10. Základní statistické pojmy.

Rozměr: px
Začít zobrazení ze stránky:

Download "10. Základní statistické pojmy."

Transkript

1 . Základí statistické pojmy.. Úvodí iformace Statistika je často představováa jako pouhý sběr čísel ebo jim podobých údajů. Původí výzam toho slova skutečě souvisí se sběrem iformací o státu ( z latiského status stát ) počtu obyvatel, sídel, o výběru daí atd. I des existují istituce, které se zabývají takovýmto sběrem dat, v ČR je to Český statistický úřad. Sbírá a zveřejňuje ěkteré iformace o obcích, průmyslu, ekoomice, o demografickém rozvoji státu. Pod pojmem statistika des však mííme mohem více, statistika se v jistém slova smyslu stala jazykem pro práci s daty, pro jejich zpracováí a iterpretaci. Ze statistiky se stala rozviutá vědecká metoda aalýzy dat, která achází široké uplatěí v přírodích i společeských vědách i ve společosti vůbec. Při vlastí praxi uplatňujeme dva způsoby přístupu k údajům. Především je to přístup k iformacím vějšího prostředí a posléze aše reflexe a tyto údaje ve formě zobecěí. Například při porováváí sledovaosti televizích kaálů eoslovujeme všechy domácosti, ale z pečlivě vybraých domácostí a jejich sledovaosti televize čiíme závěry platé pro všechy domácosti. Proces zobecňováí pozatků azýváme iduktivím způsobem usuzováí ( idukcí ) apř. zobecěí sledovaosti ve výběru a všechy domácosti. Schopost přijímat ové pozatky a z ich se učit a vyvozovat závěry jsou jedím ze základích rysů lidského uvažováí. Druhým způsobem uvažováí je pricip deduktivího přístupu k údajům ( dedukce ). Při deduktivím přístupu čiíme závěry z obecých zákoitostí. Závěry myšlekových procesů iduktivího charakteru jsou ovlivěy postojem subjektu. Iduktiví statistika se zabývá způsoby jak přeášet závěry takovýchto procesů, umožňuje z pozorovaých dat vytvářet obecé závěry s určeím jejich spolehlivosti. Výpočty takových spolehlivostí jsou založey a pozatcích teorie pravděpodobosti a jsou proto objektiví.. Statistický soubor a výběry Jedím ze základích pojmů, s kterými se budeme setkávat stále jsou populace ( statistický soubor ) a výběr. Populace je možia všech prvků, které jsou předmětem daého statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický soubor jsou buď dáy prostě výčtem ebo mají určité společé vlastosti - tzv. idetifikačí zaky - umožňující určit, zda prvek do daého statistického souboru patří ebo epatří. Idetifikačí zaky tedy statistický soubor mohou vymezovat. Z hlediska velikosti je zřejmé, že většia populací bude mít koečý rozsah, ekoečý rozsah budou mít takové populace, které jsou určey zakem, který můžeme hypoteticky ekoečěkrát opakovat ( apř. měříme hmotost po pokusu, teplotu atd. ). Podle počtu sledovaých zaků je potom takováto populace jedorozměré či vícerozměrá ( sledujeme dva a více zaků apř. teplotu, tlak; komuikativost, iteligeci atd. ). Pro vlastí popsáí populací se používá metoda parametrů charakteristik. Jde o číselé hodoty, které jsou většiou pevá čísla. Jejich hodota eí záma a je uto ji zjistit či odhadou vhodými statistickými metodami. Zaky, které sledujeme v populaci mají obecě buď charakter kvatitativí ( lze je vyjádřit číslem apř. délka, hmotost, teplota ) a kvalitativí ( jsou většiou vyjádřey textem ). Kvatitativí zaky dělíme dále a spojité výsledky zkoumáí mohou abývat hodot ěkterého itervalu ( teplota, délka ) a diskrétí jestliže existuje je koečě moho možých stavů zaku ( apř. počet dětí v rodiě, počet vykvetlých rostli atd. ).

2 K vlastímu měřeí kvatitativích údajů používáme buď itervalových ebo poměrových stupic. Jestliže chceme zjistit je rozdíl mezi kvalitativími hodotami, používáme itervalovou stupici ( v takovýchto stupicích je počátek vole apř. C, stupice výšky tóu, stupice bolesti atd. ). Při takovémto způsobu měřeí je většiou esmyslé ozačeí prvek a má hodotu zaku x větší ež prvek b, eboť počátek je možo volit růzě ( apř. teplota ). Pokud chceme měřit údaje ve vztahu k pevým jedotkám ( váha, vzdáleost ) používáme stupici poměrovou. Kvalitativí zaky se sažíme také měřit, používáme k tomu omiálí ( pojem ) a ordiálí ( pořadí ) stupici. Nomiálí stupice je složea z ejméě dvou avzájem se vylučujících tříd. Jestliže jsou třídy právě dvě azývá se dichotomická. Příklady takovéto stupice: pohlaví / mužské, žeské /; barva / modrá, zeleá, červeá, bílá /. Příkladem takovéto klasifikace je také. meziárodí stupice emocí, úrazů a příči smrti. Čísla, která jsou přiřazea jedotlivým chorobám ic evypovídají o daé chorobě. Ordiálí stupice je založea opět a eslučitelých třídách, ale ty jsou ještě avzájem uspořádáy. Příklady takovýchto stupic: ejvyšší úroveň vzděláí / egramotý, základí, středí, vysokoškolské / ; srozumitelost / žádá, malá, středí, uspokojivá, vyikající/. V tabulkách. a. íže jsou uvedey způsoby použití jedotlivých stupic. Tabulka. Typ stupice Použití pro data Přípusté změy Charakteristiky rozděleí Nomiálí stupice Jsme schopi rozhodout o rozdílu mezi jedotlivými prvky populace a o jejich zařazeí do tříd Permutace, přejmeováí Absolutí četost, relativí četost, modus Ordiálí stupice Navíc: Umíme určit, který prvek je meší a který větší a zařadit je do správých tříd Možo změit pomocí mootóí trasformace ( rostoucí ) Dále: Kumulativí četost, pořadí, kvatily, mediá, pořadové hodoty Itervalová stupice Navíc: Umíme staovit relativí ulový bod ( počátek ) a zjistit vztah prvků vůči ěmu ( rozdíly!) Lieárí změa - posuutí a zmešeí ebo zvětšeí ( y = a x + b ) Dále: Aritmetický průměr, směrodatá odchylka, šikmost, špičatost Poměrová stupice Navíc: Umíme staovit absolutí ulový bod ( počátek ) a zjistit vztah prvků vůči ěmu ( podíly!) Tabulka. Změa je zvětšeí ebo zmešeí ( kladé ) tj. y = a x ( a > ) Dále: Ostatí průměry ( harmoický, geometrický ), variačí koeficiet Typ stupice Testy Závislost, ezávislost Nomiálí stupice c - testy Kotigečí koeficiety, čtyřpolíčkový koeficiet Ordiálí stupice Dále: Pořadové testy, Kolmogor - Smirův test, U - test Pořadový korelačí koeficiet Itervalová stupice Dále: Parametrické testy odvozeé z Korelačí koeficiet, biseriálí N(,) koeficiety Poměrová stupice Stejě jako výše Stejě jako výše Pro vyšetřeí populace používáme růzý způsob přístupu k datům : Provádíme buď statistický pokus, statistické šetřeí ebo pozorovací studii. Účelem statistického pokusu je pláovitě měit faktory ( podmíky ) a sledovat jejich vliv a změu vyšetřovaých zaků. Výběr prvků s imiž experimetujme provádíme zásadě áhodě, aby edošlo k vychýleí výsledých hodot. Při tzv. kotrolovaém pokusu rozdělíme vyšetřovaé skupiy a

