1. Energie a její transformace
|
|
- Leoš Dušek
- před 9 lety
- Počet zobrazení:
Transkript
1 1. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na každém kroku. Chemická energie ve svalech člověka umožňuje jeho pohyb. Teplo našeho těla je pohybová energie molekul, z nichž je složeno. V našem těle probíhá mnoho změn poháněných energií. Potřebnou energii přijímá náš organismus v potravě. Bez energie je dále nemyslitelná doprava, zemědělství, průmysl, vytápění, energetické spotřebiče apod. Kromě toho energetické spotřebiče nejenže potřebují energii, aby nám sloužily, ale už k jejich samotné výrobě je zapotřebí energie. 1.1 Energie Energie je slovo vytvořené v polovině 19. století z řeckého energeia (tzn. vůle, síla či schopnost k činům). Je to skalární fyzikální veličina, která je charakterizována schopností fyzikální soustavy konat práci. Energii lze též definovat jako veličinu charakterizující stav určité soustavy. Kromě energie patří ke stavovým veličinám také rychlost, výška tělesa nad nulovým potenciálem, teplota, tlak, hustota, entropie a měrná tepelná kapacita. Jednotkou energie je 1 joule [J]. Energie je skalární fyzikální veličina charakterizující stav určité soustavy a vyznačující se schopností soustavy konat práci. Obr. 1.1: Změna klidové energie hmotné látky Každá hmota v klidu obsahuje klidovou energii E 0 [J], která je definována Einsteinovou rovnicí: E 0 = m 0. c 2, (1.1)
2 kde m 0 [kg] je klidová hmotnost a c [m.s -1 ] rychlost šíření světla (c = m.s -1 ), přesněji c = = 2, ms ε. µ 0 kde µ 0 = 4. π. 10 ε 0 = 8, Fm 1 permitivita vakua Hm 1 permeabilita vakua Klidovou energii hmotného tělesa E 0 lze zvětšit (např. zahřátím tělesa, nebo uvedením tělesa do pohybu), nebo zmenšit (např. jadernou reakcí). Tyto změny jsou znázorněny v obr Druhy energií Celková energie v izolované soustavě je dána součtem jednotlivých druhů energií. Mezi nejčastější druhy energie patří energie: mechanická tepelná vnější chemická elektrická jaderná zářivá Mechanická energie Mechanická energie se vyskytuje ve dvou formách ve formě kinetické a potenciální energie. Kinetická (též pohybová) energie Ek je charakterizována pohybem tělesa. Při posuvném pohybu tělesa o hmotnosti m rychlostí v je kinetická energie dána rovnicí: 1 2 E k = m v, (1.2) 2 Kinetická energie tuhého tělesa otáčejícího se kolem osy úhlovou rychlostí ω s momentem setrvačnosti tělesa J k ose otáčení je dána vztahem: 1 2 E k = J ω, (1.3) 2 Potenciální energie Ep tělesa se vyskytuje ve dvou typech. Prvním typem je tíhová potenciální energie tělesa v silovém poli Země: E p = m. g. h, (1.4) kde h je výška nad úrovní, pro kterou je potenciální energie nulová (obvykle zemský povrch). Druhým typem potenciální energie je potenciální energie pružnosti u pružných těles schopných deformace. V tomto případě je potenciální energie dána vztahem: 1 2 E p = k y, (1.5) 2 kde k [N m -1 ] je tuhost a y [m] výchylka z rovnovážné polohy. Celková mechanická energie Em je dána součtem kinetické a potenciální energie: E m = E k + E p. (1.6)
3 V izolované mechanické soustavě platí zákon zachování mechanické energie, kdy při mechanickém ději zůstává konstantní celková mechanická energie izolované soustavy a tím i součet kinetické a potenciální energie: E m = E k + E p = konst. (1.7) Tepelná energie Tepelná energie jako stavová veličina musí být chápána pouze jako energie vnitřní U. Je definována součinem hmotnosti m, měrného tepla c [J.kg -1.K -1 ] (v případě plynů měrného tepla při stálém objemu c v ) a termodynamické teploty T [K]: U = m. c.t. (1.8) Vnější energie Vnější energie E v se definuje pro stlačitelné látky, kterými jsou zejména plyny a páry, a je dána součinem tlaku p a objemu V: E v = p. V, (1.9) U kapalin bývá měrný objem (i hustota ρ) v relativně velkém rozsahu tlaků konstantní, proto se zde přímo nehovoří o vnější energii, ale používá se pojem tlaková energie E p, která je dána rovnicí: p. E p = m (1.10) ρ U pevných látek se vnější energie přímo nedefinuje. Obdobný druh energie si lze představit např. pružnou deformací tělesa, v němž se zvyšuje mechanické napětí, zmenšuje se objem apod. Pozn.: Součtem vnější a vnitřní energie je definována tzv. entalpie Chemická energie Chemická energie se uvolňuje nebo absorbuje při chemických reakcích, při kterých dochází k přeskupování atomů. Při chemických reakcích mezi sebou reagují atomy s kladným nebo záporným elektrickým nábojem. Chemické síly jsou potom elektrické povahy a uvolněná chemická energie je rovna práci vykonané těmito elektrickými silami. Chemickou energii lze tedy chápat jako část energie transformující se na jiné druhy energie při uvažovaných chemických reakcích. U paliv bývá chemická energie popsána výhřevností. Výhřevnost lze definovat jako maximální množství uvolněného tepla, které lze využít, pokud vodní pára nekondenzuje. Potom chemická energie je dána vztahem: E = m, (1.11) kde Q i [J kg -1 ] je výhřevnost Elektrická energie ch Q i Elektrická energie je energie elektrostatického a magnetického pole, které vzniká v okolí pohybujících se nábojů.
