POVINNÝ DOMÁCÍ ÚKOL PLANIMETRIE
|
|
- Kryštof Soukup
- před 9 lety
- Počet zobrazení:
Transkript
1 POVINNÝ DOMÁCÍ ÚKOL PLANIMETRIE DATUM ODEVZDÁNÍ: DO 7:50 BOJANOVSKÝ (1) V obdélníku ABCD je vzdálenost jeho středu od přímky AB o 3 cm větší než od přímky BC. Obvod obdélníku je 5 cm. Určete rozměry obdélníku a jeho obsah. (2) Pozemek tvaru půlkruhu je třeba oplotit. Na rovnou část plotu se použije 28 metrů pletiva. Kolik celých metrů pletiva bude nejméně potřeba na zbytek plotu po oblouku? (3) Pravoúhlý trojúhelník má přeponu délky 12 cm. Jedna odvěsna je o 4 2 cm větší než druhá. Jaký je obsah trojúhelníku? BONOMO (1) Sál obdélníkového půdorysu měl jeden rozměr o 20 m delší než druhý. Po přestavbě se délka zmenšila o 5 m a zároveň se šířka zvětšila o 10 m. Obsah podlahy se tak zvětšil o 300 m 2. Jaké byly původní rozměry sálu? (2) Kolem kruhové travnaté plochy je 2 m široký chodník. Vnější okraj chodníku tvoří obrubník, jehož délka je 157 m. Vypočtěte obsah kruhové travnaté plochy a výsledek zaokrouhlete na desítky m 2. (3) Rameno rovnoramenného trojúhelníku je 5 dm, jeho výška k základně je o 20 cm delší než základna. Vypočtěte: a) délku základny b) obsah trojúhelníku
2 BORSHCHEVSKA (1) Pole osázené zeleninou má tvar pravoúhlého rovnoramenného trojúhelníku. Jeho odvěsny mají délku 24 m. Ve vrcholech trojúhelníku jsou umístěny otáčecí postřikovače o dosahu 12 m. Jak velká část pole není těmito postřikovači zavlažována? (2) Přepona BC pravoúhlého trojúhelníku ABC měří 9 cm, odvěsna AC měří 4,5 cm. Druhá odvěsna AB je bodem X rozdělena na dva úseky. Úsek AX má délku 4,5 cm. Určete velikosti příslušných úhlů: α = β = γ = (3) Do kružnice se středem S a poloměrem r = 3 cm je vepsán šedý obrazec ASBCD. Vypočtěte obsah šedého obrazce ASBCD. Nezapomeňte uvést jednotku. DOZBABOVÁ (1) Je dán trojúhelník ABC a body D, E, které jsou po řadě středy stran AC, BC. Úsečka DE rozdělí trojúhelník ABC na trojúhelník a lichoběžník. Vypočtěte poměr jejich obsahů. (2) Ornament je složen z jednoho čtverce a čtyř půlkruhů, které jsou rozděleny vždy na tmavou a světlou polovinu. Čtverec má obsah 400 cm 2. Vypočtěte s přesností na cm2 obsah tmavé plochy ornamentu. (3) Oplocený pozemek má tvar lichoběžníku, kde velikosti rovnoběžných stran jsou 106 m a 72 m, vzdálenost těchto stran je 46 m a velikost úhlu mezi základnou a jedním ramenem je 57. Vypočítejte obsah pozemku v hektarech a délku plotu. DVOŘÁKOVÁ (1) Parcela má tvar pravoúhlého lichoběžníku ABCD, kde AB CD, s pravým úhlem při vrcholu B. Strana AB měří 36 m. Strana AB je ke straně BC v poměru 12 : 7. Strana AB je ke straně CD v poměru 3 : 2. Vypočtěte spotřebu pletiva na oplocení parcely. Pletivo se prodává v běžných metrech. (2) Vypočítejte, jakou vzdálenost (zaokrouhlenou na metry) musí urazit výletník k patě rozhledny, jestliže rozhledna je vysoká 58 m a vrchol rozhledny vidí pod úhlem 46. (3) Vypočtěte obvod a obsah pravidelného devítiúhelníku, kterému je vepsána kružnice o poloměru 10 cm.
