17 t. Analytická geometrie přímky rovnice přímky, vzájemná poloha přímek, odchylka přímek, průsečík přímek, vzdálenost přímky od roviny
|
|
- Vladimíra Müllerová
- před 8 lety
- Počet zobrazení:
Transkript
1 7 t Aaltická geometrie přímk rovice přímk, vzájemá poloha přímek, odchlka přímek, průsečík přímek, vzdáleost přímk od rovi Parametrické vjádřeí přímk v roviě Přímka je jedozačě určea dvěma růzými bod. K alezeí parametrické rovice přímk potřebujeme mít dá jede bod a vektor ( směrový vektor přímk ). Přímka je možia bodů X. Každý bod X [,] a přímce p dostaeme tak, že k bodu A [a,a ] přičteme t ásobek vektoru v. Ted X A t. v po rozepsáí do souřadic dostaeme parametrickou rovici přímk: p : a t.v a t.v kde t je parametr Napište parametrickou rovici přímk, určeé bodem A [,4] a vektorem v (,5). p:.t 4 5.t Napište parametrickou rovici přímk určeé bodem A [5,6] a bodem B [7,7]. Z dvojice bodů A,B ejprve určíme vektor AB u (,). p: 5.t 6 t Je dáa přímka p: 5.t ; 6 t. Určete zda a této přímce leží bod K [,4 ] a bod M [,6 ]. Leží-li bod a přímce, pak jeho souřadice musí vhovovat rovici přímk. K : 5.t t t t - Protože všlo v obou rovicích stejé t, bod K leží a přímce p. M: 5.t t t t Protože všlo v obou rovicích růzé t, bod M eleží a přímce p. Cvičeí:. Napište parametrickou rovici přímk určeé bodem P [, -8 ] a směrovým vektorem v (, 4 ). [ t, -84t ]. Napište parametrickou rovici přímk určeé bodem A [ 6, ]a bodem B [,- ] [ 6-t, -5t ]
2 . Jsou dá tři bod A [ -4, ], B [, ], C [, 6 ]. Tto bod tvoří trojúhelík.napište parametrické rovice těžic trojúhelíku ABC. 7 4 t; t k; 4k m; 6 5m 4. Jsou dá bod A [ -, ], B [, 4 ]. Určete vzájemou polohu přímk určeé bod A a B s přímkou p: -4t, -4t. Obecá rovice přímk Obecá rovice přímk v roviě má tvar: a b c kde a, b, c jsou reálá čísla. Vektor ( a, b ) je vektor kolmý k přímce, říkáme mu vektor ormálový. Obecou rovici přímk získáme z parametrické rovice tak, že obě rovice vásobíme takovými čísl, ab po jejich sečteí vpadl parametr t. Přímku p : 5.t ; 6 t převeďte a obecý tvar. p : 5.t 6 t /.(-) 5 t - --t - -7 p: - 7 rovice sečteme Máme-li dá dva bod a chceme sestavit obecou rovici přímk určeé těmito bod, můžeme postupovat dvěma způsob: ) Sestavíme ejprve parametrickou rovici přímk a postupem z předchozího příkladu přejdeme a rovici obecou ) Najdeme ormálový vektor přímk a postupujeme podle ásledujícího příkladu: Napište obecou rovici přímk určeé bodem A [ -,6 ] a bodem B [ 4,- ]. Nejprve ajdeme vektor v AB ( 6,-9). K ěmu kolmý vektor ( ormálový vektor přímk ) ( 9, 6 ). Máme již prví koeficiet obecé rovice a 9, b 6. Rovice přímk bude mít teto tvar: 9 6 c Zbývá alézt koeficiet c. Te ajdeme tak, že dosadíme jede z bodů A ebo B za a do rovice: A p : 9.(-) 6.6 c c c -8 Celá rovice bude mít tvar: můžeme ji ještě dělit p: - 6 Vzdáleost bodu od přímk Vzdáleost bodu A [, ] od přímk p : a b c