4 1.2.6 Jaderná energie Jaderná energie se uvolňuje při jaderných reakcích v důsledku změn vazebních sil v jádře atomu. Množství uvolněné energie je úměrné úbytku hmotnosti. K uvolnění energie dochází při štěpení velmi těžkých jader na lehčí, nebo při slučování velmi lehkých jader na těžší Zářivá energie Zářivá energie je energie elektromagnetického záření, které se uvolňuje ze zářícího tělesa při emisi kvant záření. Projevuje se jako elektromagnetické vlny různých délek. Zářivá energie je definována rovnicí: E z = h. f (1.12) kde h = 6, J.s -1 je tzv. Planckova konstanta a f [Hz] - frekvence záření. Planck dospěl k poznatku že klasická teorie světla nevystihuje skutečnost, když se snažil odůvodnit platnost vyzařovacího zákona, který byl v naprostém souhlase s experimenty. Jeho teorie se stala základem celé moderní kvantové fyziky. Vztah (1.12) definuje známou kvantovou hypotézu. Z této kvantové hypotézy se později vyvinul základní princip kvantové fyziky; tento princip, pokud jde o záření, vedl k pojmu fotonu,( o pojmu foton v doplňku ke kapitole ) který je základem dnešních představ o podstatě světla. 1.3 Transformace energie Jednotlivé druhy energií se mohou za určitých podmínek vzájemně přeměňovat. Tyto přeměny se nazývají transformacemi energie. Při transformacích energie nedochází k energetickým ztrátám a zůstává v platnosti zákon zachování energie. S transformací energie souvisí pojmy exergie a anergie. Exergie je ta část energie, která je schopna za daných podmínek (jsou zpravidla určeny stavem okolí) další transformace. Anergie je ta část energie, která není schopna za daných podmínek transformace na jiný druh energie. Exergie je transformovatelná část energie. Anergie je netransformovatelná část energie. Z výše uvedených definic je zřejmé, že součet exergie a anergie zůstává konstantní při všech procesech. Kromě toho nelze přeměnit anergii na exergii. Za 100 %-ní anergii je považována entalpie okolí (venkovního vzduchu) a těch systémů, které jsou s okolím v rovnováze. Entalpie systému, který má teplotu nebo tlak vyšší než je stav okolí, je zčásti exergií a zčásti anergií. Chemická energie se uvažuje s exergií 95 %. Jaderná energie je téměř 100 %-ní exergií. Zářivá, mechanická a elektrická energie jsou považovány za 100 %-ní exergii. Nejdůležitější případy transformací jednotlivých druhů energie jsou znázorněny na obr. 1.2.
5 1.4 Testové otázky ke kapitole 1 Obr. 1.2: Diagram transformací energií 1. Definujte pojem energie. 2. Co je to klidová energie? Uveďte dále její definiční vztah včetně významu a jednotek jednotlivých veličin. 3. Vyjmenujte druhy energií, s kterými se nejčastěji setkáváme. 4. Definujte pojmy vnitřní energie, vnější energie a entalpie. 5. Definujte pojmy exergie a anergie. Vyjmenujte některé případy, kdy se jedná o 100 %-ní anergii, 100 %-ní exergii a kombinaci exergie a anergie. 6. Nakreslete diagram nejčastějších případů transformací energie
6 doplněk ke kapitole Foton Albert Einstein začal považovat jako první kvanta elektromagnetického záření za skutečné částice. Přímý a přesvědčivý důkaz této částicové povahy fotonů (kvant elektromagnetického záření), podal až v roce 1922 americký fyzik Arthur HollyCompton ( , Nobelova cena v roce 1927), který experimentoval s tvrdým rentgenovým zářením o vlnové délce 0,07 nm, jehož kvanta mají vysokou energii: E = h f =17, 8keV h Planckova konstanta 6, Ws (Js) f kmitočet záření Hz Rovnoběžný svazek tohoto záření nechal dopadat na uhlíkovou destičku a měřil frekvenci záření rozptýleného pod různými úhly. Kvanta záření se přitom chovala jako malé pružné kuličky, které se srážely s elektrony v uhlíkové destičce. Protože energie kvant elektromagnetického záření vysoko převyšovala vazebnou energii elektronů v uhlíku, bylo možné považovat elektrony za volné nehybné částice (viz obr. 1). J I N Ý M I S L O VY VE VÝ P OČTU N E N Í N U T N É B R Á T V Ú V A H U VA ZE B N O U E N E R G I I E L E K T R O N U, K T E R O U J E N U T N É PŘEKONA T. J E J Í H O D N O T A J E T O T I Ž Ř Á D O VĚ M N O H EM M E N Š Í N E Ž J E E N E R G I E P O U Ž I T É H O E L E K T R O M A G N E T I C K É H O ZÁŘENÍ. Analogie pro snadnější pochopení: Mějme rybářský vlasec, který má nosnost jeden kilogram. Tento vlasec přivažme za nárazník automobilu a druhý jeho konec do skobičky ve zdi tak, že vlasec je mezi autem a zdí velmi volný. Když se auto začne rozjíždět, řidič v autě nezaznamená přetržení vlasce - síla (resp. práce) nutná na jeho přetržení je výrazně menší, než je síla (práce) vyvinutá motorem auta. (Kdybychom připevnili mezi auto a zeď silný řetěz, řidič si napnutí řetězu při rozjíždění automobilu jistě všimne ) Obr. 1 Obr. 1.1 Při pružných srážkách musí být splněny zákon zachování energie a zákon zachování hybnosti. Frekvence záření rozptýleného pod určitým úhlem pak splňuje rovnici: ' ' h f = h f + E e kde f je frekvence záření původního svazku, f frekvence záření rozptýleného a E e kinetická energie elektronu po srážce (viz obr. 1).