3 GRANDIČ (1) Sadem lichoběžníkového tvaru prochází cesta kolmo na rovnoběžné strany a je široká 80 cm. Délky základen jsou v poměru 5 : 3 a délka delší základny k délce cesty je v poměru 5 : 6. Kolik metrů čtverečných zabírá cesta, je-li výměra celého sadu m 2? (2) Na obrázku je pozemek tvaru čtyřúhelníku s rozměry AB =40 m, BC = 30 m, CD =120 m. Jaký obvod má tento pozemek? (3) Úsek, který ve skutečnosti ujde deseti kroky, je na plánu zakreslen úsečkou délky 1 cm. Kruh na plánu má poloměr 2,5 cm. Kolika kroky se obejde po obvodu skutečný kruh? CHLUPOVÁ (1) Stavební pozemek tvaru obdélníku o rozměrech 40 m a 60 m se má zčásti zastavět domem se základy tvaru čtverce o straně 18 m. Zbytek pozemku se má rozdělit tak, aby 1/3 připadla na dvůr a zbytek na zahrádku. Vypočtěte výměru zahrádky. (2) Součástka má tvar výseče mezikruží: R = 180 mm, r = 70 mm, středový úhel ω = 300. Určete: a) obsah součástky b) procento odpadu, je-li součástka vyrobena z kruhu o poloměru R (3) Průřez železničního náspu má tvar rovnoramenného lichoběžníku, sklon svahů je a jejich délka je 3,5 m, horní šířka náspu je 7 m. Vypočítejte výšku a dolní šířku náspu. KOMÁRKOVÁ (1) Čtverec ABCD o straně 10 cm má opsanou a vepsanou kružnici. Tyto kružnice tvoří hranice mezikruží. Vypočtěte obsah tohoto mezikruží. (2) Vzor na dlaždici tvoří čtyři shodné obdélníky a čtverec uprostřed. Obvod každého z obdélníků je 30 cm. (A) Jaký je obvod celé dlaždice? (B) Jaký je obsah dlaždice? (3) Vypočítejte obvod pravoúhlého lichoběžníku ABCD, s pravým úhlem při vrcholu A, jestliže: AB = 14 cm, AD = 5 cm, CD : AB = 2 7. Výsledek zaokrouhlete na jedno desetinné místo. KRAMNÝ (1) Lichoběžník ABCD je dán základnou a = 24 cm, výškou v = 10 cm, obsahem S = 185 cm 2 a úhlem γ = 135 při vrcholu C. Určete velikost obvodu lichoběžníku ABCD. (2) Vypočtěte obsah podložky tvaru pravidelného šestiúhelníku, je-li vzdálenost jeho protějších stran 10 cm a v podložce je vyvrtán kruhový otvor o průměru 3,2cm. (3) Délky stran obdélníkové zahrady jsou v poměru 1 : 2. Spojnice středů sousedních stran má délku 20 m. Vypočítej obvod a výměru pozemku.
4 KŘÍŽOVÁ (1) Všechny stěny kuchyně chceme obložit do výšky 1,2 m čtvercovými obkládačkami o straně 15 cm. V kuchyni jsou dvoje dveře, jejichž zárubně jsou široké 90 cm. Kolik obkládaček koupíme, jestliže počítáme s 5% ztrátou a rozměry obdélníkové podlahy jsou 3,2 m a 2,1 m? (2) Kolem kruhového záhonu je cestička široká 40 cm. Záhon má průměr 3,20 m. Vypočítejte obsah cestičky. (3) Lichoběžník ABCD je sestaven z rovnoramenného trojúhelníku APD a rovnoběžníku PBCD. Platí AD = DP = 20 cm, AP = 24 cm, CD = 18 cm. Vypočtěte obsah lichoběžníku ABCD. KUČEROVÁ (1) Pozemek na vodorovném terénu má tvar pravoúhlého lichoběžníku s délkami rovnoběžných stran 75 m a 103 m a jeho rameno svírá s nejdelší stranou úhel o velikost Kolika hektolitry vody byl pozemek zavlažen při dešti se srážkami 8 mm na m 2.? (2) Vypočtěte obvod a obsah pravidelného devítiúhelníku, kterému je vepsána kružnice o poloměru 10 cm. (3) Délka jedné odvěsny pravoúhlého trojúhelníka je 6, poloměr kružnice opsané tomuto trojúhelníku je 5. Jaký je obvod tohoto trojúhelníka? LE TUAN (1) Délka obdélníku je o 2 cm kratší než pětinásobek jeho šířky. Vypočtěte délku strany čtverce, jehož obsah je roven obsahu tohoto obdélníku, jestliže obvod daného obdélníku je 52 cm. (2) Postřikovač se může otáčet o úhel 320 a má dosah 12 m. Jakou plochu může zavlažovat? (3) Rovnoběžník ABCD rozděluje úhlopříčka BD na dva shodné pravoúhlé trojúhelníky. Vypočtěte obvod rovnoběžníku ABCD.