3 pokusé a kotrolí. U pokusé skupiy byla provedey změa, u kotrolí ikoli. Aby byl pokus dostatečě objektiví, je uto, aby obě skupiy byly rovoceé jak a začátku pokusu, tak i v jeho průběhu. Chceme li zabráit příosu subjektiví iformací volíme často pricip tzv. slepého pokusu, kdy te kdo údaje vyhodocuje ( apř. lékař ) evěděl, která skupia je kotrolí a která je pokusá. Jestliže ai vyšetřovaý subjekt eví zda je v pokusé ebo kotrolí skupiě azýváme teto pricip dvojité utajeí ebo dvojitý slepý pokus. Je vidět, že pricip áhodého výběru a rozděleí a pokusou a kotrolí skupiu zlepšuje výsledky ( odstraňujeme eobjektivitu a závislost ). Někdy ovšem eí možé získávat data maipulací s prvky populace. Neí možo provádět statistický pokus, můžeme však jedoduše pozorovat jak probíhají změy a registrovat je. Takovému přístupu říkáme statistické šetřeí ebo pozorovací studie. Používáme ho tehdy, kdy emůžeme využít pricip áhody ( případy, kdy rozložeí zaků v populaci je dáo apř. vzděláí, pohlaví a v pokusu by ebylo respektováo ; ěkdy eí možo realizovat statistický pokus z etických důvodů ( maipulace s lidmi ). Vidíme tedy, že v případě statistického šetřeí se spokojujeme s pasivím sběrem dat. Problémem takovýchto studií je, že pozorovaý jev je velmi často ovlivě ežádoucími zaky. Pro pojem úplého šetřeí tj. šetřeí provedeého a celé populaci se vžil pojem cesus ( sčítáí lidu ). Pro jeho vysoké ekoomické áklady se provádí v aší republice jedou za deset let. Každé statistické šetřeí v podobě cesu by bylo především ekoomicky velmi áročé. Ve většiě případů te, kdo chce provést statistické šetřeí má omezeé zdroje ( fiace, čas ). Někdy je k dispozici je málo údajů ( šetřeí vzácé choroby ebo zvláštího chováí pacietů ). Při dalších šetřeích bychom museli populaci zičit ( apříklad sledováí životosti výrobků ). Výběr může ést přesější výsledky ež úplé šetřeí ( při velkém možství chyb viou eodborých špatě proškoleých pozorovatelů vzike chyba eodstraitelá ). Jakákoli část populace, která dobře odráží její strukturu ( především vyšetřovaé zaky ) bude azváa reprezetativím výběrem. Ostatí typy výběru se azývají selektiví výběry, většiou dávají zkresleý obrázek o vyšetřovaé populaci. Příkladem selektivího výběru je vzorek vysokoškolských profesorů, z ěhož budeme usuzovat a vzdělaost celé populace. Je jisté, že struktura vzdělaosti v ašem výběru bude začě vychýlea proti celé populaci. Výběry pořizujeme metodami áhodého výběru ebo metodami záměrého výběru. Metoda záměrého výběru se opírá expertí staoviska k vytvořeí represetativího výběru ( prováděa často v euchologii, sociologii ). Jsou často závislé a subjektu experta. Metoda áhodého výběru umožňuje vybírat prvky populace áhodě a ezávisle a subjektech. Podle způsobu provedeí rozlišujeme ěkolik druhů áhodého výběru: Prostý áhodý výběr provádě většiou metodou losováí ( každý prvek populace může být vylosová ). Dříve se prováděl i pomocí tabulek áhodých čísel, des možo použít i vhodý geerátor áhodých čísel růzých statistických, ale i estatistických programů. Mechaický výběr jde o jistou formu prostého výběru, ejdříve áhodě očísluji prvky populace a poté zvolím pevé číslo. Všechy prvky, které získám vždy o pevý zadaý krok budou v daém výběru. Pokud eprovedeme a začátku áhodé očíslováí, ale číslováí je už vytvořeo musí dbát a to, aby krok výběru esouvisel s číslováím. Oblastí výběr. Celá populace je rozdělea do částí oblastí tak, aby se ve sledovaých zacích se od sebe velmi odlišovali, v rámci jedé oblasti jsou sledovaé zaky málo odlišé. V jedotlivých oblastech potom provedeme prostý výběr. Spojeím všech takovýchto dílčích výběrů získáme celý hledaý výběr. Skupiový výběr. V případě populací, které čítají statisíce ebo milioy prvků je skoro emožé předchozími metodami vytvořit áhodý výběr. Vyžíváme proto přirozeé

4 rozděleí populace a meší celky ebo vytváříme vlastí umělé děleí. Požadujeme, aby prvky ( skupiy ) děleí byly pokud možo stejě velké a vyšetřovaé zaky heterogeí v rámci jedé skupiy. Variabilita mezi jedotlivými skupiami by měla být co ejmeší. Vícestupňový výběr. Provádí se tehdy, kdy existuje hierarchický popis celé populace ( geografický, sociálí model )..3 Popisá statistika Popisá statistika (deskriptiví statistika) se zabývá popisem stavu ebo vývoje hromadých jevů. Nejprve se vymezí soubor prvků, a ichž se bude uvažovaý jev zkoumat. Následě se všechy prvky vyšetří z hlediska studovaého jevu. Výsledky šetřeí - kvalitativí i kvatitativí, vyjádřey především číselým popisem - tvoří obraz studovaého hromadého jevu vzhledem k vyšetřovaému souboru. V předchozí části jsme studovali pojem statistického výběru. V této části budeme předpokládat, že jsme provedli výběr z populace a budeme se sažit z těchto dat získat údaje o vlastostech základího souboru. Grafické zázorěí výběrových rozděleí je uvedeo v ásledující kapitole. V této kapitole budeme využívat data z tabulky.3 Tabulka.3: Rozděleí měsíčích ákladů studetů a bydleí Pořadí Náklady Pořadí Náklady Pořadí Náklady Uveďme dále důležité pojmy, které budeme eustále využívat. Četost ( absolutí ) hodoty x i je daá počtem prvků x i ve výběru. Relativí četost hodoty x i je daá podílem absolutí četosti a celkového počtu prvků ve výběru. Kumulativí absolutí četost hodoty x i je daá součtem všech absolutích četostí prvků, které jsou meší ebo rovy prvku x i. Kumulativí relativí četost hodoty x i je dáa součtem všech relativích četostí prvků, které jsou meší ebo rovy prvku x i..3. Míry polohy Jde o číselé hodoty pomocí, ichž určujeme polohu míst, kolem kterých jsou data ejvíce umístěy..3.. Průměr Průměr x se používá v případě kvatitativích zaků. Je velmi citlivý a odlehlé hodoty. Průměr hodot x, x,, x vypočteme takto x + x x x = Pro aše data je x = 4, 33. = x i (.).

5 Někdy jsou data uvedea v tabulce včetě svých absolutích četostí ( počtu opakováí ), potom počítáme průměr jako tzv. vážeý průměr: k i. xi x = (.) V tomto případě jsou data rozdělea a k skupi o k prvcích. Pokud jsou data uvedea v tabulce roztříděých dat ( původí dat jsou ahrazea příslušostí do jedoho z vybraých itervalů ) vytvoříme ejprve střed itervalu ( bude ahrazovat všecha data uvedeá v daém itervalu ) a pak z těchto hodot vytvoříme podle vztahu (.) průměr. Tabulka.4 třídí rozděleí četostí: Rozpětí četost Hodota středů itervalů je 5, 75,, 45. Spočítáme li průměr podle vzorce (.) je hodota třídího průměru rova 733,7. Je vidět, že hodota tohoto průměru velmi závisí a správé volbě rozpětí třídy. Pro vytvořeí stejě velkých tříd o počtu k z prvků je možo použít tzv. Sturgesovo pravidlo k º + 3,3. log (.3) Například pro áš případ je = 3 a tedy hodota k º 5,8745. Tedy volíme k = 6. Uveďme dále ěkteré důležité vlastosti průměru: a) Jestliže ke každé hodotě x i ve výběru přičteme kostatu k, zvětší se o kostatu k také původí průměr ( k může být libovolé reálé číslo ). b) Násobíme li každou hodotu ve výběru x i stejou kostatou m, vypočteme ový průměr jako souči starého průměru a kostaty m c) Součet odchylek všech hodot x i ve výběru od jejich průměru x je rove ule ( x) = x (.4) i d) Součet čtverců odchylek všech hodot od jejich průměru je meší ež součet čtverců odchylek všech hodot od libovolé jié hodoty. a x ( ) ( ) x x a x i i (.5) Těchto vlastostí průměru využíváme také k tomu, abychom upravili vstupí hodoty jejich zmešeím ( resp. zvětšeím ) a posuutím. Průměr se používá jako číselá charakteristika protože: a) Je jedozačý b) Je lieárí c) Je spolehlivou číselou hodotou. Průměr epoužijeme, jestliže a) Rozděleí je vícevrcholové