7 Podle této rovnice je tedy f < f a λ > λ. Tento rozptyl záření na volných elektronech byl nazván Comptonův jev. Na světlo a ostatní druhy elektromagnetického záření lze tedy pohlížet jako na proud částic, proud fotonů. Jedná se o nový druh částic s nulovou klidovou hmotností, které v sobě spojují chování vln i částic, neustále se pohybují rychlostí světla a jejich energie je dána vztahem E hf h E = h f a hybnost vztahem p = = = protože c = f λ. c c λ S fotony se člověk setkával již odpradávna, neboť vnímal světlo. Fyzikálně se je podařilo objevit až ve 20. století. Jejich objev souvisí s historií výzkumu podstaty světla. Od 17. do 19. století byly vypracovány dvě teorie vysvětlující vlastnosti světla: 1. Newtonova (korpuskulární) teorie - chápe světlo jako proud částic 2. Huygensova (vlnová) teorie - světlo chápe jako vlnění světového éteru Některé jevy (odraz, lom) bylo možné vysvětlit z hlediska obou teorií. Z hlediska Newtonovy teorie se jednalo o částice, které se prostě při dopadu na rozhranní dvou prostředí odráží nebo jím procházejí (jsou natolik malé, že projdou). Analogicky bylo možné pomocí Newtonovy teorie vysvětlit disperzi světla: bílé světlo je složeno z částic ( kuliček ) různých druhů (barev), které vnímáme spolu dohromady jako barvu bílou- tzv. aditivní mísení barev. Vyjádříme-li disperzi světla vzhledem k citlivosti lidského oka pomocí napětí -vztaženo k 1V, pak pro vytvoření bílé barvy musí být poměr základních barev spektra, červené R,zelené G a modré B U y = 0,30 U R + 0,59 U G + 0,11 U B Při disperzi se pak částice jednotlivých barev od sebe oddělí proto, že mají nepatrně jiné vlastnosti (např. hmotnost). V 19. století však došlo k zásadnímu zvratu a byla všeobecně přijata teorie vlnová. Young a Fresnel prováděli pokusy s difrakcí světla (ohybem světla). Ohyb nastává na malých překážkách či otvorech (srovnatelných s vlnovou délkou světla), na hraně, vlasu, tenkém drátku, jedné či více štěrbinách, na mřížce. Ve všech těchto případech procházející světelné vlny vzájemně interferují, v některých směrech se vzájemně zesilují, v jiných se zase zeslabují a vytvářejí tak na stínítku charakteristický ohybový obrazec (viz obr. 1.1b). Tyto experimenty není možné vysvětlit z hlediska korpuskulární teorie - ta dává výsledný obrazec s maximální intenzitou přímo naproti otvoru (viz obr. 1.1a) bez typického opakování světlých a tmavých míst (resp. barevného spektra). J. C. Maxwell později dokázal, že světelné vlnění není vlněním éteru, jak se do té doby soudilo, ale že se jedná o zvláštní případ vlnění elektromagnetického. Na základě toho vypracoval celou teorii elektromagnetického pole, která velice dobře souhlasila s již zjištěnými (a ověřenými) fakty a zákony (Ohmův zákon, Kirchhoffovy zákony, ). Zároveň umožnila rozvoj poznatků novým směrem. Na druhé straně Planckova kvantová hypotéza vysvětlující spektrum rovnovážného záření, Einsteinova teorie fotoefektu a Comptonův jev nás přesvědčují o tom, že světlo má částicový (korpuskulární) charakter. Tím ale vzniká rozpor neřešitelný v rámci klasické makroskopické fyziky: Je-li světlo proud částic (fotonů), jak je možné vysvětlit jeho difrakci na dvou štěrbinách? Částice přece může projít jen jednou štěrbinou a přítomnost druhé štěrbiny nemůže mít na průběh experimentu žádný vliv. A přesto, jestliže zakryjeme jednu štěrbinu, difrakční obrazec se změní. Bylo by možné si představit, že vlnění nastává, pohybuje-li se současně velké množství fotonů, podobně jako vznikají vlny v plynech nebo kapalinách. Proto byly prováděny pokusy
8 s velmi slabým zářením a dlouhými expozičními dobami, kdy do difrakčního systému vstupoval jeden foton po druhém. Každý takový foton vyvolal samozřejmě zčernání jen jednoho bodu fotografické desky v místě, kam náhodně dopadl. Po delší době však zčernalé body začaly opět vytvářet difrakční obrazec jako v případě vlny dopadající současně na obě štěrbiny. Na některá místa fotografické desky dopadlo fotonů méně, na některé více a pravděpodobnost dopadu se řídila přesně chováním vlny při difrakci na dvou štěrbinách. Proto je nutné připustit, že foton se chová jako částice a zároveň jako vlna. Interferenčními metodami je možné měřit jeho frekvenci a vlnovou délku, pozorujeme-li jeho ohyb na překážkách a štěrbinách. Popisujeme tedy chování fotonu jako vlnu. Na druhé straně při fotoefektu a Comptonově jevu se chová foton jako částice - sráží se s elektrony a předává jim část své energie analogicky jako jedna kulečníková koule předává energii jiné kouli při vzájemné srážce. Při dopadu na fotografickou desku vyvolá každý foton zčernání v určitém místě jako důsledek chemické reakce. Chová se tedy jako částice. Uvedený rozpor se nazývá korpuskulárně vlnový dualismus (částicově vlnový dualismus). Mnoho fyziků již vedlo spory o tom, jak si představit částici, která se chová jako vlna, a vlnu, která se chová jako částice. Je to ale nesprávně položená otázka. Z naší běžné makroskopické zkušenosti jsme zvyklí buď na pohyb částic, těles (letící kulka, jedoucí automobil, pohybující se planeta, ) a nebo na pohyb vlny (zvukové vlnění, vlna na vodní hladině, ). Částice má v klasické fyzice v každém okamžiku určitou polohu na své trajektorii a určitou rychlost, kterou se pohybuje, vlna má zase vlnovou délku a frekvenci a zasahuje současně do celého prostoru. Foton je objekt mikrosvěta a pohybuje se prostě jinak, než jak jsme zvyklí si představovat. Není možné prostě určit jeho trajektorii a stanovit místo jeho dopadu např. na fotografické desce. Je možné stanovit pouze pravděpodobnost, s níž dopadne do daného místa. Podle druhu experimentu, který s fotonem provádíme, může foton projevit buď svou částicovou nebo vlnovou povahu, i když se samozřejmě jedná o tentýž objekt. Při experimentování s elektromagnetickým zářením různých vlnových délek lze zjistit tento poznatek: S E ZK R A C O V Á N Í M V L N O VÉ D É L K Y S E P R O J E VU J Í Č Á S T I C O V É VL A S T N O S T I F O T O N U VÝ R A ZNĚJI. Z hlediska aplikací polovodičové techniky vyplývá, že polovodivý přechod je citlivý na osvětlení, což se využívá u fotodiod. Luminiscenční diody LED při průchodu proudu svítí, protože při rekombinaci páru elektron-díra se uvolňuje energie ve formě fotonů. Vzniká tak inverzní fotoelektrický jev, který tvoří základ svítících polovodičových přechodů, LED diod. LED je zkratka light emitting diode. Základní princip činnosti je stejný jako u klasické usměrňovací diody. Přiložením napětí v propustném směru dochází k injekci minoritních nosičů náboje přes PN přechod. Po překonání určité vzdálenosti tyto nosiče rekombinují s nosiči opačného znaménka. Tento proces způsobuje v aktivní oblasti uvolnění energie ve formě fotonů. Vlnová délka záření λ, je dána rozdílem energií nosiče před a po rekombinaci W = W 2 W 1 ; hc W = [J; J s, m / s, m], λ odkud dostáváme pro vlnovou délku emitovaného fotonu h c λ = W
9 přičemž c je rychlost světla ve vakuu a h je Planckova konstanta. Přepočtem z joule na elektronvolty dostaneme vzorec h c 1,24 λ = e= [ µ m ; ev ] 1 ev = 1, J W W U LED se snažíme o to, aby se co nejvíce vyzářeného výkonu (typicky 50 µw/ma) dostalo z aktivní oblasti na povrch. Proto musí být konstrukce LED přizpůsobena tak, aby docházelo k co nejmenší absorpci emitovaného záření v objemu polovodiče a v materiálu kontaktů. Kromě toho se emitovaný výkon zvyšuje použitím speciálních zalévacích hmot (s indexem lomu větším než 1) a skel, popřípadě rozměrově optimalizovanou polosférou nad vlastním polovodičovým systémem. Úloha: Vlastnosti fotonu Zadání: Určete energii, hybnost a hmotnost fotonu γ záření s vlnovou délkou λ = 1 pm.