5 LOUPOVÁ (1) Kolik procent obsahu pravidelného šestiúhelníku tvoří obsah jemu vepsaného kruhu? Poloměr vepsaného kruhu je 3,5 cm. (2) Pozemek tvaru obdélníku je dočasně přerušen stavebním záborem (šedá plocha). Rovnoběžné hranice záboru na obvodu jsou dlouhé 15 m a 25 m. Jedna šikmá strana záboru, která je oplocena, má délku 236 m. Nyní se pokračuje v oplocování 190 m dlouhé strany pozemku. (A) Vypočtěte obsah plochy stavebního záboru. (B) S přesností na celé metry vypočtěte šířku pozemku (d). (3) Je dán kosočtverec. Vypočtěte poloměr kružnice vepsané do kosočtverce, jestliže bod dotyku dělí stranu a kosočtverce na úseky x = 4 cm, y = 3 cm. Vypočtěte jeho obsah. MÁDLE (1) Jakou hmotnost má 00 součástek tvaru pravidelného desetiúhelníku o straně délky 2 cm je-li hmotnost 1 m 2 plechu, z něhož jsou vyrobeny, 24 kg? (2) Na plánu v měřítku 1 : 750 je znázorněn pozemek obdélníkového tvaru o rozměrech 15 cm a 9 cm. Vypočítejte, jaký je skutečný obsah pozemku zaokrouhlený na metry čtvereční. (3) Rovnoramenný trojúhelník ABC má při základně AB úhel velikosti α = CAB = 75 a délky ramen AC = BC = 10. Jakou délku má základna c = AB? NORCINI (1) Půdorys věže je pravidelný šestiúhelník o straně délky 5 m. Vypočtěte výměru parku kolem věže a délku oplocení, má-li park rovněž tvar pravidelného šestiúhelníku s šestinásobnou délkou strany a stojí-li věž v jeho středu. (2) Obsah kosočtverce je 216 cm 2. Délka jedné jeho úhlopříčky je 2,4 dm. Vypočtěte obvod kosočtverce. (3) Obdélníková plocha o celkové rozloze m 2 byla rozdělena rovnou hranicí na dva menší obdélníky. Velikosti ploch obou částí jsou v poměru 3 : 2. Větší část se od menší liší v délce jedné strany o 10 m. V jakém poměru jsou délky stran u větší z obou částí rozdělené plochy? RAFAJOVÁ (1) Z pásu ocelového plechu o šířce 10 cm a délce 2 m jsou vystříhány kruhové podložky o průměru 80 mm. Vypočtěte odpad materiálu v procentech, jestliže víte, že při styku dvou sousedních kruhů nedochází k žádné ztrátě materiálu. (2) Rovnoramenný lichoběžník ABCD má délky základen a = 16 cm, c = 11 cm a ramena b = d = 6,5 cm. Vypočtěte jeho obvod, obsah a velikosti vnitřních úhlů. (3) Okrasná část zahrady má tvar obdélníku, jehož rozměry se liší o jediný metr. Po úhlopříčce ji protíná pěšina dlouhá 29 metrů. Určete délku a šířku okrasné zahrady.