6 b) Rozděleí má a krajích otevřeé třídy ( hodoty ejsou shora ebo zdola omezeé ) c) Údaje ejsou škálovaé metricky, ale ordiálě d) Výběr je extrémě malý e) Rozděleí je asymetrické.3.. Modus Modus xˆ je hodota, která se vyskytuje ejčastěji. Podle tabulky. ho můžeme zjišťovat i zaků, které jsou kvalitativí, dokoce i omiálí. Neí ovlivňová všemi prvky ve výběru. Jestliže je četost všech prvků ve výběru stejá, modus eurčujeme. Jestliže dvě ebo více avzájem sousedících hodot abývají stejé ejvětší četosti, pak aritmetický průměr z těchto hodot azveme modusem. Jestliže existují dvě avzájem esousedící hodoty s ejvětšími stejými četostmi, uvádíme obě jako modus. Rozděleí je pak dvouvrcholové ( bimodálí ). Již ze samé defiice modusu je jasé, že tato charakteristika velmi závisí a výběru a většiou velmi kolísá. Příklad. Zjistěte modus šetřeí výběru barev respodetů bílá, červeá, modrá, červeá, zeleá, bílá, červeá, modrá, bílá, červeá. Odpověď : Nejčetější výskyt má a modus je červeá. Příklad. Zjistěte hodotu modusu pro data z aší tabulky.3. Odpověď: Podle tabulky je x ˆ = 9. Jestliže jsou kvatitativí zaky uspořádáy do třídí tabulky, určíme ejdříve modálí iterval x D ( s ejvyšší četostí ) a modus staovíme iterpolací xˆ = xd + h. (.6) + m kde h je délka modálího itervalu, je četost, x D je dolí hraice tohoto itervalu, je četost ásledujícího itervalu a m četost předchozího itervalu. Aplikujme vzorec (.6) a data z tabulky.4 xˆ = xd + h. = = 583,33. + m 6 Vidíme tedy, že modus zjištěý podle vzorce (.6) může být výrazě odlišý od modusu skutečého Kvatily a mediá Přirozeou mírou jsou kvatily. Daý výběr se ejdříve seřadí od ejmeší hodoty po ejvětší a poté určíme pro daý p% kvatil pořadové číslo jedotky p, pro které platí p p. < p <. +, (.7) kde je počet prvků výběru. Pro hodotu p = 5% se daý kvatil ozačuje mediá ~ x. Jestliže je počet sudé číslo, vypočteme mediá jako průměrou hodotu z hodot stojících vlevo a vpravo od teoretického mediáu určeého vzorcem (.7). Mediá popisuje hodotu, která dělí daý výběr a dvě stejě velké části. V ašem příkladě je ~ x = 785 =. Další výzamé kvatity jsou : Dolí kvartil x,5 je urče jako 5% kvatil.

7 Horí kvartil x,75 je urče jako 75% kvatil. V ašem případě je x,5 = 8 a x,75 = 3. Pro hodoty kvartilů vytváříme ještě jedu míru ( jde o míru variability ) a to kvartilové rozpětí R q = x,75 - x,5 V ašem případě je R q = 3 8 = 9. Pro hodoty p=,,,9 azýváme takto spočteé kvatily ázvy decily. Pro hodoty p =,,3,,99 azýváme podobě kvatily jako percetily. Pomocí kvartilů je také možo velmi přehledě zázorit data v grafu s ázvem Box Plot ebo jiak Krabicový graf ebo Krabicový diagram ebo Vousatá krabička. Pomocí ěho můžeme rozdělit data z výběru a vitří, vější a odlehlá. Vytváříme ho ásledujícím způsobem: Základím prvkem grafu je obdélík, jehož hray tvoří hodoty dolího a horího kvartilu uvitř tohoto obdélíku je 5% hodot výběru. Uvitř je svislou čarou vyzače mediá, popř. tečkou průměr ( křížkem modus). Z obdélíku vedou dvě úsečky kolmé k hraám, jejichž délka je dáa vzdáleostí vitřích hradeb od hray obdélíku. Vitří hradby se vypočtou tímto předpisem h D = x,5,5. ( x,75 x,5 ) (.8) h H = x,75 +,5. ( x,75 x,5 ) (.9) V ašem případě jsou h D = 8,5. 9 = -8 a h H = 3+,5.9 =5865. Dále se počítají vější hradby H D = x,5.(,5. ( x,75 x,5 )) (.) H H = x,75 +.(,5. ( x,75 x,5 )) (.) V ašem případě je H D = 8-3.9= a H H = = 873. Hradby slouží pro idetifikaci dat ve výběru. Hodoty uvitř vitřích hradeb jsou hodoty přilehlé; hodoty mezi vitřími a vějšími hradbami jsou hodoty vější a hodoty vě vějších hradeb jsou hodoty vzdáleé ebo jiak odlehlé. Do grafu se zakresluje i miimálí a maximálí hodoty jako body Jestliže máme data uvedea v třídí tabulce musíme p% kvatil počítat pomocí lieárí iterpolace x p xd p D =, (.) xh xd H D kde x D je dolí a x H je horí mez itervalu v ěmž leží daý kvatil; D je kumulativí relativí četost odpovídající x D a H je kumulativí relativí četost odpovídající x H.Zjistěme hodotu kvatilu pro áš případ tabulky.4: ~ x 5,5,33 = ~ x = 854,67. 5,57,33

8 Použití mediáu je vhodé při rozděleích s otevřeými třídami, pro ordiálí hodoty, pro velmi symetrická rozděleí Geometrický průměr Provádí se je pro hodoty ve výběru, které jsou kladé. Jeho ozačeí je G a spočítá se jako tá odmocia ze součiu hodot x i. Používáme ho, jak je zřejmé z defiice, a kvatifikovatelé zaky měřeé a poměrové stupici. Používá se k určeí průměré změy velikosti, jestliže předpokládáme, že tato změa je kostatí ( multiplikativě ). G = x. x.. x (.3) Klasickým příkladem k užití je případ výpočtu iflace za ěkolik let záme li hodoty iflačích kroků mezi jedotlivými ásledými roky Harmoický průměr Harmoický průměr H zjistíme jako podíl počtu hodot a součtu převráceých hodot výběru. H = (.4) xi Pomocí harmoického průměru lze apříklad počítat úlohy a průměré rychlosti, jestliže jsou zámy tyto hodoty a jedotlivých úsecích trati a chceme získat průměrou rychlost celkovou..3. Míry variability Pomocí je měr polohy elze přesě popsat výběr, protože moho dat má stejé ebo přibližě stejé hodoty jedotlivých parametrů měr polohy, přesto jsou a prví pohled odlišé. Na obrázku íže je uvede případ tří skupi dat, která mají stejý průměr, modus, mediá a přesto jsou odlišá. Odlišost vidíme v soustředěí hodot kolem průměru. Toto soustředěí budeme studovat pomocí růzých měr variability.,8,7,6,5,4,3,, Variačí rozpětí Variačí rozpětí R se vypočte jako rozdíl mezi ejvětší a ejmeší hodotou výběru. R = x max x mi (.5) Pokračujme dále v ašem příkladě, hodota R = = 3

9 Výhodou této míry je jedoduchost určeí a porozuměí. Je však málo stabilí vzhledem k počtu čleů výběru. Používá se proto je u malých výběrů ( ). Výrazě závisí a velikosti výběru. Proto emůžeme mezi sebou porovávat jedotlivé hodoty variačího rozpětí z růzě velkých výběrů. Nedává spolehlivé odhady rozptylu základího souboru..3.. Průměrá odchylka Průměrou odchylku e výběru defiujeme jako aritmetický průměr z absolutích hodot odchylek všech hodot výběru od průměru xi x e = (.6) Uvádíme ji je pro úplost. Je málo stabilí vzhledem k velikosti výběru a dává espolehlivé odhady pro rozptyl Rozptyl a směrodatá odchylka Nejužívaější mírou variability je rozptyl ( resp. směrodatá odchylka ). Pomocí ěho měříme velikost čtverců odchylek jedotlivých hodot výběru od průměru. Ozačujeme ho většiou symbolem s a azýváme ho výběrovým rozptylem s =. ( x i x ), (.7) i = Všiměme si, že při výpočtu edělíme součet odchylek čtverců hodotou ( jako při defiici klasického rozptylu ), ale hodotou ( azývaou také počtem stupňů volosti ). Je to provedeo proto, že získáme lepší odhad skutečého rozptylu s populace. Výběrová směrodatá odchylka se ozačuje symbolem s a je rova odmociě z výběrového rozptylu s =. ( x i x), (.8) Pro vlastí výpočet se hodí i jiá forma vzorce (.7) xi xi s = x x =, i =,,, (.9) Použijeme li vzorce a určeí rozptylu pro data z tabulky.3 získáme s = 9733,448 a hodota s = 9,8. Jsou li hodoty x i výběru uvedeé včetě četostí i potom přejde vzorec (.6) a k k s =. i. ( xi x) =. i. xi. x, (.) kde k je počet všech růzých hodot ve výběru a je celkový počet prvků výběru. Jestliže jsou data uvedea pomocí tříděí do itervalů apř. data z tabulky.4, potom většiou hodoty x i zameají středy třídích itervalů a i počet dat v tomto itervalu. Pokud jsou třídí itervaly ekvidistatí ( mají pevou délku ) s rozměrem h bude výpočet podle vzorce (.) zatíže chybou. Tuto chybu opravujeme pomocí tzv. Sheppardovy korekce h s kor = s (.)