1.7. Mechanické kmitání
1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základy paprskové a vlnové optiky, optická vlákna, Učební text Ing. Bc. Jiří Primas Liberec 2011 Materiál vznikl
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 OHYB SVĚTLA
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 OHYB SVĚTLA V paprskové optice jsme se zabývali optickým zobrazováním (zrcadly, čočkami a jejich soustavami).
L A S E R. Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami.
L A S E R Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami Stimulovaná emise Princip laseru Specifické vlastnosti laseru jako zdroje
Difrakce na mřížce. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 7
Úloha č. 7 Difrakce na mřížce Úkoly měření: 1. Prostudujte difrakci na mřížce, štěrbině a dvojštěrbině. 2. Na základě měření určete: a) Vzdálenost štěrbin u zvolených mřížek. b) Změřte a vypočítejte úhlovou
1. Člun o hmotnosti m = 50 kg startuje kolmo ke břehu a pohybuje se dále v tomto směru konstantní rychlostí v 0 = 2 m.s -1 vůči vodě. Současně je unášen podél břehu proudem vody, který na něj působí silou
KIS A JEJICH BEZPEČNOST I PŘENOS INFORMACÍ DOC. ING. BOHUMIL BRECHTA, CSC.
KIS A JEJICH BEZPEČNOST I PŘENOS INFORMACÍ DOC. ING. BOHUMIL BRECHTA, CSC. Operační program Vzdělávání pro konkurenceschopnost Projekt: Vzdělávání pro bezpečnostní systém státu (reg. č.: CZ.1.01/2.2.00/15.0070)
10. Energie a její transformace
10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na
FYZIKA 2. ROČNÍK. Elektrický proud v kovech a polovodičích. Elektronová vodivost kovů. Ohmův zákon pro část elektrického obvodu
FYZK. OČNÍK a polovodičích - v krystalové mřížce kovů - valenční elektrony - jsou společné všem atomům kovu a mohou se v něm volně pohybovat volné elektrony Elektronová vodivost kovů Teorie elektronové
ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ
ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ Pozemkem se podle 2 písm. a) katastrálního zákona rozumí část zemského povrchu, a to část taková, která je od sousedních částí zemského povrchu (sousedních pozemků)
LED svítidla - nové trendy ve světelných zdrojích
LED svítidla - nové trendy ve světelných zdrojích Základní východiska Nejbouřlivější vývoj v posledním období probíhá v oblasti vývoje a zdokonalování světelných zdrojů nazývaných obecně LED - Light Emitting
Komutace a) komutace diod b) komutace tyristor Druhy polovodi ových m Usm ova dav
V- Usměrňovače 1/1 Komutace - je děj, při němž polovodičová součástka (dioda, tyristor) přechází z propustného do závěrného stavu a dochází k tzv. zotavení závěrných vlastností součástky, a) komutace diod
Měření hustoty kapaliny z periody kmitů zkumavky
Měření hustoty kapaliny z periody kmitů zkumavky Online: http://www.sclpx.eu/lab1r.php?exp=14 Po několika neúspěšných pokusech se zkumavkou, na jejíž dno jsme umístili do vaty nejprve kovovou kuličku a
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Anemometrické metody Učební text Ing. Bc. Michal Malík Ing. Bc. Jiří Primas Liberec 2011 Materiál vznikl v rámci
Osvětlovací modely v počítačové grafice
Západočeská univerzita v Plzni Fakulta aplikovaných věd Semestrální práce z předmětu Matematické modelování Osvětlovací modely v počítačové grafice 27. ledna 2008 Martin Dohnal A07060 mdohnal@students.zcu.cz
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fotoefekt Fotoelektrický jev je jev, který v roce 1887 poprvé popsal Heinrich Hertz. Po nějakou dobu se efekt nazýval Hertzův efekt, ale
MECHANICKÁ PRÁCE A ENERGIE
MECHANICKÁ RÁCE A ENERGIE MECHANICKÁ RÁCE Konání práce je podmíněno silovým působením a pohybem Na čem závisí velikost vykonané práce Snadno určíme práci pro případ F s ráci nekonáme, pokud se těleso nepřemísťuje
Návrh rotujícího usměrňovače pro synchronní bezkroužkové generátory výkonů v jednotkách MVA část 1
Návrh rotujícího pro synchronní bezkroužkové generátory výkonů v jednotkách MVA část 1 Ing. Jan Němec, Doc.Ing. Čestmír Ondrůšek, CSc. Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních
7.8 Kosmická loď o délce 100 m letí kolem Země a jeví se pozorovateli na Zemi zkrácena na 50 m. Jak velkou rychlostí loď letí?
7. Speciální teorie relativity 7.1 Kosmonaut v kosmické lodi, přibližující se stálou rychlostí 0,5c k Zemi, vyšle směrem k Zemi světelný signál. Jak velká je rychlost signálu a) vzhledem k Zemi, b) vzhledem
ÚČEL zmírnit rázy a otřesy karosérie od nerovnosti vozovky, zmenšit namáhání rámu (zejména krutem), udržet všechna kola ve stálém styku s vozovkou.