6 ŠKRLOVÁ (1) Kolik m 2 tapety je třeba na vytapetování místnosti o rozměrech 7,2 m a 5,4 m, která je vysoká 3,3 m, budemeli dávat tapetu pouze na stěny do výšky 10 cm od stropu? V místnosti je jedno okno o rozměrech 2,5 m krát 2,5 metru a dveře o rozměrech 1,2 m krát 2 m, které také nebudeme tapetovat. Ztráty při tapetování činí 10 %. Kolik budeme potřebovat rolí tapet o šířce 1 metr a délce 15 metrů? (2) Pravoúhlý trojúhelník s odvěsnami 6 cm a 8 cm je rozdělen výškou k přeponě na dva trojúhelníky. Vypočtěte obsahy těchto dvou trojúhelníků. (3) Střední dvou kružnic, které se dotýkají zvenčí, je 12 cm a součet obsahů obou kruhů je 80π cm 2. Určete poloměry těchto kružnic. URBÁNEK (1) Rovnoramenný lichoběžník má dolní základnu c = 2,9 cm, výšku v = 7,5 cm a úhel α = 35. Vypočítejte jeho obsah a obvod. (2) Obdélníková zahrada má délku 57 m a šířku 42 m. Vypočítej, o kolik m 2 se zmenší její plocha, pokud se ohradí okrasným plotem, který má šířku 60 cm. (3) Záhon má tvar pravidelného šestiúhelníku. Kolem celého záhonu byl vybudován obrubníkový okraj dlouhý 480 cm. Kolik bude stát substrát, kterým je pokrytá celý záhon do výšky 10 cm, jestliže 50 litrů substrátu stojí 240 Kč. VESELÁ (1) Výška a rovnoběžné strany lichoběžníku jsou v poměru v: a: c = 2:3:5, jeho obsah je S = 512 cm 2. Vypočtěte výšku a rovnoběžné strany. (2) Na vodorovné podložce je položena bedna tvaru krychle s hranou délky a. Bedna osvětlená slunečním světlem vrhá stín na podložku. Směr slunečních paprsků svírá s podložkou úhel α. (Směr je rovnoběžný se dvěma stěnami krychle). Jak dlouhá je hrana krychle, jestliže tgα = 2 3? (3) Rovnoběžník ABCD má obsah 40 cm2, AB = 8,5 cm a BC = 5,65 cm. Vypočítej velikosti jeho úhlopříček.
7 VODIČKOVÁ (1) Obdélník má úhlopříčku u = 34 cm. Pokud se zvětší každá jeho strana o 4 cm, zvětší se jeho obsah o 200 cm 2. Určete rozměry obdélníku. (2) Pod jakým úhlem (zaokrouhleným na desetiny stupňů) stoupá schodiště, jehož schody jsou 28 cm široké a 15 cm vysoké? (3) Lichoběžník má vrchní základnu c = 33 cm a výšku v = 15 cm. Další tři jeho strany jsou stejné. Vypočítejte obvod lichoběžníku.
1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.
Kruh, kružnice, válec 1. Kruh, kružnice 1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed kružnice. Stejnou vzdálenost nazýváme poloměr
Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.
Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází
Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení pojmů a výpočtů objemů a obvodů
METODICKÝ LIST DA46 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Obvod a obsah I. - obrazce Astaloš Dušan Matematika šestý frontální, fixační,
Různostranné obecné Rovnoramenné Rovnostranné. třetí, základna, je různá
Trojúhelník Trojúhelník - AB určují tři body A, B,, které neleží na jedné přímce. Trojúhelník je rovněž možno považovat za průnik tří polorovin nebo tří konvexních úhlů. γ, γ, γ Body A, B,, se nazývají
3.2.4 Podobnost trojúhelníků II
3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).
Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu
Věty o pravoúhlém trojúhelníku Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu b v a obou úseků přepony: v 2 = c a c b c b c a Eukleidova věta o odvěsně A c B Druhá mocnina délky
15 s. Analytická geometrie lineárních útvarů
5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý
Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm.
Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm. 8 cm u s = 11,3137085 cm pomocí Pythagorovy věty z pravoúhlého ABC u t = 13,85640646 cm opět pomocí Pythagorovy věty z pravoúhlého ACA'
STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113
STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu
Matematika 9. ročník
Matematika 9. ročník Náhradník NáhradníkJ evátá třída (Testovací klíč: PFFNINW) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Geometrie / Slovní úlohy
Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha.
18. Tělesa řezy, objemy a povrchy, (řez krychle, kvádru, jehlanu, objemy a povrchy mnohostěnů, rotačních těles a jejich částí včetně komolých těles, obvody a obsahy mnohoúhelníků, kruhu a jeho částí) Tělesa
f(x) = 9x3 5 x 2. f(x) = xe x2 f(x) = ln(x2 ) f(x) =
Zadání projektů Projekt 1 f(x) = 9x3 5 2. Určete souřadnice vrcholů obdélníka ABCD, jehož dva vrcholy mají kladnou y-ovou souřadnici a leží na parabole dané rovnicí y = 16 x 2 a další dva vrcholy leží
KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KONSTRUKČNÍ
Výukový materiál zpracovaný v rámci projektu EU peníze školám
Výukový materiál zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu: Šablona: Název materiálu: Autor: CZ..07/.4.00/.356 III/ Inovace a zkvalitnění výuky prostřednictvím ICT VY_3_INOVACE_0/07_Délka
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)
Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel
Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.