10 Použijeme li opět aše data z tabulky.4 získáme : Nekorigovaé hodoty s = 5 a s =,49; Korigovaé hodoty s kor = 98666,7 a s kor = 99,799. Velmi často astává případ, že celý výběr je z určitých důvodů rozděle do k dílčích částí. V i té části je počet prvků rove i, průměr je rove x i a výběrový rozptyl s i. Potom můžeme počítat celkový výběrový rozptyl s jako k k s =. ( i ). si + i. ( xi x) (.) Z předchozího vzorce vyplývá, že celkový výběrový rozptyl s můžeme rozložit a dvě části a vitroskupiový a meziskupiový. Vitroskupiovým výběrovým rozptylem sledujeme variabilitu uvitř jedotlivých skupi a meziskupiovým výběrovým rozptylem variabilitu mezi těmito skupiami. Takovéto metody rozděleí celkové variability a ezávislé části budeme dále využívat v části Aalýza rozptylu ( ANOVA ). Výběrový rozptyl ezávisí a zvětšeí či zmešeí všech hodot výběru o kostatu. Jestliže všechy hodoty výběru zvětšíte m - krát, zvětší se výběrový rozptyl m krát. Těchto vlastostí velmi často využíváme pro úpravu původí tabulky dat tím, že všechy hodoty posueme - volba ového počátku a výrazě zmešíme ( zvětšíme ) volba ové jedotky Variačí koeficiet Nechť má výběr čleů s průměrem x a směrodatou odchylkou s. Potom variačí koeficiet výběru v je daý vztahem s v =.% (.3) x Používáme ho, když chceme porovat variabilitu růzých zaků ve výběru ebo mezi růzými výběry..3.3 Charakteristiky tvaru rozděleí.3.3. Výběrová míra šikmosti Jde o číselý údaj, který vypovídá o o souměrosti či esouměrosti tvaru rozděleí. Ozačuje se symbolem a. a = ( x x ) 3 i 3, (.4) s. kde je počet čleů výběru, s je hodota výběrové směrodaté odchylky, x je průměr a x i je kokrétí hodota výběru. Je li rozděleí souměré, je hodota a =. Rozděleí je tím esousměrější, čím se hodota a více liší od uly. Je li jeho hodota kladá, potom je rozděleí zešikmeo kladě ( ve výběru je větší kocetrace meších hodot ). Je li jeho hodota záporá, potom je zešikmeo záporě (ve výběru je větší kocetrace větších hodot). Pokračujme s aším příkladem, s daty z tabulky.3. Níže vidíme data v grafu.

11 Polygo četostí 3,5 3,5,5, Hodota míry šikmosti pro aše hodoty a =. Je tedy kladá a data jsou zešikmea kladě Výběrová míra špičatosti. Tato míra popisuje stupeň kocetrace hodot zaku kolem charakteristiky úrově ( kolem průměru ). Stejé ahuštěí prostředích i krajích hodot vede k plochosti ( hodota míry je potom záporá ), větší ahuštěí prostředích hodot se projevuje špičatostí rozděleí( hodota míry je kladá. Tato míra porovává daé rozděleí s ormovaým ormálím rozděleím N(,) ( má hodotu špičatosti rovu ule ). Vypočte se podle vztahu 4 ( xi x) = 4 b 3, (.5) s. ozačuje se symbolem b. Hodota špičatosti pro aše data z tabulky.3 je rova,93. Rozděleí je ploché, což je vidět i z polygou četostí..4 Grafické zobrazeí dat Pro presetaci statistických údajů je velmi působivé používat růzé grafické způsoby. Každý typ grafického zobrazeí hodot má svoje omezeí, ale zároveň i svoje výhody. Kromě klasických typů se k zobrazováí statistických dat hodí speciálí grafy, jede typ jsme už měli možost vidět v části.3..3 Kvatily a mediá šlo o tzv. Box Plot eboli Krabicový graf. V dalším si ukážeme možé grafy pro presetaci údajů. Běžé grafy.4. Bodový graf Zázorňuje hodoty pomocí bodů,většiou v pravoúhlé soustavě. Používá se většiou k zachyceí závislostí právě dvou statistických zaků. Při více ež dvou zacích jeho jedoduchost mizí a stává se méě přehledým. Nelze pomocí ěho vystihout data s větší četostí.

12 Graf. velikost ákladů v závislosti a pořadí Náklady Náklady Spojicový graf Jestliže chceme zázorit velké možství hodot, chceme li vystihout průběh časové řady hodí se k tomu více spojicový graf. Používá se také k vyjádřeí předpokladu o spojitosti vyšetřovaého zaku. Jestliže se pomocí ěho vyjadřuje rozložeí absolutích ebo relativích četostí ve výběru, azýváme se polygo četostí. Graf. spojicový graf, vyjadřuje změu ákladů Náklady Po změě.4.3 Sloupcový graf Sloupcový graf vyjadřuje jedoduché závislosti mezi dvěma hodotami, velmi často jsou jedotlivé prvky výběru seskupováy do tříd. Existuje ěkolik typů těchto grafů klasické sloupcové, sloupcové s procetím rozložeím, trojrozměré sloupcové grafy. Klasická ukázka je uvedea v grafu.3

13 Graf.3- rozděleí ákladů do tříd Sloupcový graf četostí četost Histogram Svou defiicí je to sloupcový graf, který se používá k zázorěí absolutích ebo relativích četostí (většiou )spojitého zaku. Sloupce v grafu jsou zásadě vertikálí,šířka sloupce odpovídá velikosti třídy a celková plocha sloupce odpovídá četosti prvků třídy ve výběru Histogram Kruhový graf Zobrazuje hodoty jako výseče v kruhu a tím se zachytí struktura výběru. Předchozí data jsou zobrazea v kruhovém grafu ( koláč, výsečový graf ) takto 9% % 9% 6% 6% % 38% % 6% Speciálí statistické grafy

14 Jedím z užívaých grafických způsobů je dříve uvedeý histogram. V současé době existuje moho profesioálích způsobů presetace statistických dat. V části.3..3 Kvatily a mediá jsme zavedli velmi užitečý typ Box Plot český ekvivalet ázvu je Krabicový graf. Statistických grafů existuje velké možství, zaměříme se a ěkteré speciálí..4.6 Kvatilový graf Jde typ grafu, kterým můžeme přehledě zázorit data, porovat je se zámými rozděleími, ajít vybočující hodoty atd. Na osu x aášíme pořadovou pravděpodobost teoretického rozděleí, a osu y skutečé kvatily daých dat. Na grafu íže je uvedeo porováí výběru s N(,). Data se s hodotami teoretického rozděleí eshodují, zjevě 3 - N(,) výběr - -3,,4,6,8 vybočují a krajích. Teto typ grafu se velmi často užívá pro prví porováí údajů především s ormálím ormovaým rozděleím. Dříve se k takovému porováí používal tzv. pravděpodobostí papír, des ho provádíme s pomocí počítače. Mezi základí statistická vyšetřováí patří rozhodutí, zda daý výběr patří ebo epatří k rozdělím symetrickým. K takovému rozhodutí ám pomáhá ásledující typ grafu:.4.7 Graf polosum Jeho kostrukce je založea a myšlece, že u symetrického rozděleí je aritmetický průměr kvatilu p% a kvatilu (-p)% stejý a je rove mediáu. Níže je uvede daý graf pro data vyšetřovaá v předchozí části. Symetrická rozděleí jsou tedy charakterizováa přímkou y= x. Celkově je zřejmé,že data pochází ze symetrického rozděleí