4 ODPRUŽENÍ Souhrn prvků automobilu, které vytvářejí pružné spojení mezi nápravami a nástavbou (karosérií). ÚČEL zmírnit rázy a otřesy karosérie od nerovnosti vozovky, zmenšit namáhání rámu (zejména krutem),
Antény. Zpracoval: Ing. Jiří. Sehnal. 1.Napájecí vedení 2.Charakteristické vlastnosti antén a základní druhy antén
ANTÉNY Sehnal Zpracoval: Ing. Jiří Antény 1.Napájecí vedení 2.Charakteristické vlastnosti antén a základní druhy antén Pod pojmem anténa rozumíme obecně prvek, který zprostředkuje přechod elektromagnetické
3.1.5 Energie II. Předpoklady: 010504. Pomůcky: mosazná kulička, pingpongový míček, krabička od sirek, pružina, kolej,
3.1.5 Energie II Předpoklady: 010504 Pomůcky: mosazná kulička, pingpongový míček, krabička od sirek, pružina, kolej, Př. 1: Při pokusu s odrazem míčku se během odrazu zdá, že se energie míčku "někam ztratila".
Seznam některých pokusů, prováděných na přednáškách z předmětu Optika a atomistika
Seznam některých pokusů, prováděných na přednáškách z předmětu Optika a atomistika Seznam bude průběžně doplňován U každého pokusu je uvedeno číslo přednášky, ve které s největší pravděpodobností pokus
7. Odraz a lom. 7.1 Rovinná rozhraní dielektrik - základní pojmy
Trivium z optiky 45 7 draz a lom V této kapitole se budeme zabývat průchodem (lomem) a odrazem světla od rozhraní dvou homogenních izotropních prostředí Pro jednoduchost se omezíme na rozhraní rovinná
ZADÁVACÍ DOKUMENTACE
Příloha č. 7 ZADÁVACÍ DOKUMENTACE pro veřejnou zakázku na stavební práce mimo režim zákona o veřejných zakázkách č. 137/2006 Sb., o veřejných zakázkách v platném znění, a dle Závazných pokynů pro žadatele
Paprsková a vlnová optika
Modularizace a modernizace studijního programu počáteční přípravy učitele fyziky Univerzita Palackého v Olomouci Přírodovědecká fakulta Paprsková a vlnová optika Ivo Vyšín, Jan Říha Olomouc 2012 Modularizace
PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM... Úloha č. Název: Pracoval: stud. skup. dne Odevzdal dne: Možný počet bodů Udělený počet bodů Práce při měření 0 5 Teoretická
Jaká je nejmenší výška svislého rovinného zrcadla, aby se v něm stojící osoba vysoká 180 cm viděla celá? [90 cm]
Dvě rovinná zrcadla svírají úhel. Na jedno zrcadlo dopadá světelný paprsek, který leží v rovině kolmé na průsečnici obou zrcadel. Paprsek se odrazí na prvním, potom na druhém zrcadle a vychýlí se od původního
3. Dynamika. Obecné odvození: a ~ F a ~ m. Zrychlení je přímo úměrné F a nepřímo úměrné m. 3. 2. 1 Výpočet síly a stanovení jednotky newton. F = m.
3. Dynamika Zabývá se říčinou ohybu (jak vzniká a jak se udržuje). Vše se odehrávalo na základě řesných okusů, vše shrnul Isac Newton v díle Matematické základy fyziky. Z díla vylývají 3 ohybové zákony.
A. PODÍL JEDNOTLIVÝCH DRUHŮ DOPRAVY NA DĚLBĚ PŘEPRAVNÍ PRÁCE A VLIV DÉLKY VYKONANÉ CESTY NA POUŽITÍ DOPRAVNÍHO PROSTŘEDKU
A. PODÍL JEDNOTLIVÝCH DRUHŮ DOPRAVY NA DĚLBĚ PŘEPRAVNÍ PRÁCE A VLIV DÉLKY VYKONANÉ CESTY NA POUŽITÍ DOPRAVNÍHO PROSTŘEDKU Ing. Jiří Čarský, Ph.D. (Duben 2007) Komplexní přehled o podílu jednotlivých druhů
I. Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb
I. Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb 1 VŠEOBECNĚ ČSN EN 1991-1-1 poskytuje pokyny pro stanovení objemové tíhy stavebních a skladovaných materiálů nebo výrobků, pro vlastní
c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.
9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte
***I POSTOJ EVROPSKÉHO PARLAMENTU
EVROPSKÝ PARLAMENT 2009-2014 Konsolidovaný legislativní dokument 11.5.2011 EP-PE_TC1-COD(2010)0349 ***I POSTOJ EVROPSKÉHO PARLAMENTU přijatý v prvním čtení dne 11. května 2011 k přijetí směrnice Evropského
SMĚRNICE EVROPSKÉHO PARLAMENTU A RADY 2009/76/ES
L 201/18 Úřední věstník Evropské unie 1.8.2009 SMĚRNICE EVROPSKÉHO PARLAMENTU A RADY 2009/76/ES ze dne 13. července 2009 o hladině akustického tlaku kolových zemědělských a lesnických traktorů působícího
4.5.1 Magnety, magnetické pole
4.5.1 Magnety, magnetické pole Předpoklady: 4101 Pomůcky: magnety, kancelářské sponky, papír, dřevěná dýha, hliníková kulička, měděná kulička (drát), železné piliny, papír, jehla (špendlík), korek (kus
Brzdová zařízení kolových zemědělských a lesnických traktorů ***I
P7_TA-PROV(2011)0213 Brzdová zařízení kolových zemědělských a lesnických traktorů ***I Legislativní usnesení Evropského parlamentu ze dne 11. května 2011 o návrhu směrnice Evropského parlamentu a Rady
Charakteristika vyučovacího předmětu
Vyučovací předmět: FYZIKA Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení Předmět fyzika navazuje na výuku zejména matematiky, prvouky, vlastivědy a přírodovědy na prvním stupni.