7. Kruh, kružnice, válec 7. ročník - 7. Kruh, kružnice, válec 7.1 Kruh, kružnice 7.1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed
Úlohy k procvičení kapitoly Obsahy rovinných obrazců
Úlohy k procvičení kapitoly Obsahy rovinných obrazců 1. Vypočtěte obvod a obsah obrazců nakreslených na obrázku 1. (Rozměry jsou udány v mm.) Obrázek 1 2. Na pokrytí 1 m 2 střechy se spotřebuje 26 ražených
3. Mocnina a odmocnina. Pythagorova věta
. Mocnina a odmocnina. Pythagorova věta 7. ročník -. Mocnina, odmocnina, Pythagorovavěta.. Mocnina... Vymezení pojmu Součin stejných činitelů můţeme napsat v podobě mocniny. Například : součin...... můţeme
Analytická geometrie (3. - 4. lekce)
Analytická geometrie (3. - 4. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 16. června 2011 Příklad 1 Příklad 1. Algebraicky
M - Příprava na 3. čtvrtletku třídy 1P, 1VK
M - Příprava na 3. čtvrtletku třídy P, VK Souhrnný studijní materiál určený k přípravě na 3. čtvrtletní písemnou práci. Obsahuje učivo ledna až března. VARIACE Tento dokument byl kompletně vytvořen, sestaven
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 2) Vypočtěte velikost úhlu : a) 150 10 b) 149 22 c) 151
Stereometrie pro učební obory
Variace 1 Stereometrie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Vzájemná poloha prostorových
Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
Digitální učební materiál
Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.057 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
Přijímačky nanečisto - 2011
Přijímačky nanečisto - 2011 1. Vypočtěte: 0,5 2 + (-0,5) 2 (- 0,1) 3 = a) 0,001 b) 0,51 c) 0,499 d) 0,501 2. Vypočtěte: a) 0,4 b) - 0,08 c) 2 3 d) 2 3. Určete číslo s tímto rozvinutým zápisem v desítkové
Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách. Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918
Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Název projektu:inovace vzdělávání v
Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013
Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Test přijímací zkoušky bude obsahovat úlohy uzavřené, kdy žák vybírá správnou odpověď ze čtyř nabízených variant (správná je vždy právě
S = 2. π. r ( r + v )
horní podstava plášť výška válce průměr podstavy poloměr podstavy dolní podstava Válec se skládá ze dvou shodných podstav (horní a dolní) a pláště. Podstavou je kruh. Plášť má tvar obdélníka, který má
MATEMATIKA základní úroveň obtížnosti
MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro
Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM.
STEREOMETRIE Zadání 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK = AK ; M EH; HM = EM ) Sestrojte řez pravidelného čtyřbokého jehlanu ABCDV rovinou KLM; K AB; BK = AK ; L CD; DL = CL ; M
10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )
Druhá mocnina z tabulek 1) (- 6) = 10)(- 5) = ) 7 = 4 11) 5 = ) 4,8 = 4) 40 = 5),785 = 6) 65 8 = 7) 0,01485 = 8) 5,7 = 9) = 4 1),4 = 1)80 = 14)4,6787 = 15)467 56 = 16)0,014 = 17)48,69 = 1 18) Druhá odmocnina
M - Řešení pravoúhlého trojúhelníka
M - Řešení pravoúhlého trojúhelníka Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento dokument byl
9. Planimetrie 1 bod
9. Plnimetrie 1 bod 9.1. Do rovnostrnného trojúhelníku ABC o strně je vepsán rovnostrnný trojúhelník DEF tk, že D AB, E BC, F CA. Jestliže obsh trojúhelníku DEF je roven polovině obshu trojúhelníku ABC,
8. Stereometrie 1 bod
8. Stereometrie 1 bod 8.1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného válce je 4 : π b) : π c) : π d) : π e) 4 : π. 8.. Zmenšíme-li poloměr podstavy kužele o polovinu a jeho výšku zvětšíme
Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice.
Kružnice Kružnice k(s; r) je množina všech bodů roviny, které mají d od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. S r Délka spojnice dvou bodů kružnice, která prochází středem
M - Matematika - třída 2ODK celý ročník
M - Matematika - třída ODK celý ročník Obsahuje učivo celého školního roku 006/007. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu
1. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí.
. Tři shodné obdélníky jsou rozděleny různými způsoby. První je rozdělen na 4 shodné části, poslední obdélník na 6 shodných částí. Vyjádřete zlomkem, jakou část druhého obdélníku tvoří zatmavená plocha..
