoriky a grafů I - LS 2015/2016 zadáno 1.-4. 3. 2016, odevzdat do 8.-11. 3. 2016 1. Zjistěte, které z následujících funkcí definovaných pro n N jsou v relaci Θ(), a vzniklé třídy co nejlépe
Dijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
Diskrétní matematika. DiM /01, zimní semestr 2018/2019
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
Hamiltonovské kružnice, stromy, rovinné grafy
Matematika III 9. přednáška Hamiltonovské kružnice, stromy, rovinné grafy Michal Bulant Masarykova univerzita Fakulta informatiky 24. 11. 2010 Obsah přednášky 1 Eulerovské grafy a hamiltonovské kružnice
autorovu srdci... Petr Hliněný, FI MU Brno 1 FI: MA010: Průnikové grafy
9 Krátké povídání o průnikových grafech Od této lekce teorie grafů se zaměříme lehce na několik vybraných partíı teorie grafů bĺızkých autorovu srdci... Naším prvním výběrem jsou průnikové grafy, což jsou
Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa
Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa Jan Slovák Masarykova univerzita Fakulta informatiky 13. 11. 2006 Obsah přednášky 1 Literatura
Učební texty k státní bakalářské zkoušce Matematika Teorie grafů. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Teorie grafů študenti MFF 15. augusta 2008 1 17 Teorie grafů Požiadavky Základní pojmy teorie grafů, reprezentace grafu. Stromy a jejich základní vlastnosti,
Golayův kód 23,12,7 -kód G 23. rozšířený Golayův kód 24,12,8 -kód G 24. ternární Golayův kód 11,6,5 -kód G 11
Golayův kód 23,12,7 -kód G 23 rozšířený Golayův kód 24,12,8 -kód G 24 kód G 23 jako propíchnutí kódu G 24 ternární Golayův kód 11,6,5 -kód G 11 rozšířený ternární Golayův kód 12,6,6 -kód G 12 dekódování
Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.
Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)
Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina
Přednáška č. 5 Vlastnosti funkcí Jiří Fišer 22. října 2007 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 4 22. října 2007 1 / 1 Omezenost funkce Definice Funkce f se nazývá (shora, zdola) omezená
Definice 5.1 Graf G = (V, E) je tvořen množinou vrcholů V a množinou hran, kde
Kapitola 5 Grafy 5.1 Definice Definice 5.1 Graf G = (V, E) je tvořen množinou vrcholů V a množinou hran E ( V 2), kde ( ) V = {{x, y} : x, y V a x y} 2 je množina všech neuspořádaných dvojic prvků množiny
10 Podgrafy, isomorfismus grafů
Typické příklady pro zápočtové písemky DiM 470-2301 (Kovář, Kovářová, Kubesa) (verze: November 25, 2018) 1 10 Podgrafy, isomorfismus grafů 10.1. Určete v grafu G na obrázku Obrázek 10.1: Graf G. (a) největší
Pomocný text. Polynomy
Pomocný text Polynomy Tato série bude o polynomech a to zejména o polynomech jedné proměnné (pokud nebude uvedeno explicitně, že jde o polynom více proměnných). Formálně je někdy polynom jedné proměnné
Teoretická informatika Tomáš Foltýnek Barvení grafů Platónská tělesa
Tomáš Foltýnek foltynek@pef.mendelu.cz Barvení grafů Platónská tělesa strana 2 Opakování z minulé přednášky Co je to prohledávání grafu? Jaké způsoby prohledávání grafu známe? Jak nalézt východ z bludiště?
Základy matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
O běžci s tětivou v zádech a jiných hanebnostech
O běžci s tětivou v zádech a jiných hanebnostech Pavel Ludvík Katedra matematiky a deskriptivní geometrie, VŠB-TU Ostrava 31. října 2017 Občasný Seminář z Matematické Analýzy Slíbená matematická hymna!
Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa
Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa Jan Slovák Masarykova univerzita Fakulta informatiky 14. 11. 21 Obsah přednášky 1 Literatura
4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet.
4 Stromy a les Jedním ze základních, a patrně nejjednodušším, typem grafů jsou takzvané stromy. Jedná se o souvislé grafy bez kružnic. Přes svou (zdánlivou) jednoduchost mají stromy bohatou strukturu a
Definice barevnosti grafu, základní vlastnosti. Varinaty problému barvení.