3 Vpočteme podle vzorce d a a b b c Je dáa přímka p : - 7. Vpočtěte vzdáleost bodu K [ -, ] od této přímk. a b c Vpočteme podle vzorce d,77 a b 4 9 Úhel dvou přímek : Vpočteme buď jako úhel dvou směrových ebo dvou ormálových vektorů takto: cosα cosα u v u. v u u. v u u. v. v v Určete úhel přímek: p: - 7 q: p ( -, ) ; q (, -4 ) cosα p p. q q. p. p q q α Vzájemá poloha přímek v roviě Vzájemou polohu určíme pomocí směrových vektorů obou přímek. Jsou -li přímk zadá obecou rovicí, je lepší místo směrových vektorů použít ormálové. a) rovoběžé - totožé - směrové vektor lieárě závislé, všech bod společé - růzé - směrové vektor lieárě závislé, žádý společý bod b) růzoběžé - směrové vektor lieárě ezávislé, jede společý bod - průsečík Průsečík obou přímek ajdeme, řešíme-li soustavu dvou rovic o dvou ezámých. Určete vzájemou polohu přímek p: -.t q: -.k - t - k u p (, - ) ; v q ( -, ) Pro směrové vektor obou přímek platí : u p - v q Přímk mohou být buď totožé ebo rovoběžé.
4 Na přímce zvolíme libovolý bod C : volíme apř. t 5 ; C [ 5, ] Ověříme, zda teto bod leží i a přímce q : -.k 5 -.k k - - k - k k Protože hodota k je růzá, bod C a q eleží a přímk jsou rovoběžé růzé. Určete vzájemou polohu přímek p: - 7 q: p ( -, ) ; q (, -4 ) - tto vektor jsou lieárě ezávislé - přímk jsou růzoběžé Určíme jejich průsečík P: - 7 / / obě rovice sečteme P [ - 4, - ] Vzdáleost dvou rovoběžých přímek určíme tak, že a jedé z ich zvolíme libovolý bod a podle vzorce vpočteme jeho vzdáleost od druhé přímk. Je dáa přímka p : - 7 Určete jejich vzdáleost. q : p ( -, ) ; q ( -4, 6 ) - tto vektor jsou lieárě závislé, ale koeficiet c v druhé rovici eí dvojásobkem c v prví rovici - přímk jsou rovoběžé Na p zvolíme libovolý bod : - ( volíme libovolě ) vjde z rovice - - A [ -, - ] d a a b b c d ,977 Cvičeí: 5. Napište obecou rovici přímk určeé bodem A [, ] a B [, ]. [ - ] 6. Napište rovici přímk, která prochází bodem A [ -, ] a je rovoběžá s osou. [ ] 7. Napište rovici přímk, která prochází bodem A [ -, ] a je rovoběžá s osou. [ - ] 8. Napište rovici přímk, která prochází bodem A [ -, ] a je rovoběžá s přímkou [ ] 4
5 9. Určete vzájemou polohu dvou přímek p : t, -84t q : - -5 Určete případý průsečík, úhel ebo vzdáleost. [ růzob.; P [ 4 6 ; ]; α ] 7 7. Vpočtěte odchlku přímek p: 6 ; q: 8 [ 45 ]. Napište rovici přímk, která prochází bodem A [ 4,] a má od přímk 7 odchlku 45. [ - 4 ebo - ]. Najděte průsečík přímek p:, q:. [ P [, - ] ] Směricový tvar rovice přímk Je to rovice v tomto tvaru: k q Proměou k azýváme směrice přímk a platí: k tg α, kde α je úhel přímk p s osou p α q Proměá q se ozačuje úsek přímk a ose. Přímka ve tvaru k q ted vžd prochází bodem [,q ]. Pro přímku určeou dvěma bod A [, ]; B [, ] platí vzorec: A α B k k tgα Napište směricovou rovici přímk p, která je určea bod A [ 6, ]; B [ 9,]. 9 Z daého vztahu určíme k: k 9 6 Rovice má tvar q Nezámou q zjistíme dosazeím libovolého bodu do rovice: Rovice má tvar 7.6 q q -7 Teto tvar rovice přímk připomíá lieárí fukci. Cvičeí: 5
6 .) Určete směricový tvar rovice přímk, daé bodem A [ 4; ] a směrovým úhlem α [ ( 4 ) ].) 4 Určete směricový tvar rovice přímk, daé bodem A [ -; ] a bodem B [ ; -] 6 8 [ ].) Jsou dá bod A [ -5;4 ] a B [ m ; -]. Určete číslo m tak, ab přímka daá bod A,B měla směrici k. Napište její rovici v směricovém tvaru. 4 [ m ; - ] ) Napište ve směricovém tvaru rovici přímk, která prochází počátkem a je rovoběžá s přímkou daou bod A [ -;-4 ] a B [ 4 ; 7 ] [ ] ) Napište ve směricovém tvaru rovici přímk, která prochází počátkem bodem A [ ; ] a její úsek a ose 5 je q [ 5 5 ] 6 6.) Napište ve směricovém tvaru rovici přímk, která prochází počátkem bodem A [ 4;6 ] a je kolmá k přímce o rovici [ ] ) Určete směrici a úsek q přímk daé rovicí 9 4. [k,5; q ] 8.) Přímka p má rovici 4. Napište obecou rovici přímk. 5 [ 5 ] π. 6