Matematika pro 9. ročník základní školy
Matematika pro 9. ročník základní školy Řešení Ćíselné výrazy 1. Prvočíslo je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy
1) Vypočítej A) 32 B) 44 C) 48 D) 56. 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 A) 12 B) 13 C) 14 D) 15
Varianta A 4 4 4 4 4 4 4 4 1) Vypočítej A) 32 B) 44 C) 48 D) 56 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 20 120 A. A) 12 B) 13 C) 14 D) 15 3) Najdi největší a nejmenší trojciferné číslo skládající
STEREOMETRIE 9*. 10*. 11*. 12*. 13*
STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou
4. Vypočítejte objem dané krychle, jestliže víte, že objem krychle s hranou poloviční délky má objem 512 m 3.
Didaktika matematiky DM 3 - příklady stereometrie Kvádr, krychle 1. Vypočítejte objem krychle, jejíž povrch je 96 cm 2. 2. Vypočítejte povrch krychle, jejíž objem je 512 cm 3. 3. Jedna stěna krychle má
Přehled učiva matematiky 7. ročník ZŠ
Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři
PŘIJÍMACÍ ZKOUŠKY 2010 - I.termín
MATEMATIKA Obor: 79-41-K/81 Součet bodů: Opravil: Kontroloval: Vítáme vás na gymnáziu Omská a přejeme úspěšné vyřešení všech úloh. Úlohy můžete řešit v libovolném pořadí. V matematice pracujeme s čísly
Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro
Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.
Úlohy. b) číslo 0,8 o 35% d) číslo 220 o 22 % 1 % ze z 10,80 Kč č 10,80 Kč 103,5 = 1117,80 Kč
2. Obnos 1080 Kč představuje základ z, ze kterého počítáme procentovou část č, odpovídající počtu procent p 3,5; vypočítanou procentovou část pak přičteme k základu. 1. způsob: z 1080 Kč p 103,5 č... Kč
Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 4. května 2014 Název zpracovaného celku: STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI STEREOMETRIE geometrie
Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Čtyřúhelníky. Autor: Jana Krchová Obor: Matematika. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Napiš názvy jednotlivých rovinných útvarů: 1) 2) 3) 4)
Projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Čtyřúhelníky 1 2 3 4 5 6 7 8 9 10 11 12 Napiš názvy jednotlivých rovinných
VY_42_INOVACE_MA_4A_18A Základní škola Nové Město nad Metují, Školní 1000, okres Náchod Autor: Ivana Hynková. Tematický okruh, předmět: Matematika
Název: Škola: VY_42_INOVACE_MA_4A_18A Základní škola Nové Město nad Metují, Školní 1000, okres Náchod Autor: Ivana Hynková Ročník: Tematický okruh, předmět: Téma: Číslo projektu: IV. Matematika 4. čtvrtletní
Příklady pro 8. ročník
Příklady pro 8. ročník Procenta: 1.A Vyjádřete v procentech: a) desetina litru je % b) polovina žáků je % c) pětina výměry je % d) padesátina délky je % e) tři čtvrtiny objemu je % f) dvacetina tuny je
PLANIMETRIE, SHODNOST A PODOBNOST
PLANIMETRIE, SHODNOST A PODOBNOST Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky
MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006
Krok za krokem k nové maturitě Maturita nanečisto 2006 MA1ACZMZ06DT MATEMATIKA 1 didaktický test Testový sešit obsahuje 18 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém sešitu. Odpovědi pište
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
Svobodná chebská škola, základní škola a gymnázium s.r.o.