5. Elektromagnetické vlny
5. Elektromagnetické vlny 5.1 Úvod Optika je část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko
1 BUBNOVÁ BRZDA. Bubnové brzdy používané u vozidel jsou třecí s vnitřními brzdovými čelistmi.
1 BUBNOVÁ BRZDA Bubnové brzdy používané u vozidel jsou třecí s vnitřními brzdovými čelistmi. Nejdůležitější části bubnové brzdy : brzdový buben, brzdové čelisti, rozporné zařízení, vratné pružiny, štít
Nabídkový katalog výukových videopořadů
Nabídkový katalog výukových videopořadů Ceny videopořadů jsou uváděny bez nosičů a DPH Český jazyk a literatura Máňa 231,- Kč (21 minut) Život a dílo spisovatele Jaroslava Havlíčka tak, jak na něj vzpomíná
OPTIKA Světelné jevy TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
OPTIKA Světelné jevy TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Rozklad světla Když světlo prochází hranolem, v důsledku dvojnásobného lomu na rozhraních
TECHNICKÉ KRESLENÍ A CAD
Přednáška č. 7 V ELEKTROTECHNICE Kótování Zjednodušené kótování základních geometrických prvků Někdy stačí k zobrazení pouze jeden pohled Tenké součásti kvádr Kótování Kvádr (základna čtverec) jehlan Kvalitativní
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla
Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 3. Reálná čísla RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny. K nejvýznamnějším patří množina reálných čísel,
VY_62_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen Červen 2012
VY_62_INOVACE_VK64 Jméno autora výukového materiálu Věra Keselicová Datum (období), ve kterém byl VM vytvořen Červen 2012 Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace 8. ročník
Polovodiče typu N a P
Polovodiče typu N a P Autor: Lukáš Polák Polovodičové materiály, vlastnosti křemík arsenid galitý GaAs selenid kademnatý CdSe sulfid kademnatý CdS Elektrické vlastnosti polovodičů závisí na: teplotě osvětlení
(1) (3) Dále platí [1]:
Pracovní úkol 1. Z přiložených ů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 2. Změřte zvětšení a zorná pole mikroskopu pro všechny možné kombinace ů a ů. Naměřené
Měření základních vlastností OZ
Měření základních vlastností OZ. Zadání: A. Na operačním zesilovači typu MAA 74 a MAC 55 změřte: a) Vstupní zbytkové napětí U D0 b) Amplitudovou frekvenční charakteristiku napěťového přenosu OZ v invertujícím
1.1.11 Poměry a úměrnosti I
1.1.11 Poměry a úměrnosti I Předpoklady: základní početní operace, 010110 Poznámka: Následující látka bohužel patří mezi ty, kde je nejvíce rozšířené používání samospasitelných postupů, které umožňují
1. POLOVODIČOVÁ DIODA 1N4148 JAKO USMĚRŇOVAČ
1. POLOVODIČOVÁ DIODA JAKO SMĚRŇOVAČ Zadání laboratorní úlohy a) Zaznamenejte datum a čas měření, atmosférické podmínky, při nichž dané měření probíhá (teplota, tlak, vlhkost). b) Proednictvím digitálního
Vyřizuje: Tel.: Fax: E-mail: Datum: 6.8.2012. Oznámení o návrhu stanovení místní úpravy provozu na místní komunikaci a silnici
M Ě S T S K Ý Ú Ř A D B L A N S K O ODBOR STAVEBNÍ ÚŘAD, oddělení silničního hospodářství nám. Svobody 32/3, 678 24 Blansko Pracoviště: nám. Republiky 1316/1, 67801 Blansko Město Blansko, nám. Svobody
Měření změny objemu vody při tuhnutí
Měření změny objemu vody při tuhnutí VÁCLAVA KOPECKÁ Katedra didaktiky fyziky, Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Anotace Od prosince 2012 jsou na webovém portálu Alik.cz publikovány
a) Jaká je hodnota polytropického exponentu? ( 1,5257 )
Ponorka se potopí do 50 m. Na dně ponorky je výstupní tunel o průměru 70 cm a délce, m. Tunel je napojen na uzavřenou komoru o objemu 4 m. Po otevření vnějšího poklopu vnikne z části voda tunelem do komory.
Měření momentu setrvačnosti z doby kmitu
Úloha č. 4 Měření momentu setrvačnosti z doby kmitu Úkoly měření:. Určete moment setrvačnosti vybraných těles, kruhové a obdélníkové desky.. Stanovení momentu setrvačnosti proveďte s využitím dvou rozdílných
5.2.2 Rovinné zrcadlo
5.2.2 Rovinné zrcadlo ředpoklady: 5101, 5102, 5201 Terminologie pro přijímačky z fyziky Optická soustava = soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných paprsků. Optické
BioNase - O přístroji
BioNase - O přístroji Rychlý a účinný mobilní přístroj určený k léčbě senné rýmy a rýmy alergického původu. Stop senné rýmě a rýmě alergického původu fototerapií léčbou světelnými paprsky BioNase, bez
Obchodní podmínky. 1. Úvodní ustanovení. 2. Cena zboží a služeb a platební podmínky
Obchodní podmínky 1. Úvodní ustanovení 1.1 Tyto obchodní podmínky upravují v souladu s ustanovením 1751 odst. 1 zákona č. 89/2012 Sb., Občanského zákoníku (dále jen OZ ) vzájemná práva a povinnosti smluvních
Oblastní stavební bytové družstvo, Jeronýmova 425/15, Děčín IV
Oblastní stavební bytové družstvo, Jeronýmova 425/15, Děčín IV Směrnice pro vyúčtování služeb spojených s bydlením Platnost směrnice: - tato směrnice je platná pro městské byty ve správě OSBD, Děčín IV
Pokyn D - 293. Sdělení Ministerstva financí k rozsahu dokumentace způsobu tvorby cen mezi spojenými osobami
PŘEVZATO Z MINISTERSTVA FINANCÍ ČESKÉ REPUBLIKY Ministerstvo financí Odbor 39 Č.j.: 39/116 682/2005-393 Referent: Mgr. Lucie Vojáčková, tel. 257 044 157 Ing. Michal Roháček, tel. 257 044 162 Pokyn D -
Vyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích
Změny 1 vyhláška č. 294/2015 Sb. Vyhláška č. 294/2015 Sb., kterou se provádějí pravidla provozu na pozemních komunikacích a která s účinností od 1. ledna 2016 nahradí vyhlášku č. 30/2001 Sb. Umístění svislých
Mechanismy. Vazby členů v mechanismech (v rovině):
Mechanismy Mechanismus klikový, čtyřkloubový, kulisový, západkový a vačkový jsou nejčastějšími mechanismy ve strojích (kromě převodů). Mechanismy obsahují členy (kliky, ojnice, těhlice, křižáky a další).
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Elektrické napětí Elektrické napětí je definováno jako rozdíl elektrických potenciálů mezi dvěma body v prostoru.