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
15 s. Analytická geometrie lineárních útvarů
5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý
MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.
MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...
Digitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_16 ŠVP Podnikání RVP 64-41-L/51
Doba rozběhu asynchronního motoru.
1 Doba rozběhu asychroího motoru. 1. Doba rozběhu. Pro prví orietaci ke staoveí doby rozběhu asychroího motoru stačí provést přibližý výpočet ze středího urychlovacího mometu a a daých setrvačých hmot
5.1. Posloupnosti. Posloupnost je funkce, jejímž definičním oborem je množina všech přirozených čísel.
. 5. Poslouposti, geometrická řada a kombiatorika. 5.. Poslouposti. Posloupost je fukce, jejímž defiičím oborem je možia všech přirozeých čísel. Fukčí hodota této fukce přiřazeá číslu N se azývá -tý čle
UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
7. Analytická geometrie
7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp
Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice
Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké
Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1
Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky
( ) 2 2 2. 7.4.8 Výpočty odchylek. Předpoklady: 7406
7.4.8 Výočty odchylek Předoklady: 7406 Pedagogická ozámka: Na octié robráí této hodiy otřebje běžý stdet tak jede a ůl hodiy yčoací. Defiici odchylek ro římky, roiy atd. ž záme ze stereometrie, teď jeom
Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).
37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým
z možností, jak tuto veličinu charakterizovat, je určit součet
6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p
1. K o m b i n a t o r i k a
. K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují
( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501
..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného
{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.
9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme
20. Eukleidovský prostor
20 Eukleidovský prostor V této kapitole budeme pokračovat ve studiu dalších vlastostí afiích prostorů avšak s tím rozdílem že místo obecého vektorového prostoru budeme uvažovat prostor uitárí Proto bude
Funkce více proměnných
Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu
u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,
Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou
základním prvkem teorie křivek v počítačové grafice křivky polynomiální n
Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky
4.6.6 Složený sériový RLC obvod střídavého proudu
4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu
KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KONSTRUKČNÍ
ZÁKLADNÍ POJMY OPTIKY
Záš pojmy A. Popiš aspoň jede fyzikálí experimet měřeí rychlosti světla. - viz apříklad Michelsoův, Fizeaův, Roemerův pokus. Defiuj a popiš fyzikálí veličiu idex lomu. - je to bezrozměrá fyzikálí veličia
Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.