METODICKÝ LIST DA41 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Poměry III. postupný poměr Astaloš Dušan Matematika sedmý frontální, fixační samostatná práce upevnění znalostí
Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín. Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník
Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šablony Mendelova střední škola, Nový Jičín NÁZEV MATERIÁLU: Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník Autor: Mgr. Břetislav Macek Rok vydání: 2014
PLANIMETRIE. 1) Vypočítejte velikost úhlu DAB v kosočtverci ABCD, jestliže ABD = [ ]
PLANIMETRIE 1) Vypočítejte velikost úhlu DAB v kosočtverci ABCD, jestliže ABD = 21 40 [136 40 ] 2) Vypočítejte velikost úhlu γ = ACB obecného trojúhelníku ABC, znáte-li velikost stran a = 8cm, b = 6 cm,
Digitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_16 ŠVP Podnikání RVP 64-41-L/51
M - Příprava na 11. zápočtový test
M - Příprava na 11. zápočtový test Určeno pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní
M - Pythagorova věta, Eukleidovy věty
M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
DOMÁCÍ ÚKOL I Napiš správně pod sebe a sečti: 15 800 + 6 700; 23 450 + 9 230; 73 180 + 487
DOMÁCÍ ÚKOL I Napiš správně pod sebe a sečti: 15 800 + 6 700; 23 450 + 9 230; 73 180 + 487 DOMÁCÍ ÚKOL II Napiš správně pod sebe a sečti: 65 210 + 570 234; 98 000 + 743 568; 183 261 + 364 293; 660 347
Digitální učební materiál
Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.057 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)
6 Planimetrie Planimetrie = část matematiky, která se zabývá geometrií (původně věda o měřené země) v rovině (obrazce, jejich vlastnosti, shodnost a podobnost, zobrazení). 6.1 Trojúhelník Každé tři body,
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometire Gradovaný řetězec úloh Téma: obsahy a obvody mnohoúhelníků, grafy funkcí s absolutní
1. rys - Rotační válec V Mongeově promítání sestrojte sdružené průměty rotačního válce, jsou-li dány:
Pokyny pro vypracování zápočtových prací (rysů): okraje (uvnitř rámečku) napište nadpis (Rotační válec), u dolního okraje akademický rok, rys č. 1, varianta n, jméno, příjmení a číslo studijní skupiny.
Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků
Geodézie přednáška 9 Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Určování výměr určování
Hrací plocha. Házená. Vlastnosti hrací plochy se nesmí měnit v prospěch jednoho z družstev.
Petr Hortenský 10.1.2011 Hrací plocha 1:1 Hrací plocha je obdélník dlouhý 40 m, široký 20 m a obsahuje dvě brankoviště (viz pravidla 1:4 a 6) a hrací pole. Podélné strany se nazývají postranní čáry, kratší
Přípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Konstrukční úlohy Klíčová slova: rozbor, náčrt, popis, diskuse počtu řešení, kružnice opsaná a vepsaná Autor: trojúhelníku Mlynářová 1 Kontrukční úlohy Výsledkem tzv.
je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!
-----Pravoúhlý trojúhelník----- 156 V pravoúhlém trojúhelníku ABC má pravý úhel vrchol C. Vypočítejte velikost jeho ostrých úhlů, je-li dáno: a) a = 62 mm, b = 37 mm, b) a = 36 mm, c = 58 mm, c) b = 8,4
Rozpis výstupů zima 2008 Geometrie
Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...
Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů
1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou
Název: VY_32_INOVACE_01_C_12_Slovní úlohy obvod a obsah kruhu
SLOVNÍ ÚLOHY OBVOD A OBSAH KRUHU Název školy: Základní škola Karla Klíče Hostinné Autor: Mgr. Hana Kuříková Název: VY_32_INOVACE_01_C_12_Slovní úlohy obvod a obsah kruhu Téma: Matematika 8.ročník Číslo
a : b : c = sin α : sin β : sin γ
12 Řešení becnéh trjúhelníku, věta sinvá a ksinvá Sinvá věta - platí v becném trjúhelníku (nemusí být pravúhlý) a : b : c sin α : sin β : sin γ Pměr délek stran je rven pměru sinů prtilehlých vnitřních
Sada 2 Geodezie II. 11. Určování ploch z map a plánů
S třední škola stavební Jihlava Sada 2 Geodezie II 11. Určování ploch z map a plánů Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004
PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)
Kótování oblouků, děr, koulí, kuželů, jehlanů, sklonu a sražených hran
Kótování oblouků, děr, koulí, kuželů, jehlanů, sklonu a sražených hran 1. Kótování oblouků veškeré oblouky kružnic se kótují poloměrem a jedním z těchto rozměrů: - středovým úhlem - délkou tětivy - délkou
Svobodná chebská škola, základní škola a gymnázium s.r.o. procvičování obsahu a objemu prostorových těles
METODICKÝ LIST DA55 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Prostorová tělesa VII. slovní úlohy Astaloš Dušan Matematika šestý/sedmý
UNIVERZITA KARLOVA V PRAZE
UNIVERZITA KARLOVA V PRAZE Pedagogická fakulta Katedra matematiky a didaktiky matematiky Vztahy mezi prvky trojúhelníku Relations among elements of a triangle Autor: Lucie Machovcová Vedoucí práce: RNDr.