15 .4.8 Graf symetrie Pomocí tohoto grafu je možo sledovat zak symetrie výběru. Na osu x aášíme u P hodoty i i pro Pi = a a osu y stejé hodoty jako u předchozího grafu tedy hodoty + ( x x ) ( + i) ( i) osa x 5,37 5,,7,,7,3,37 Opět je zřejmé, že hodoty výběru jsou symetrické, s výjimkou krajích hodot. Pomocí dalšího grafu je možo srovávat parametr špičatosti s rozděleím N(,)..4.9 Graf špičatosti Za předpokladu symetrie je pro ormálí rozděleí grafem přímka. Pokud leží body a přímce s eulovou směricí, je hodota této směrice odhadem výběrového parametru špičatosti. Opět je zřejmé, že data odpovídají symetrii, avíc můžeme z grafu odhadout výběrovou špičatost.,4,35,3,5,,5,,5 4, 4, 4,3 4,4 4,5 4,6

Úvod do zpracování měření

Úvod do zpracování měření Laboratorí cvičeí ze Základů fyziky Fakulta techologická, UTB ve Zlíě Cvičeí č. Úvod do zpracováí měřeí Teorie chyb Opakujeme-li měřeí téže fyzikálí veličiy za stejých podmíek ěkolikrát za sebou, dostáváme

Více

KOMPLEXNÍ ČÍSLA (druhá část)

KOMPLEXNÍ ČÍSLA (druhá část) KOMPLEXNÍ ČÍSLA (druhá část) V prví kaptole jsme se seáml s algebrackým tvarem komplexího čísla. Některé výpočty s komplexím čísly je však lépe provádět ve tvaru goometrckém. Po. V ásledujícím textu předpokládám

Více

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic .3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ 15. 9. 2012 Název zpracovaného celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ 15. 9. 2012 Název zpracovaného celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY Předmět: Ročík: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ. 9. 0 Název zpracovaého celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY DEFINICE FAKTORIÁLU Při výpočtech úloh z kombiatoriky se používá!

Více

ij m, velikosti n je tvořen (n m) rozměr-ným polem dat x 11 ... x 12 ... x 22 x n1 ... x n2 7.1 Druhy korelačních koeficientů

ij m, velikosti n je tvořen (n m) rozměr-ným polem dat x 11 ... x 12 ... x 22 x n1 ... x n2 7.1 Druhy korelačních koeficientů 1 7 KORELACE Pro vyádřeí itezity vztahů ezi složkai ξ ξ -rozěrého áhodého vektoru 1 ξ se používá korelačích koeficietů Data tvoří áhodý výběr z -rozěrého rozděleí áhodého vektoru ξ Neuvažue se obyčeě a

Více

Geometrická posloupnost a její užití, pravidelný růst a pokles, nekonečná geometrická řada. 1 n. r s. [ a)22 ; b)31,5 ; c)-50 ; d)0 ; e)

Geometrická posloupnost a její užití, pravidelný růst a pokles, nekonečná geometrická řada. 1 n. r s. [ a)22 ; b)31,5 ; c)-50 ; d)0 ; e) 9 Geometrická posloupost její užití, prvidelý růst pokles, ekoečá geometrická řd Geometrická posloupost Je dá posloupost { }. Tuto posloupost zveme geometrická, jestliže pro kždé dv po sobě ásledující

Více

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Uživatelská nastavení parametrických modelářů, využití

Více

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D.

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D. 2. část: Základy matematického programováí, dopraví úloha. 1 Úvodí pomy Metody a podporu rozhodováí lze obecě dělit a: Eaktí metody metody zaručuící alezeí optimálí řešeí, apř. Littlův algortimus, Hakimiho

Více

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY INDIVIDUÁLNÍ VÝUKA Matematika METODIKA Soustavy rovnic Mgr. Marie Souchová květen 2011 Tato část učiva následuje po kapitole Rovnice. Je rozdělena do částí

Více

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava Katedra elektrotechiky Fakulta elektrotechiky a iformatiky, VŠB - TU Ostrava 10. STŘÍDAVÉ STROJE Obsah 1. Asychroí stroje 1. Výzam a použití asychroích strojů 1.2 Pricip čiosti a provedeí asychroího motoru.

Více

Numerická integrace. 6. listopadu 2012

Numerická integrace. 6. listopadu 2012 Numerická integrace Michal Čihák 6. listopadu 2012 Výpočty integrálů v praxi V přednáškách z matematické analýzy jste se seznámili s mnoha metodami výpočtu integrálů. V praxi se ale poměrně často můžeme

Více

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel. Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například

Více

1 Měření kapacity kondenzátorů

1 Měření kapacity kondenzátorů . Zadání úlohy a) Změřte kapacitu kondenzátorů, 2 a 3 LR můstkem. b) Vypočítejte výslednou kapacitu jejich sériového a paralelního zapojení. Hodnoty kapacit těchto zapojení změř LR můstkem. c) Změřte kapacitu

Více

Periodicita v časové řadě, její popis a identifikace

Periodicita v časové řadě, její popis a identifikace Periodicita v časové řadě, její popis a idetifikace 1 Periodicita Některé časové řady obsahují periodickou složku. Pomocí vybraých ástrojů spektrálí aalýzy budeme tuto složku idetifikovat. Mějme fukci

Více

2.5.10 Přímá úměrnost

2.5.10 Přímá úměrnost 2.5.10 Přímá úměrost Předpoklady: 020508 Př. 1: 1 kwh hodia elektrické eergie stojí typicky 4,50 Kč. Doplň do tabulky kolik Kč stojí růzá možství objedaé elektrické eergie. Zkus v tabulce ajít zajímavé

Více

10.1.13 Asymptoty grafu funkce

10.1.13 Asymptoty grafu funkce .. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol

Více

Goniometrie trigonometrie

Goniometrie trigonometrie Goniometrie trigonometrie Goniometrie se zabývá funkcemi sinus, kosinus, tangens, kotangens (goniometrické funkce). V tomto článku se budeme zabývat trigonometrií (součást goniometrie) používáním goniometrických

Více

Novinky v programu Majetek 2.06

Novinky v programu Majetek 2.06 Novinky v programu Majetek 2.06 Možnost použít zvětšené formuláře program Majetek 2.06 je dodávám s ovládacím programem ProVIS 1.58, který umožňuje nastavit tzv. Zvětšené formuláře. Znamená to, že se formuláře

Více

2.6.4 Lineární lomené funkce s absolutní hodnotou

2.6.4 Lineární lomené funkce s absolutní hodnotou .6. Lineární lomené funkce s absolutní hodnotou Předpoklady: 60, 603 Pedagogická poznámka: Hlavním cílem hodiny je nácvik volby odpovídajícího postupu. Proto je dobré nechat studentům chvíli, aby si metody

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ

OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ Ja Morávka Třiecký ižeýrig, a.s. Abstract Příspěvek popisuje jede přístup k optimálí filtraci metalurgických sigálů pomocí růzých

Více

VY_52_INOVACE_J 05 02

VY_52_INOVACE_J 05 02 Názv a adrsa školy: Střdí škola průmyslová a umělcká, Opava, příspěvková orgazac, Praskova 399/8, Opava, 7460 Názv opračího programu: OP Vzděláváí pro kokurcschopost, oblast podpory.5 Rgstračí číslo projktu:

Více

Rostislav Horčík. 13. října 2006

Rostislav Horčík. 13. října 2006 3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem

Více

M-10. AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km. V následující tabulce je závislost doby

M-10. AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km. V následující tabulce je závislost doby M-10 Jméno a příjmení holka nebo kluk * Třída Datum Škola AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km V následující tabulce je závislost doby a/au T/rok oběhu planety (okolo

Více

Pokusy s kolem na hřídeli (experimenty s výpočty)

Pokusy s kolem na hřídeli (experimenty s výpočty) Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Pokusy s kolem na hřídeli (experimenty s výpočty) Označení: EU-Inovace-F-7-08 Předmět: fyzika Cílová skupina: 7. třída

Více

MATEMATIKA A BYZNYS. Finanční řízení firmy. Příjmení: Rajská Jméno: Ivana

MATEMATIKA A BYZNYS. Finanční řízení firmy. Příjmení: Rajská Jméno: Ivana MATEMATIKA A BYZNYS Finanční řízení firmy Příjmení: Rajská Jméno: Ivana Os. číslo: A06483 Datum: 5.2.2009 FINANČNÍ ŘÍZENÍ FIRMY Finanční analýza, plánování a controlling Důležité pro rozhodování o řízení

Více

17 t. Analytická geometrie přímky rovnice přímky, vzájemná poloha přímek, odchylka přímek, průsečík přímek, vzdálenost přímky od roviny

17 t. Analytická geometrie přímky rovnice přímky, vzájemná poloha přímek, odchylka přímek, průsečík přímek, vzdálenost přímky od roviny 7 t Aaltická geometrie přímk rovice přímk, vzájemá poloha přímek, odchlka přímek, průsečík přímek, vzdáleost přímk od rovi Parametrické vjádřeí přímk v roviě Přímka je jedozačě určea dvěma růzými bod.