2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se
STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113
STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu
Komplexní čísla. Definice komplexních čísel
Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují
DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY
DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ..07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST
Interakce světla s prostředím
Iterakce světla s prostředím světlo dopadající rozptyl absorpce světlo odražeé světlo prošlé prostředím ODRAZ A LOM The Light Fatastic, kap. 2 Light rays ad Huyges pricip, str. 31 Roviá vla E = E 0 cos
Úvod do lineárního programování
Úvod do lieárího programováí ) Defiice úlohy Jedá se o optimalizaí problémy které jsou popsáy soustavou lieárích rovic a erovic. Kritéria optimalizace jsou rovž lieárí. Promé v této úloze abývají reálých
Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč.
Učební dokument FUNKCE Vyšetřování průběhu funkce Mgr. Petra MIHULOVÁ.roč. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti Vyš etř ová ní přů be hů fůnkce á šeštřojení její ho gřáfů Určování
1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.
Kruh, kružnice, válec 1. Kruh, kružnice 1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed kružnice. Stejnou vzdálenost nazýváme poloměr
Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.
Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu
Vážeí zákazíci dovolujeme si Vás upozorit že a tuto ukázku kihy se vztahují autorská práva tzv. copyright. To zameá že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø vidìl
Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta
Matematika přehled vzorců pro maturaty (zpracoval T. Jáský) Úpravy výrazů a r. a s = a r+s a r = ar s as a r s = a r.s a. b r = a r b r a b r = ar b r a. b a b = a b = a. b ( a) m = a m m a m. = a a k.
DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce
DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji
Mongeova projekce - řezy hranatých těles
Mongeova projekce - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Mongeova projekce - řezy hranatých těles 1 / 73 Obsah 1 Zobrazení těles v základní poloze 2 Řez hranolu rovinou Osová afinita Sestrojení
Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě
Geometrická posloupnost a její užití, pravidelný růst a pokles, nekonečná geometrická řada. 1 n. r s. [ a)22 ; b)31,5 ; c)-50 ; d)0 ; e)
9 Geometrická posloupost její užití, prvidelý růst pokles, ekoečá geometrická řd Geometrická posloupost Je dá posloupost { }. Tuto posloupost zveme geometrická, jestliže pro kždé dv po sobě ásledující
1. Číselné obory, dělitelnost, výrazy
1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá
EKONOMETRIE 8. přednáška Klasický lineární regresní model
EKONOMETRIE 8. předáška Klasický lieárí regresí model Formulace a podmíky (pozor a ozačeí parametrů) Základí edorovicový model: zobrazue ekoomickou hypotézu o vztahu mezi edou vysvětlovaou ekoomickou veličiou
9.2.5 Sčítání pravděpodobností I
9.2.5 Sčítání pravděpodobností I Předpoklady: 9203 Pedagogická poznámka: Následující problém sice zadávám jako příklad, ale minimálně na začátku s žáky počítám na tabuli. I kvůli tomu, aby jejich úprava
1. Základy měření neelektrických veličin
. Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost
UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
2 EXPLORATORNÍ ANALÝZA
Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.
4. KOMPLEXNÍ ČÍSLA 116. 4.1. Definice komplexních čísel 117. 4.2. Geometrické znázornění komplexních čísel 118. 4.3. Klasifikace komplexních čísel 120
KOMPLEXNÍ ČÍSLA 6 Defiice komplexích čísel 7 Geometrické áorěí komplexích čísel 8 Klasifikace komplexích čísel 0 Algebraický tvar komplexího čísla Sčítáí a ásobeí komplexích čísel v algebraickém tvaru
3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90
ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy
Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.
Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T ÚNORA 08 :. úor 08 D : 96 P P P : 0 M. M. : 0 : 0 M. :,4 % S : -7,5 M. P : -,8 : 4,5 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90 miut
X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti
8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:
Edita Kolářová ÚSTAV MATEMATIKY
Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................
Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu
Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia
Matematika I, část II
1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího
0. 4b) 4) Je dán úhel 3450. Urči jeho základní velikost a převeď ji na radiány. 2b) Jasný Q Q ZK T D ZNÁMKA. 1. pololetí 2 3 1 2 2 3 5 2 3 1 1
) Urči záladí veliost úhlu v radiáech, víš-li, že platí: a) si cos 0. b) cos, Opravá zouša z matematiy 3SD (druhé pololetí) c) cotg 3 5b) ) Na možiě R řeš rovici cos cos 0. 4b) 3) Vzdáleost bodů AB elze
KOMPLEXNÍ ČÍSLA (druhá část)
KOMPLEXNÍ ČÍSLA (druhá část) V prví kaptole jsme se seáml s algebrackým tvarem komplexího čísla. Některé výpočty s komplexím čísly je však lépe provádět ve tvaru goometrckém. Po. V ásledujícím textu předpokládám
1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.
1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
4.5.9 Vznik střídavého proudu
4.5.9 Vzik střídavého proudu Předpoklady: 4508 Miulá hodia: Pokud se v uzavřeém závitu měí magetický idukčí tok, idukuje se v ěm elektrické apětí =. Př. 1: Vodorově orietovaá smyčka se pohybuje rovoměrě
IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...
IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického
n-rozměrné normální rozdělení pravděpodobnosti
-rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici
Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu
Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý
4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]}
1/27 FUNKCE Základní pojmy: Funkce, definiční obor, obor hodnot funkce Kartézská soustava souřadnic, graf funkce Opakování: Číselné množiny, úpravy výrazů, zobrazení čísel na reálné ose Funkce: Zápis:
Kvadratické rovnice pro studijní obory
Variace 1 Kvadratické rovnice pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA
UNIVERZIT PLCKÉHO V OLOMOUCI PŘÍROOVĚECKÁ FKULT KTER LGEBRY GEOMETRIE OSVĚTLENÍ VE STŘEOVÉM PROMÍTÁNÍ LINEÁRNÍ PERSPEKTIVĚ Bakalářká práce Vedoucí práce: RNr. Leka Juklová, Ph.. Rok odevdáí 202 Vypracovala:
Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů
Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé
= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)
.8.7 Kvadratické rovnice s parametrem Předpoklady: 507, 803 Pedagogická poznámka: Na první pohled asi každého zarazí, že takřka celá hodina je psána jako příklady a studenti by ji měli vypracovat samostatně.
Parametrická rovnice přímky v rovině
Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 :. břez 08 D : 0 P P P : 0 M. M. M. :,8 % S : 0 : 7,5 : -7,5 M. P : -,0 : 0,6 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90
Matematika I: Aplikované úlohy
Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí
65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B
65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B 1. Nejprve zjistíme, jak lze zapsat číslo 14 jako součet čtyř z daných čísel. Protože 4 + 3 3 < 14 < 4 4, musí takový
1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V
Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být
3.2.4 Podobnost trojúhelníků II
3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).
Technická mechanika - Statika
Technická mechanika - Statika Elektronická učebnice Ing. Jaromír Petr Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic O B S A H 1 Statika tuhých těles...