4.6.6 Složený sériový RLC obvod střídavého proudu
4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu
Příklady na 13. týden
Příklady na 13. týden 13-1 Kruhový záhon o průměru 10 m se má osázet begóniemi. Na jednu sazenici je zapotřebí 2 dm 2. 1g semena má 5 000 zrn, jejichž klíčivost je 85 %. Pěstební odpad od výsevu do výsadby
Příprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník 1. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: 1 7 1 a) 0, b) 0,01. 1000 + 10. c) 0,5. 0,06 0,09
Návody k domácí části I. kola kategorie A
Návody k domácí části I. kola kategorie A 1. Najděte všechny dvojice prvočísel p, q, pro které existuje přirozené číslo a takové, že pq p + q = a + 1 a + 1. 1. Nechť p a q jsou prvočísla. Zjistěte, jaký
+ S pl. S = S p. 1. Jehlan ( síť, objem, povrch ) 9. ročník Tělesa
1. Jehlan ( síť, objem, povrch ) Jehlan je těleso, které má jednu podstavu tvaru n-úhelníku. Podle počtu vrcholů n-úhelníku má jehlan název. Stěny tvoří n rovnoramenných trojúhelníků se společným vrcholem
Příprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: a) 7 0, b) 9 4 0,0 0000 0, k) 6 c) 0,0,06 0,09:0, d)
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku.
Mnohoúhelníky Je dáno n různých bodů A 1, A 2,. A n, z nichž žádné tři neleží na přímce. Geometrický útvar tvořený lomenou čarou a částí roviny touto čarou ohraničenou nazýváme n-úhelníkem A 1 A 2. A n.
Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,...
Vzorové příklady k přijímacím zkouškám ) Doplňte číselné řady o další dvě čísla. a), 6,, 4, 48, 96,... b) 87, 764, 6, 4, 4,... c), 6, 8,,, 0, 6,... d),,, 7,,, 7, 9,,... e) ; ; ; ; ; 8 ) Doplňte číslo místo.
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
Pohyb a klid těles. Průměrnou rychlost pohybu tělesa určíme, když celkovou dráhu dělíme celkovým časem.
Pohyb a klid těles Pohyb chápeme jako změnu polohy určitého tělesa vzhledem k jinému tělesu v závislosti na čase. Dráhu tohoto pohybu označujeme jako trajektorii. Délku trajektorie nazýváme dráha, označuje
SBÍRKA ŘEŠENÝCH ÚLOH Z GEOMETRIE
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra matematiky SBÍRKA ŘEŠENÝCH ÚLOH Z GEOMETRIE BAKALÁŘSKÁ PRÁCE Vedoucí práce Mgr. Roman Hašek, Ph.D. Vypracovala Lucie Kuklová duben
Mongeova projekce - řezy hranatých těles
Mongeova projekce - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Mongeova projekce - řezy hranatých těles 1 / 73 Obsah 1 Zobrazení těles v základní poloze 2 Řez hranolu rovinou Osová afinita Sestrojení
P Y T H A G O R I Á DA. 37. ročník 2013/2014 8. R O Č N Í K
P Y T H A G O R I Á DA 37. ročník 013/014 8. R O Č N Í K Š K O L N Í K O L O Adresář krajských garantů soutěží na školní rok - 013/014 Kraj Krajský úřad pověřená osoba * Mgr. Michaela Knappová. Magistrát
MATEMATIKA 9. ROČNÍK. CZ.1.07/1.1.16/02.0079 Sada pracovních listů
MATEMATIKA 9. ROČNÍK CZ.1.07/1.1.16/02.0079 Sada pracovních listů Resumé Sada pracovních listů zaměřená na opakování, procvičení a upevnění učiva 9. ročníku racionální čísla, desetinná čísla, zlomky, výrazy,
6. Čtyřúhelníky, mnohoúhelníky, hranoly
6. Čtyřúhelníky, mnohoúhelníky, hranoly 7. ročník - 6. Čtyřúhelníky, mnohoúhelníky, hranoly 6.1. Základní pojmy 6.1.1. n úhelník n - úhelník pro n > 2 je geometrický obrazec, který má n vrcholů ( stran,
7/ Podstavou kolmého trojbokého hranolu ABCA BĆ je rovnoramenný trojúhelník ABC. Určete odchylku přímek: a) BA ; BC b) A B ; BC c) AB ; BC
Stereometrie 1/ Je dána krychle ABCDEFGH. Uveďte všechny přímky, které procházejí bodem E a dalším vrcholem krychle a jsou s přímkou BC a) rovnoběžné b) různoběžné c) mimoběžné / Je dána krychle ABCDEFGH.