Více

7. Silně zakřivený prut

7. Silně zakřivený prut 7. Silně zakřivený prut 2011/2012 Zadání Zjistěte rozložení napětí v průřezu silně zakřiveného prutu namáhaného ohybem analyticky a experimentálně. Výsledky ověřte numerickým výpočtem. Rozbor Pruty, které

Více

20. Kontingenční tabulky

20. Kontingenční tabulky 0. Kotigečí tabulky 0.1 Úvodí ifomace V axi e velmi častá situace, kdy vyšetřueme aedou dva statistické zaky, kteé sou svou ovahou diskétí kvatitativí( maí řesě staoveý koečý očet všech možostí ); soité

Více

Konzultace z předmětu MATEMATIKA pro čtvrtý ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro čtvrtý ročník dálkového studia -1- Kozultace z předmětu MATEMATIKA pro čtvrtý ročík dálkového studia 1) Základy procetového počtu ) Poslouposti a jejich využití ve fiačí matematice 3) Úlohy ekoomického charakteru 4) Úlohy jedoduchého

Více

INSTITUT FYZIKY. Měření voltampérové charakteristiky polovodičové diody

INSTITUT FYZIKY. Měření voltampérové charakteristiky polovodičové diody Vypracoval protokol: INSTITUT FYZIKY Číslo pracoviště: Spolupracoval(i)při měřeí: Skupia: Fakulta: FMMI Laboratoř: F222 Měřeí voltampérové charakteristiky polovodičové diody Datum měřeí: Datum odevzdáí:

Více

Fyzikální praktikum 3 - úloha 7

Fyzikální praktikum 3 - úloha 7 Fyzikální praktikum 3 - úloha 7 Operační zesilovač, jeho vlastnosti a využití Teorie: Operační zesilovač je elektronická součástka využívaná v měřící, regulační a výpočetní technice. Ideální model má nekonečně

Více

Osvětlovací modely v počítačové grafice

Osvětlovací modely v počítačové grafice Západočeská univerzita v Plzni Fakulta aplikovaných věd Semestrální práce z předmětu Matematické modelování Osvětlovací modely v počítačové grafice 27. ledna 2008 Martin Dohnal A07060 mdohnal@students.zcu.cz

Více

Doba rozběhu asynchronního motoru.

Doba rozběhu asynchronního motoru. 1 Doba rozběhu asychroího motoru. 1. Doba rozběhu. Pro prví orietaci ke staoveí doby rozběhu asychroího motoru stačí provést přibližý výpočet ze středího urychlovacího mometu a a daých setrvačých hmot

Více

2013 ISBN$978-80-7464-445-0

2013 ISBN$978-80-7464-445-0 Průvodka dokumentem Kvantitativní metody v pedagogickém výzkumu: nadpisy tří úrovní (pomocí stylů Nadpis 1 3), před nimi je znak # na začátku dokumentu je automatický obsah (#Obsah) obrázky vynechány,

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Anemometrické metody Učební text Ing. Bc. Michal Malík Ing. Bc. Jiří Primas Liberec 2011 Materiál vznikl v rámci

Více

Metodický list pro první soustředění kombinovaného Bc. studia předmětu MATEMATIKA A3

Metodický list pro první soustředění kombinovaného Bc. studia předmětu MATEMATIKA A3 Metodický list pro prví soustředěí kombiovaého Bc. studia předmětu MATEMATIKA A3 Název tématického celku: Úvod do problematiky diskrétí matematiky Cíl: Cílem tohoto tématického celku je vymezeí oblasti

Více

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2. Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v

Více

MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE

MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE 1 ZAPNUTÍ SLEDOVÁNÍ ZMĚN Pokud zapnete funkci Sledování změn, aplikace Word vloží značky tam, kde provedete mazání, vkládání a změny formátu. Na kartě Revize klepněte

Více

LÉKAŘI ČR A KOUŘENÍ SOUČASNOSTI

LÉKAŘI ČR A KOUŘENÍ SOUČASNOSTI LÉKAŘI ČR A KOUŘENÍ VÝVOJ OD ROKU 1999 DO VÝVOJ OD ROKU 1999 DO SOUČASNOSTI ZÁKLADNÍ CHARAKTERISTIKA VÝZKUMU Výsledky reprezentativních sociologických výzkumů lékařů, realizovaných agenturou INRES SONES

Více

PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI

PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI Přílad 0.6 Pracoví, terý spravuje podovou databáz, eportoval do tabulového procesoru všechy pracovíy podu Alfa Blatá s ěterým sledovaým

Více

7. Stropní chlazení, Sálavé panely a pasy - 1. část

7. Stropní chlazení, Sálavé panely a pasy - 1. část Základy sálavého vytápění (2162063) 7. Stropní chlazení, Sálavé panely a pasy - 1. část 30. 3. 2016 Ing. Jindřich Boháč Obsah přednášek ZSV 1. Obecný úvod o sdílení tepla 2. Tepelná pohoda 3. Velkoplošné

Více

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha FINANČNÍ MATEMATIA Jarmila Radová BP VŠE Praha Osova Jedoduché úročeí Diskotováí krátkodobé ceé papíry Metody vedeí a výpočtu úroku z běžého účtu Skoto Složeé úrokováí Budoucí hodota auity spořeí Současá

Více

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502 .5. Další úlohy s kvadratickými funkcemi Předpoklady: 50, 50 Pedagogická poznámka: Tato hodina patří mezi ty méně organizované. Společně řešíme příklad, při dalším počítání se třída rozpadá. Já řeším příklady

Více

Skupina Testování obsahuje následující moduly: Síla a rozsah výběru, Testy a Kontingenční tabulka.

Skupina Testování obsahuje následující moduly: Síla a rozsah výběru, Testy a Kontingenční tabulka. Testování Menu: QCExpert Testování Skupina Testování obsahuje následující moduly: Síla a rozsah výběru, Testy a Kontingenční tabulka. Síla a rozsah výběru Menu: QCExpert Testování Síla a rozsah výběru

Více

A. PODÍL JEDNOTLIVÝCH DRUHŮ DOPRAVY NA DĚLBĚ PŘEPRAVNÍ PRÁCE A VLIV DÉLKY VYKONANÉ CESTY NA POUŽITÍ DOPRAVNÍHO PROSTŘEDKU

A. PODÍL JEDNOTLIVÝCH DRUHŮ DOPRAVY NA DĚLBĚ PŘEPRAVNÍ PRÁCE A VLIV DÉLKY VYKONANÉ CESTY NA POUŽITÍ DOPRAVNÍHO PROSTŘEDKU A. PODÍL JEDNOTLIVÝCH DRUHŮ DOPRAVY NA DĚLBĚ PŘEPRAVNÍ PRÁCE A VLIV DÉLKY VYKONANÉ CESTY NA POUŽITÍ DOPRAVNÍHO PROSTŘEDKU Ing. Jiří Čarský, Ph.D. (Duben 2007) Komplexní přehled o podílu jednotlivých druhů

Více

Metodika kontroly naplněnosti pracovních míst

Metodika kontroly naplněnosti pracovních míst Metodika kontroly naplněnosti pracovních míst Obsah Metodika kontroly naplněnosti pracovních míst... 1 1 Účel a cíl metodického listu... 2 2 Definice indikátoru Počet nově vytvořených pracovních míst...

Více

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod

Více

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1. . Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce

Více

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů 4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů Příklad 1: Pracujte v pohledu Shora. Sestrojte kružnici se středem [0,0,0], poloměrem 10 a kružnici

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Informační

Více

Analýza oběžného kola

Analýza oběžného kola Vysoká škola báňská Technická univerzita 2011/2012 Analýza oběžného kola Radomír Bělík, Pavel Maršálek, Gȕnther Theisz Obsah 1. Zadání... 3 2. Experimentální měření... 4 2.1. Popis měřené struktury...