1.3. POLYNOMY. V této kapitole se dozvíte:
1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí
Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Komplexní čísla, komplexně sdružená čísla, opačná komplexní čísla, absolutní hodnota (modul) komplexního čísla. z 2 z 1
Komplexí čísla, komplexě sdružeá čísla, opačá komplexí čísla, absolutí hodota (modul) komplexího čísla Defiice komplexího čísla Komplexí číslo je uspořádaá dvojice reálých čísel = (, ) (, ). je reálá,
VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ
VEKTOROVÁ LGEBR NLYTICKÁ GEOMETRIE V ROVINĚ Délk úsečk, střed úsečk,, B Délk úsečk B : B C, BC Střed úsečk : B S s, s souřdice středu: s, s Vektor Vektor = oži všech souhlsě orietových rovoěžých úseček
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
Radka Hamříková VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA SBÍRKA ÚLOH Z MATEMATIKY Radka Hamříková Vtvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.0..0/..5./006 Studijní opor s převažujícími
Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat
Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí
ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF
Úloha číského listooše ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Uvažujme situaci, kdy exstuje ějaký výchozí uzel a další uzly spojeé hraami (může jít o cesty, ulice
Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení
Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází
1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,
DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry
Analytická geometrie
Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí
Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )
. Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového
11. přednáška 16. prosince Úvod do komplexní analýzy.
11. předáška 16. prosice 009 Úvod do komplexí aalýzy. Tři závěrečé předášky předmětu Matematická aalýza III (NMAI056) jsou věováy úvodu do komplexí aalýzy. Což je adeseá formulace eboť časový rozsah ám
sin n sin n 1 n 2 Obr. 1: K zákonu lomu
MĚŘENÍ INDEXU LOMU REFRAKTOMETREM Jedou z charakteristických optických veliči daé látky je absolutím idexu lomu. Je to podíl rychlosti světla ve vakuu c a v daém prostředí v: c (1) v Průchod světla rozhraím
6. Posloupnosti a jejich limity, řady
Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme
MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006
Krok za krokem k nové maturitě Maturita nanečisto 2006 MA1ACZMZ06DT MATEMATIKA 1 didaktický test Testový sešit obsahuje 18 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém sešitu. Odpovědi pište
S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické
5 Itegrace racioálích fukcí 5 Itegrace racioálích fukcí Průvodce studiem V předcházejících kapitolách jsme se aučili počítat eurčité itegrály úpravou a základí itegrály, metodou per partes a substitučí
1.7.4 Těžiště, rovnovážná poloha
74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit
4. Model M1 syntetická geometrie
4. Model M1 sytetiká geometrie V této kapitole se udeme zaývat vektory, jejih vlastostmi a využitím v geometrii. Neudeme přitom rozlišovat, jestli se jedá je o roviu (dvě dimeze) eo prostor (tři dimeze).
1. rys - Rotační válec V Mongeově promítání sestrojte sdružené průměty rotačního válce, jsou-li dány:
Pokyny pro vypracování zápočtových prací (rysů): okraje (uvnitř rámečku) napište nadpis (Rotační válec), u dolního okraje akademický rok, rys č. 1, varianta n, jméno, příjmení a číslo studijní skupiny.
elektrické filtry Jiří Petržela základní pojmy
Jiří Petržela základí ojmy základí ojmy z oblati elektrických filtrů základí ojmy elektrický filtr je lieárí dvojbra, který bez útlumu roouští je určité kmitočtové ložky, které obahuje vtuí igál rouštěé
Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 6 Katedra ekonometrie FEM UO Brno Uvažujme obecnou úlohu lineárního programování, tj. úlohu nalezení takového řešení vlastních omezujících podmínek a 11 x 1 + a 1 x +... + a 1n x n = b 1 a
Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika
Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo
Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení
Přijímací řízeí akademický rok 0/0 Kompletí zěí testových otázek matematické myšleí Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá odpověď. Které číslo doplíte místo otazíku? 6 8 8 6?.
NELINEÁRNÍ ROVNICE. Numerické metody, kterými se budeme zabývat jsou založeny na iteračních principech.
NELINEÁRNÍ ROVNICE Formulace: Je dána funkce f : R R definovaná na intervalu a, b. Hledáme číslo z intervalu a, b tak, ab platila rovnost f() =. Číslo nazveme řešení nebo kořen rovnice). Poznámka: Najít
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Kružnice, kruh, tečny, obsahy, goniometrické funkce, integrace