7 Barevnost a další těžké problémy Pro motivaci této lekce se podíváme hlouběji do historie počátků grafů v matematice. Kromě slavného problému sedmi mostů v Královci (dnešním Kaliningradě) je za další
2 Důkazové techniky, Indukce
Důkazové techniky, Indukce Náš hlubší úvod do matematických formalismů pro informatiku začneme základním přehledem technik matematických důkazů. Z nich pro nás asi nejdůležitější je technika důkazů matematickou
Cyklické kódy. Definujeme-li na F [x] n sčítání a násobení jako. a + b = π n (a + b) a b = π n (a b)
C Ať C je [n, k] q kód takový, že pro každé u 1,..., u n ) C je také u 2,..., u n, u 1 ) C. Jinými slovy, kódová slova jsou uzavřena na cyklické posuny. Je přirozené takový kód nazvat cyklický. Strukturu
Minimální kostry. Teorie. Štěpán Šimsa
Minimální kostry Štěpán Šimsa Abstrakt. Cílem příspěvku je seznámit s tématem minimálních koster, konkrétně s teoretickými základy, algoritmy a jejich analýzou. Problém.(Minimální kostra) Je zadaný graf
Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30
Generující kořeny cyklických kódů 6. přednáška z algebraického kódování Alena Gollová, TIK Generující kořeny 1/30 Obsah 1 Alena Gollová, TIK Generující kořeny 2/30 Hammingovy kódy Hammingovy kódy jsou
Přijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace
Monotónní a Lineární Funkce 1. Relace předcházení a to Uvažujme dva vektory hodnot proměnných α = α,, 1 αn ( ) a β = ( β β ) 1,, n x,, 1 xn. Říkáme, že vekto r hodnot α předchází vektor hodnot β (značíme
Modely Herbrandovské interpretace
Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Základní pojmy teorie grafů [Graph theory]
Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme
8 Rovinnost a kreslení grafů
8 Rovinnost a kreslení grafů V přímé návaznosti na předchozí lekci se zaměříme na druhý důležitý aspekt slavného problému čtyř barev, který byl původně formulován pro barevné rozlišení států na politické
PŘEDNÁŠKA 7 Kongruence svazů
PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí
Matematické důkazy Struktura matematiky a typy důkazů
Matematické důkazy Struktura matematiky a typy důkazů Petr Liška Masarykova univerzita 18.9.2014 Motto: Matematika je tvořena z 50 procent formulemi, z 50 procent důkazy a z 50 procent představivostí.
Lineární algebra : Vlastní čísla, vektory a diagonalizace
Lineární algebra : Vlastní čísla, vektory a diagonalizace (14. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 21. dubna 2014, 19:37 1 2 14.1 Vlastní čísla a vlastní vektory Nechť je
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar
Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné
GRAFY A GRAFOVÉ ALGORITMY
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ
Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g).
7 Barevnost grafu Definice 71 Graf G se nazývá k-obarvitelný, jestliže každému jeho uzlu lze přiřadit jednu z barev 1 k tak, že žádné dva sousední uzly nemají stejnou barvu Definice 72 Nejmenší přirozené
Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
MATEMATIKY. Přednášel: Prof. RNDr. Jaroslav Nešetřil, DrSc. Zapsal: Michal Hrušecký
Poznámky z přednášek z DISKRÉTNÍ MATEMATIKY Přednášel: Prof. RNDr. Jaroslav Nešetřil, DrSc. Zapsal: Michal Hrušecký zimní semestr 2003/2004 Obsah 1 Přednáška z 1. 10. 2003 1 2 Přednáška z 22. 10. 2003
Kostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019
Grafy 16. dubna 2019 Tvrzení. Je dán graf G, pak následující je ekvivalentní. 1 G je strom. 2 Graf G nemá kružnice a přidáme-li ke grafu libovolnou hranu, uzavřeme přesně jednu kružnici. 3 Graf G je souvislý
[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici
[1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích
Teorie grafů. Teoretická informatika Tomáš Foltýnek
Teorie grafů Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Opakování z minulé přednášky Co je to složitostní třída? Jaké složitostní třídy známe? Kde leží hranice mezi problémy řešitelnými
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
Hammingův odhad. perfektní kódy. koule, objem koule perfektní kód. triviální, Hammingův, Golayův váhový polynom. výpočet. příklad
Hammingův odhad koule, objem koule perfektní kód perfektní kódy triviální, Hammingův, Golayův váhový polynom výpočet Hammingův kód H 3 Golayův kód G 23 obecně příklad ternární kód Tvrzení: Dán binární
67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018
67. ročník matematické olympiády III. kolo kategorie Přerov, 8.. března 08 MO . Ve společnosti lidí jsou některé dvojice spřátelené. Pro kladné celé číslo k 3 řekneme, že společnost je k-dobrá, pokud
Logické programy Deklarativní interpretace
Logické programy Deklarativní interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 7 1 Algebry. (Interpretace termů) Algebra J pro jazyk termů L obsahuje Neprázdnou
Výroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře
Věta o dělení polynomů se zbytkem
Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus
Cvičení ke kursu Vyčíslitelnost
Cvičení ke kursu Vyčíslitelnost (23. prosince 2017) 1. Odvoďte funkci [x, y, z] x y z ze základních funkcí pomocí operace. 2. Dokažte, že relace nesoudělnosti je 0. Dokažte, že grafy funkcí Mod a Div jsou
VĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY.