Více

2.8.8 Kvadratické nerovnice s parametrem

2.8.8 Kvadratické nerovnice s parametrem .8.8 Kvadratické nerovnice s arametrem Předoklady: 806 Pedagogická oznámka: Z hlediska orientace v tom, co studenti očítají, atří tato hodina určitě mezi nejtěžší během celého středoškolského studia. Proto

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 3. Reálná čísla RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny. K nejvýznamnějším patří množina reálných čísel,

Více

DYNAMICKÉ VÝPOČTY PROGRAMEM ESA PT

DYNAMICKÉ VÝPOČTY PROGRAMEM ESA PT DYNAMICKÉ VÝPOČTY PROGRAMEM ESA PT Doc. Ing. Daniel Makovička, DrSc.*, Ing. Daniel Makovička** *ČVUT v Praze, Kloknerův ústav, Praha 6, **Statika a dynamika konstrukcí, Kutná Hora 1 ÚVOD Obecně se dynamickým

Více

ECB-PUBLIC ROZHODNUTÍ EVROPSKÉ CENTRÁLNÍ BANKY (EU) 2015/[XX*] ze dne 10. dubna 2015 (ECB/2015/17)

ECB-PUBLIC ROZHODNUTÍ EVROPSKÉ CENTRÁLNÍ BANKY (EU) 2015/[XX*] ze dne 10. dubna 2015 (ECB/2015/17) CS ECB-PUBLIC ROZHODNUTÍ EVROPSKÉ CENTRÁLNÍ BANKY (EU) 2015/[XX*] ze dne 10. dubna 2015 o celkové výši ročních poplatků za dohled za první období placení poplatku a za rok 2015 (ECB/2015/17) RADA GUVERNÉRŮ

Více

Česká zemědělská univerzita v Praze Fakulta provozně ekonomická. Obor veřejná správa a regionální rozvoj. Diplomová práce

Česká zemědělská univerzita v Praze Fakulta provozně ekonomická. Obor veřejná správa a regionální rozvoj. Diplomová práce Česká zemědělská univerzita v Praze Fakulta provozně ekonomická Obor veřejná správa a regionální rozvoj Diplomová práce Problémy obce při zpracování rozpočtu obce TEZE Diplomant: Vedoucí diplomové práce:

Více

Jednofázový alternátor

Jednofázový alternátor Jednofázový alternátor - 1 - Jednofázový alternátor Ing. Ladislav Kopecký, 2007 Ke generování elektrického napětí pro energetické účely se nejčastěji využívá dvou principů. Prvním z nich je indukce elektrického

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

5.6.6.3. Metody hodnocení rizik

5.6.6.3. Metody hodnocení rizik 5.6.6.3. Metody hodnocení rizik http://www.guard7.cz/lexikon/lexikon-bozp/identifikace-nebezpeci-ahodnoceni-rizik/metody-hodnoceni-rizik Pro hodnocení a analýzu rizik se používají různé metody. Výběr metody

Více

metodická příručka DiPo násobení a dělení (čísla 6, 7, 8, 9) násobilkové karty DiPo

metodická příručka DiPo násobení a dělení (čísla 6, 7, 8, 9) násobilkové karty DiPo metodická příručka DiPo násobení a dělení () PLUS násobilkové karty DiPo OlDiPo, spol. s r.o. tř. Svobody 20 779 00 Olomouc telefon: 585 204 055 mobil: 777 213 535 e-mail: oldipo@oldipo.cz web: www.oldipo.cz

Více

1. DÁLNIČNÍ A SILNIČNÍ SÍŤ V OKRESECH ČR

1. DÁLNIČNÍ A SILNIČNÍ SÍŤ V OKRESECH ČR 1. DÁIČNÍ A SIIČNÍ SÍŤ V OKRESE ČR Pro dopravu nákladů, osob a informací jsou nutné podmínky pro její realizaci, jako je kupříkladu vhodná dopravní infrastruktura. V případě pozemní silniční dopravy to

Více

Výchovné a vzdělávací strategie pro rozvoj klíčových kompetencí žáků

Výchovné a vzdělávací strategie pro rozvoj klíčových kompetencí žáků CVIČENÍ Z MATEMATIKY Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení Předmět je realizován od 6. ročníku až po 9. ročník po 1 hodině týdně. Výuka probíhá v kmenové učebně nebo

Více

Edice Právo pro každého. JUDr. Jan Přib. Kdy do důchodu a za kolik 12. aktualizované vydání

Edice Právo pro každého. JUDr. Jan Přib. Kdy do důchodu a za kolik 12. aktualizované vydání Edice Právo pro každého JUDr. Jan Přib Kdy do důchodu a za kolik 12. aktualizované vydání Vydala GRADA Publishing, a.s. U Průhonu 22, Praha 7, jako svou 4 228. publikaci Foto na obálce allphoto.cz Odpovědný

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 OHYB SVĚTLA

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 OHYB SVĚTLA Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 OHYB SVĚTLA V paprskové optice jsme se zabývali optickým zobrazováním (zrcadly, čočkami a jejich soustavami).

Více

Změny dispozic objektu observatoře ČHMÚ v Košeticích

Změny dispozic objektu observatoře ČHMÚ v Košeticích O D Ů V O D N Ě N Í V E Ř E J N É Z A K Á Z K Y Dokument slouží ke správnému zpracování odůvodnění veřejné zakázky podle ustanovení 86 odst. 2 a 156 ZVZ, ve smyslu vyhlášky Ministerstva pro místní rozvoj

Více

Poruchy modul pro rychlé hlášení poruch z provozu.

Poruchy modul pro rychlé hlášení poruch z provozu. Poruchy modul pro rychlé hlášení poruch z provozu. Účelem tohoto programu je sbírat data o poruchách a nedostatcích v činnosti strojů a zařízení a jednak je zapisovat přímo do programu evidence údržby,

Více

Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu.

Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Svarové spoje Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Vybrané druhy svarů a jejich posouzení dle EN ČSN 1993-1-8. Koutový svar -T-spoj - přeplátovaný

Více

B Kvantitativní test. Semestrální práce TUR. Novotný Michal novotm60@fel.cvut.cz

B Kvantitativní test. Semestrální práce TUR. Novotný Michal novotm60@fel.cvut.cz B Kvantitativní test Semestrální práce TUR Novotný Michal novotm60@fel.cvut.cz OBSAH 1. Úvod... 2 1.1. Předmět testování... 2 1.2. Cílová skupina... 2 2. Testování... 2 2.1. Nulová hypotéza... 2 2.2. Metoda

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Teoretické řešení střech

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Teoretické řešení střech Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Teoretické řešení střech Vypracoval: Michal Drašnar Třída: 8.M Školní rok: 2015/2016 Seminář: Deskriptivní geometrie Prohlašuji, že

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

Nabídka seminářů Finanční gramotnost

Nabídka seminářů Finanční gramotnost Nabídka seminářů Finanční gramotnost Seminář 45 minut Čas (min.) Aktivita 0-2 Přivítání, představení. Poznámky 3-5 Poznání účastníků: aktivita 4 rohy Všem se položí otázka, na kterou jsou 4 možné odpovědi.

Více

Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce

Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_9_ČT_1.09_ grafická minimalizace Střední odborná škola a Střední odborné učiliště,

Více

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI SEMESTRÁ LNÍ PRÁ CE Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI Předmě t STATISTICKÁ ANALÝ ZA JEDNOROZMĚ RNÝ CH DAT (ADSTAT) Ú stav experimentá lní biofarmacie, Hradec

Více

SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 1O POLOHOVÉ VYTYČOVÁNÍ Pod pojem polohového vytyčování se

Více

Číslicová technika 3 učební texty (SPŠ Zlín) str.: - 1 -

Číslicová technika 3 učební texty (SPŠ Zlín) str.: - 1 - Číslicová technika učební texty (SPŠ Zlín) str.: - -.. ČÍTAČE Mnohá logická rozhodnutí jsou založena na vyhodnocení počtu opakujících se jevů. Takovými jevy jsou např. rychlost otáčení nebo cykly stroje,

Více

Využití fixních a variabilních nákladů pro manažerské rozhodování a finanční řízení

Využití fixních a variabilních nákladů pro manažerské rozhodování a finanční řízení Využití fixních a variabilních nákladů pro manažerské rozhodování a finanční řízení Nákladové funkce Vývoj nákladů v závislosti na změně určité veličiny obvykle objemu výroby, výstupu lze vyjadřovat matematicky,

Více

Studie proveditelnosti. Marketingová analýza trhu

Studie proveditelnosti. Marketingová analýza trhu Studie proveditelnosti Marketingová analýza trhu Cíl semináře Seznámení se strukturou marketingové analýzy trhu jakou součástí studie proveditelnosti Obsah 1. Analýza makroprostředí 2. Definování cílové

Více

ESII-2.1 Elektroměry

ESII-2.1 Elektroměry Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: ESII-2.1 Elektroměry Obor: Elektrikář - silnoproud Ročník: 2. Zpracoval(a): Bc. Josef Dulínek Střední průmyslová škola Uherský Brod, 2010 OBSAH 1. Měření

Více

Statistika ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ. Jiří Volf, Adam Kratochvíl, Kateřina Žáková. Semestrální práce - 0 -

Statistika ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ. Jiří Volf, Adam Kratochvíl, Kateřina Žáková. Semestrální práce - 0 - ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ Jiří Volf, Adam Kratochvíl, Kateřina Žáková 2 34 Statistika Semestrální práce - 0 - 1. Úvod Popis úlohy: V této práci se jedná se o porovnání statistických

Více

Kótování na strojnických výkresech 1.část

Kótování na strojnických výkresech 1.část Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických

Více

Využití EduBase ve výuce 10

Využití EduBase ve výuce 10 B.I.B.S., a. s. Využití EduBase ve výuce 10 Projekt Vzdělávání pedagogů v prostředí cloudu reg. č. CZ.1.07/1.3.00/51.0011 Mgr. Jitka Kominácká, Ph.D. a kol. 2015 1 Obsah 1 Obsah... 2 2 Úvod... 3 3 Autorský

Více

POKUS O STATISTICKOU PŘEDPOVĚD ZNEČIŠTĚNÍ OVZDUŠÍ. Josef Keder. ČHMÚ ÚOČO, Observatoř Tušimice, keder@chmi.cz

POKUS O STATISTICKOU PŘEDPOVĚD ZNEČIŠTĚNÍ OVZDUŠÍ. Josef Keder. ČHMÚ ÚOČO, Observatoř Tušimice, keder@chmi.cz POKUS O STATISTICKOU PŘEDPOVĚD ZNEČIŠTĚNÍ OVZDUŠÍ Josef Keder ČHMÚ ÚOČO, Observatoř Tušimice, keder@chmi.cz Proč statistická předpověď motivace (1) Možnost předpovědět úroveň znečištění ovzduší na určité

Více

Leadership JudgementIndicator -LJI (Test stylůvedení)

Leadership JudgementIndicator -LJI (Test stylůvedení) Leadership JudgementIndicator -LJI (Test stylůvedení) Hogrefe Testcentrum, Praha 2012 Autoři: M. Lock, R. Wheeler Autořičeskéverze:R. Bahbouh, V. Havlůj(ed.), M. Konečný, H. Peterková, E. Rozehnalová LJI

Více

17 a 22a zákona č. 250/2000 Sb., o rozpočtových pravidlech územních rozpočtů, ve znění pozdějších předpisů

17 a 22a zákona č. 250/2000 Sb., o rozpočtových pravidlech územních rozpočtů, ve znění pozdějších předpisů S t a n o v i s k o odboru dozoru a kontroly veřejné správy Ministerstva vnitra č. 5/2011 Označení stanoviska: Povinnosti obce související s projednáním závěrečného účtu spolu se zprávou o výsledcích hospodaření

Více

OKO občanské kompetence občanům. registrační číslo :CZ.1.07/3.1.00/50.0009

OKO občanské kompetence občanům. registrační číslo :CZ.1.07/3.1.00/50.0009 OKO občanské kompetence občanům registrační číslo :CZ.1.07/3.1.00/50.0009 Finanční trh, finanční produkty Obsah workshopu co je to banka, druhy bank, druhy účtů, debetní vs. kreditní karta pojmy jako termínovaný

Více

Matematika pro 9. ročník základní školy

Matematika pro 9. ročník základní školy Matematika pro 9. ročník základní školy Řešení Ćíselné výrazy 1. Prvočíslo je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy

Více

Měření hustoty kapaliny z periody kmitů zkumavky

Měření hustoty kapaliny z periody kmitů zkumavky Měření hustoty kapaliny z periody kmitů zkumavky Online: http://www.sclpx.eu/lab1r.php?exp=14 Po několika neúspěšných pokusech se zkumavkou, na jejíž dno jsme umístili do vaty nejprve kovovou kuličku a

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

Shrnující zpráva ze sociologického výzkumu NEJDEK

Shrnující zpráva ze sociologického výzkumu NEJDEK UNIVERSITAS, s.r.o. Borovská 1425, 190 16 Praha 9 Tel.: 281972182 www.universitas.cz IČO: 274 17 719 Sociální služby: Potřeby a názory občanů v Karlovarském kraji 2007 Shrnující zpráva ze sociologického

Více

Metoda Lokální multiplikátor LM3. Lokální multiplikátor obecně. Ing. Stanislav Kutáček. červen 2010

Metoda Lokální multiplikátor LM3. Lokální multiplikátor obecně. Ing. Stanislav Kutáček. červen 2010 Metoda Lokální multiplikátor LM3 Ing. Stanislav Kutáček červen 2010 Lokální multiplikátor obecně Lokální multiplikátor 1, vyvinutý v londýnské New Economics Foundation (NEF), 2 pomáhá popsat míru lokalizace

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základy paprskové a vlnové optiky, optická vlákna, Učební text Ing. Bc. Jiří Primas Liberec 2011 Materiál vznikl

Více

Zákon o veřejných zakázkách

Zákon o veřejných zakázkách Zákon o veřejných zakázkách Zákon č. 137/2006 Sb., o veřejných zakázkách, ve znění pozdějších předpisů (dále i zákon), je základním stavebním kamenem veřejného investování v České republice. Veřejní a

Více

ORGANIZAČNÍ ŘÁD ŠKOLY

ORGANIZAČNÍ ŘÁD ŠKOLY Církevní husitská základní umělecká škola Harmonie, o.p.s. se sídlem Bílá 1, 160 00 Praha 6 - Dejvice ORGANIZAČNÍ ŘÁD ŠKOLY část: 2. ŠKOLNÍ ŘÁD ZUŠ Č.j.: 8/2012 Vypracoval: Schválil: Pedagogická rada projednala

Více

Názory na bankovní úvěry

Názory na bankovní úvěry INFORMACE Z VÝZKUMU STEM TRENDY 1/2007 DLUHY NÁM PŘIPADAJÍ NORMÁLNÍ. LIDÉ POKLÁDAJÍ ZA ROZUMNÉ PŮJČKY NA BYDLENÍ, NIKOLIV NA VYBAVENÍ DOMÁCNOSTI. Citovaný výzkum STEM byl proveden na reprezentativním souboru

Více

KRAJSKÝ ÚŘAD JIHOMORAVSKÉHO KRAJE Odbor dopravy Žerotínovo náměstí 3/5, 601 82 Brno

KRAJSKÝ ÚŘAD JIHOMORAVSKÉHO KRAJE Odbor dopravy Žerotínovo náměstí 3/5, 601 82 Brno KRAJSKÝ ÚŘAD JIHOMORAVSKÉHO KRAJE Odbor dopravy Žerotínovo náměstí 3/5, 601 82 Brno Č. j.: JMK 46925/2013 S. zn.: S - JMK 46925/2013/OD Brno dne 20.06.2013 OP ATŘENÍ OB EC NÉ P OV AH Y Krajský úřad Jihomoravského

Více

Pracovní právo seminární práce

Pracovní právo seminární práce Pracovní právo seminární práce 1. Úvod do problematiky Tématem mé seminární práce je problematika pracovního práva a jeho institutů. V několika nadcházejících kapitolách bych se chtěl zabývat obecnou systematikou

Více

Monitoring institucionální výchovy podrobná zpráva za výchovné ústavy

Monitoring institucionální výchovy podrobná zpráva za výchovné ústavy Monitoring institucionální výchovy podrobná zpráva za výchovné ústavy říjen 2009 1 2 Kapacita a úvazky Dotazník s informacemi za výchovné ústavy (dále jen VÚ) vyplnili zástupci celkem 6 spádových oblastí

Více

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text (srpen 2012) Miloslav Suchánek

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text (srpen 2012) Miloslav Suchánek CHEMOMETRIKA a STATISTIKA Prozatímí učebí text (srpe 01) Miloslav Sucháek 1. Základí pojmy Při hodoceí aalytických metod a výsledků ebo při formulaci fyzikálě-chemických modelů popisujících vztahy mezi

Více