ČÁST II. ZÁKLADNÍ PODMÍNKY
Cenový věstník 12/2015 40 Za každých dalších 20 km 20 URČENÉ PODMÍNKY PRO VEŘEJNOU VNITROSTÁTNÍ SILNIČNÍ LINKOVOU OSOBNÍ DOPRAVU ČÁST I. VŠEOBECNÉ PODMÍNKY 1. Uvedené podmínky platí pro dopravce provozující
CVIČENÍ č. 8 BERNOULLIHO ROVNICE
CVIČENÍ č. 8 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Z injekční stříkačky je skrze jehlu vytlačovaná voda. Průměr stříkačky je D, průměr jehly d. Určete výtokovou rychlost,
Smlouva na dodávku pitné vody
Smlouva na dodávku pitné vody níže uvedené smluvní strany uzavírají tuto smlouvu na dodávku a prodej pitné vody z veřejného vodovodu dle zákona č. 274/2001 Sb., o vodovodech a kanalizacích, a prováděcí
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.2.3. Valivá ložiska Ložiska slouží k otočnému nebo posuvnému uložení strojních součástí a k přenosu působících
Kritéria zelených veřejných zakázek v EU pro zdravotnětechnické armatury
Kritéria zelených veřejných zakázek v EU pro zdravotnětechnické armatury Zelené veřejné zakázky jsou dobrovolným nástrojem. V tomto dokumentu jsou uvedena kritéria EU, která byla vypracována pro skupinu
VÝKLADOVÁ PRAVIDLA K RÁMCOVÉMU PROGRAMU PRO PODPORU TECHNOLOGICKÝCH CENTER A CENTER STRATEGICKÝCH SLUŽEB
VÝKLADOVÁ PRAVIDLA K RÁMCOVÉMU PROGRAMU PRO PODPORU TECHNOLOGICKÝCH CENTER A CENTER STRATEGICKÝCH SLUŽEB Rámcový program pro podporu technologických center a center strategických služeb schválený vládním
Pardubický kraj Komenského náměstí 125, Pardubice 532 11. SPŠE a VOŠ Pardubice-rekonstrukce elektroinstalace a pomocných slaboproudých sítí
Pardubický kraj Komenského náměstí 125, Pardubice 532 11 Veřejná zakázka SPŠE a VOŠ Pardubice-rekonstrukce elektroinstalace a pomocných slaboproudých sítí Zadávací dokumentace 1. Obchodní podmínky, platební
Návod na použití kamerového systému do přívěsu
Návod na použití kamerového systému do přívěsu Obj. č: 33275 Úvod: Tento produkt pracuje v pásmu o rozsahu ISM-2,4GHz a proto může být legálně používán po celém světě bez povolení nebo schválení. Jsme
SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G
SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 1O POLOHOVÉ VYTYČOVÁNÍ Pod pojem polohového vytyčování se
L 110/18 Úřední věstník Evropské unie 24.4.2012
L 110/18 Úřední věstník Evropské unie 24.4.2012 NAŘÍZENÍ KOMISE (EU) č. 351/2012 ze dne 23. dubna 2012, kterým se provádí nařízení Evropského parlamentu a Rady (ES) č. 661/2009, pokud jde o požadavky pro
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. katedra fyziky F Y Z I K A I I
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ katedra fyziky F Y Z I K A I I Sbírka příkladů pro studijní obory DMML, TŘD, MMLS a AID prezenčního studia DFJP RNDr. Jan Z a j í c, CSc., 2006 VII.
Snímače tlaku a síly. Snímače síly
Snímače tlaku a síly Základní pojmy Síla Moment síly Tlak F [N] M= F.r [Nm] F p = S [ Pa; N / m 2 ] 1 bar = 10 5 Nm -2 1 torr = 133,322 Nm -2 (hydrostatický tlak rtuťového sloupce 1 mm) Atmosférický (barometrický)
TEORETICKÝ VÝKRES LODNÍHO TĚLESA
TEORETICKÝ VÝKRES LODNÍHO TĚLESA BOKORYS (neboli NÁRYS) je jeden ze základních pohledů, ze kterého poznáváme tvar kýlu, zádě, zakřivení paluby, atd. Zobrazuje v osové rovině obrys plavidla. Uvnitř obrysu
STÍRÁNÍ NEČISTOT, OLEJŮ A EMULZÍ Z KOVOVÝCH PÁSŮ VE VÁLCOVNÁCH ZA STUDENA
STÍRÁNÍ NEČISTOT, OLEJŮ A EMULZÍ Z KOVOVÝCH PÁSŮ VE VÁLCOVNÁCH ZA STUDENA ÚVOD Při válcování za studena je povrch vyválcovaného plechu znečištěn oleji či emulzemi, popř. dalšími nečistotami. Nežádoucí
Manuální, technická a elektrozručnost
Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních
Uložení potrubí. Postupy pro navrhování, provoz, kontrolu a údržbu. Volba a hodnocení rezervy posuvu podpěr potrubí
Uložení potrubí Postupy pro navrhování, provoz, kontrolu a údržbu Volba a hodnocení rezervy posuvu podpěr potrubí Obsah: 1. Definice... 2 2. Rozměrový návrh komponent... 2 3. Podpěra nebo vedení na souosém
Analýza oběžného kola
Vysoká škola báňská Technická univerzita 2011/2012 Analýza oběžného kola Radomír Bělík, Pavel Maršálek, Gȕnther Theisz Obsah 1. Zadání... 3 2. Experimentální měření... 4 2.1. Popis měřené struktury...
Amatérská videokamera jako detektor infra erveného zá ení
Amatérská videokamera jako detektor infra erveného zá ení ZDEN K BOCHNÍ EK Katedra obecné fyziky P írodov decká fakulta MU, Brno P ísp vek popisuje n kolik experiment využívajících amatérskou videokameru
R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika
Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.3 HŘÍDELOVÉ SPOJKY Spojky jsou strojní části, kterými je spojen hřídel hnacího ústrojí s hřídelem ústrojí
2.06 Kovy. Projekt Trojlístek
2. Vlastnosti látek a chemické reakce 2.06 Kovy. Projekt úroveň 1 2 3 1. Předmět výuky Metodika je určena pro vzdělávací obsah vzdělávacího předmětu Chemie. Chemie 2. Cílová skupina Metodika je určena
TECHNICKÉ A PROVOZNÍ STANDARDY IDSOK
TECHNICKÉ A PROVOZNÍ STANDARDY IDSOK květen 2011 Úvod... 3 1. Základní pojmy... 3 2. Standard vybavení vozidel IDSOK... 4 2.1 Základní požadavky na vozidla a jejich vybavení... 4 2.2 Standardy vybavení
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha: 4 Název úlohy: Balmerova série Kroužek: po-do Datum měření: 10. března 014 Skupina: Vypracoval: Ondřej Grover Klasifikace: 1 Pracovní úkoly 1. (Nepovinné) V
STANOVISKO č. STAN/1/2006 ze dne 8. 2. 2006
STANOVISKO č. STAN/1/2006 ze dne 8. 2. 2006 Churning Churning je neetická praktika spočívající v nadměrném obchodování na účtu zákazníka obchodníka s cennými papíry. Negativní následek pro zákazníka spočívá
5 ZKOUŠENÍ CIHLÁŘSKÝCH VÝROBKŮ
5 ZKOUŠENÍ CIHLÁŘSKÝCH VÝROBKŮ Cihelné prvky se dělí na tzv. prvky LD (pro použití v chráněném zdivu, tj. zdivo vnitřních stěn, nebo vnější chráněné omítkou či obkladem) a prvky HD (nechráněné zdivo).
OVĚŘENÍ ELEKTRICKÉHO ZAŘÍZENÍ STROJŮ NOVĚ UVÁDĚNÝCH DO PROVOZU PODLE ČSN/STN EN 60204-1 Ed. 2
OVĚŘENÍ ELEKTRICKÉHO ZAŘÍZENÍ STROJŮ NOVĚ UVÁDĚNÝCH DO PROVOZU PODLE ČSN/STN EN 60204-1 Ed. 2 Ing. Leoš KOUPÝ, ILLKO, s. r. o. Masarykova 2226, 678 01 Blansko ČR, www.illko.cz, l.koupy@illko.cz ÚVOD Stroj
LED osvětlen. tlení. telné zdroje LED. LED diody. spektrum LED. Ing. Jana Lepší
Světeln telné zdroje LED osvětlen Ing. Jana Lepší Zdravotní ústav se sídlem v Ústí nad Labem Oddělení faktorů prostředí - pracoviště Plzeň jana.lepsi@zuusti.cz LED dioda - polovodičová elektronická součástka
Organismy. Látky. Bakterie drobné, okem neviditelné, některé jsou původci nemocí, většina z nich je však velmi užitečná a v přírodě potřebná
Organismy Všechny živé tvory dohromady nazýváme živé organismy (zkráceně "organismy") Živé organismy můžeme roztřídit na čtyři hlavní skupiny: Bakterie drobné, okem neviditelné, některé jsou původci nemocí,
Učební osnovy Fyzika 6
Učební osnovy Fyzika 6 Výstup Doporučené učivo Ročníkový výstup 1. uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí 2. změří vhodně zvolenými
Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162
Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Určeno pro Sekce Předmět Téma / kapitola 6. ročník Základní EVVO Fotosyntéza
Novinky verzí SKLADNÍK 4.24 a 4.25
Novinky verzí SKLADNÍK 4.24 a 4.25 Zakázky standardní přehled 1. Možnosti výběru 2. Zobrazení, funkce Zakázky přehled prací 1. Možnosti výběru 2. Mistři podle skupin 3. Tisk sumářů a skupin Zakázky ostatní
269/2015 Sb. VYHLÁŠKA
269/2015 Sb. - rozúčtování nákladů na vytápění a příprava teplé vody pro dům - poslední stav textu 269/2015 Sb. VYHLÁŠKA ze dne 30. září 2015 o rozúčtování nákladů na vytápění a společnou přípravu teplé
Společné stanovisko GFŘ a MZ ke změně sazeb DPH na zdravotnické prostředky od 1. 1. 2013
Společné stanovisko GFŘ a MZ ke změně sazeb DPH na zdravotnické prostředky od 1. 1. 2013 Od 1. 1. 2013 došlo k novelizaci zákona č. 235/2004 Sb., o dani z přidané hodnoty (dále jen zákon o DPH ), mj. i
obecně závazné vyhlášky o vedení technické mapy obce A. OBECNÁ ČÁST Vysvětlení navrhované právní úpravy a jejích hlavních principů
O D Ů V O D N Ě N Í obecně závazné vyhlášky o vedení technické mapy obce A. OBECNÁ ČÁST Vysvětlení navrhované právní úpravy a jejích hlavních principů 1. Definice technické mapy Technickou mapou obce (TMO)
Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: fyzika. Třída: kvarta. Očekávané výstupy. Poznámky. Přesahy. Žák.
Vzdělávací oblast: Člověk a příroda Vyučovací předmět: fyzika Třída: kvarta Očekávané výstupy Využívá prakticky poznatky o působení magnetického pole na magnet a cívku s proudem a o vlivu změny magnetického
Příloha č. 1 - TECHNICKÁ SPECIFIKACE. SUSEN Horké komory. Přestupní ochranný kryt
Příloha č. 1 - TECHNICKÁ SPECIFIKACE SUSEN Horké komory Přestupní ochranný kryt 1 Obsah: 1. Úvod 3 2. Technická specifikace 3 3. Ideový návrh přestupního ochranného krytu 7 4. Vnitřní uspořádání ochranného
MOBILNÍ KOMUNIKACE STRUKTURA GSM SÍTĚ
MOBILNÍ KOMUNIKACE STRUKTURA GSM SÍTĚ Jiří Čermák Letní semestr 2005/2006 Struktura sítě GSM Mobilní sítě GSM byly původně vyvíjeny za účelem přenosu hlasu. Protože ale fungují na digitálním principu i
na tyč působit moment síly M, určený ze vztahu (9). Periodu kmitu T tohoto kyvadla lze určit ze vztahu:
Úloha Autoři Zaměření FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE 2. Měření modulu pružnosti v tahu a modulu pružnosti ve smyku Martin Dlask Měřeno 11. 10., 18. 10., 25. 10. 2012 Jakub Šnor SOFE Klasifikace
Model dvanáctipulzního usměrňovače
Ladislav Mlynařík 1 Model dvanáctipulzního usměrňovače Klíčová slova: primární proud trakčního usměrňovače, vyšší harmonická, usměrňovač, dvanáctipulzní zapojení usměrňovače, model transformátoru 1 Úvod