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY. PAVEL RŮŽIČKA 3.1. Kompaktní prostory. Buď (X, τ) topologický prostor a Y X. Řekneme, že A τ je otevřené pokrytí množiny Y, je-li
Univerzita Karlova v Praze Pedagogická fakulta
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 TEORIE ČÍSEL 000/001 Cifrik, M-ZT Příklad ze zadávacích listů 10 101 Dokažte, že číslo 101 +10 je dělitelné číslem 51 Důkaz:
Úlohy k procvičování textu o univerzální algebře
Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky
1 Lineární prostory a podprostory
Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C
Výroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2013/2014 1 / 21 Sémantika PL Teorie Vlastnosti teorií Teorie
Teorie grafů BR Solutions - Orličky Píta (Orličky 2010) Teorie grafů / 66
Teorie grafů Petr Hanuš (Píta) BR Solutions - Orličky 2010 23.2. 27.2.2010 Píta (Orličky 2010) Teorie grafů 23.2. 27.2.2010 1 / 66 Pojem grafu Graf je abstraktní pojem matematiky a informatiky užitečný
GRAFOVÉ MODELY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 1
GRAFOVÉ MODELY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 1 Evropský sociální fond. Praha & EU: Investujeme do vaší
Lineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
8 Kořeny cyklických kódů, BCH-kódy
24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF
Báze a dimenze vektorových prostorů
Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň
Úlohy k procvičování textu o svazech
Úlohy k procvičování textu o svazech Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky - zadání
Teorie grafů(povídání ke třetí sérii)
Teorie grafů(povídání ke třetí sérii) Ke zformulování úloh této série je vhodné seznámit Tě se základními pojmy teorie grafů. Nejprvebychomsiměliříci,cojetograf. 1 Populárněřečeno:napapířemámenakresleno
15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.
Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální
8 Přednáška z
8 Přednáška z 3 12 2003 Problém minimální kostry: Dostaneme souvislý graf G = (V, E), w : E R + Našim úkolem je nalézt strom (V, E ) tak, aby výraz e E w(e) nabýval minimální hodnoty Řešení - Hladový (greedy)
a jiné elektronické přístroje včetně mobilů. Pracujte samostatně. Povolen je 1 list A4 vlastnoručně psaných poznámek k předmětu...
Písemný test MA010 Grafy: 17.1. 2007, var A... 1). Vašim úkolem je sestrojit všechny neisomorfní jednoduché souvislé grafy na 6 vrcholech mající posloupnost stupňů 1,2,2,2,2,3. Zároveň zdůvodněte, proč
Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit
Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo
Cvičení z Lineární algebry 1
Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice
Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16
Predikátová logika - přednáška 3 6. 1. 2015 () Predikátová logika - přednáška 3 6. 1. 2015 1 / 16 Věta (o dedukci) Bud L jazyk, T teorie pro L, ϕ L-sentence a ψ L-formule. Pak Věta (o kompaktnosti) T ϕ
Hledáme efektivní řešení úloh na grafu
Hledáme efektivní řešení úloh na grafu Mějme dán graf následující úlohy: G = ( V, E), chceme algoritmicky vyřešit Je daný vrchol t dosažitelný z vrcholu s? Pokud ano, jaká nejkratší cesta tyto vrcholy
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě