1. a) Lineární rovnice a nerovnice s absolutní hodnotou. b) Skalární součin vektorů, úhel dvou vektorů, kolmost a rovnoběžnost vektorů.

Rozměr: px
Začít zobrazení ze stránky:

Download "1. a) Lineární rovnice a nerovnice s absolutní hodnotou. b) Skalární součin vektorů, úhel dvou vektorů, kolmost a rovnoběžnost vektorů."

Transkript

1 . a) Lineární rovnice a nerovnice s absolutní hodnotou. b) Skalární součin vektorů, úhel dvou vektorů, kolmost a rovnoběžnost vektorů. A.: Řeš v R : 4 B.: Vypočti velikosti vnitřních úhlů v trojúhelníku ABC a délku strany BC je li dáno: A[0;], B[-;], C[;].. a) Řešení rovnic a nerovnic v součinovém a podílovém tvaru. b) Parametrické rovnice přímky, vzájemná poloha přímek daných parametrickým vyjádřením. A.: Řeš v R B.: Jsou dány přímky p: = 4t, y = t + a q: + y = 0. Urči, jsou-li přímky p a q rovnoběžné. Pokud ne, vypočítej souřadnice průsečíku.. a) Soustavy lineárních rovnic a nerovnic se dvěma a třemi neznámými. b) Obecná rovnice přímky, směrnicový tvar. A.: Řeš graficky v R soustavu nerovnic y 7 y B.: Je dán trojúhelník ABC kde A[0;0], B[;], C[;]. Napiš obecnou rovnici výšky v c a urči souřadnice průsečíku se stranou AB. Napiš směrnicový tvar rovnice přímky AB a přímky q, která je rovnoběžná s přímkou AB a prochází bodem C. 4. a) Rozklad kvadratického trojčlenu, vztahy mezi kořeny a koeficienty kvadratické rovnice. b) Vzájemná poloha bodu a přímky, vzdálenost bodu od přímky. (analyticky) 4A.: U dané kvadratické rovnice urči kořen a koeficient m, platí-li: + m + 4 = 0 a = 8. 4B.: Je dán trojúhelník ABC kde A[0;0], B[;], C[;]. Bod S je střed strany AB. Urči vzdálenost bodu S od přímky BC.

2 5. a) Řešení rovnice s neznámou pod odmocninou. b) Odchylka dvou přímek, kolmost a rovnoběžnost přímek (analyticky). 5A.: Řeš v R a urči množinu všech, pro která má daná rovnice smysl B.: Je dána přímka p: = + t, y = t, z = + t a vektory u = (;;) a v = (;;-). Urči souřadnice vektoru w který je současně kolmý k přímce p i k vektorům u, v. 6. a) Lineární a kvadratické rovnice s parametrem. b) Parametrické rovnice přímky a roviny v prostoru. 6A.: Pro které hodnoty reálného parametru má kvadratická rovnice dva různé reálné kořeny? ( + 5) + 4 = 0 6B.: Je dán trojúhelník ABC kde A[0;0;], B[;;-4], C[;;]. Napiš parametrické vyjádření roviny ABC a těžnice t a. 7. a) Soustavy lineárních rovnic a metody jejich řešení. b) Obecná rovnice roviny, vzdálenost bodu od roviny. 7A.: Řeš v R soustavu rovnic y z 6 y z y z 5 7B.: Napiš obecnou rovnici roviny, která prochází body A[;4;7], B[;6;0] a je rovnoběžná s přímkou CD, kde C[;;5], D[ ;0;4]. Urči vzdálenost přímky CD od roviny. 8. a) Kvadratická nerovnice, geometrická interpretace, souvislost s grafem kvadratické funkce. b) Odchylka přímky a roviny, dvou rovin, vzájemná poloha přímek a rovin (analyticky). 8A.: Řeš v R soustavu nerovnic B.: Urči vzájemnou polohu rovin : y z = 0 a : + y + z = 0, jejich odchylku a pokud eistuje tak i parametrické rovnice průsečnice.

3 9. a) Řešení rovnic a nerovnic s neznámou ve jmenovateli. b) Kružnice definice, základní vlastnosti, konstrukce. 9A.: Řeš v R: 5 4 9B.: Napiš rovnici kružnice, která má poloměr r = 5, prochází bodem Q [;5] a její střed leží na přímce p: + y 4 = a) Pojem funkce, definiční obor a obor hodnot funkce. b) Elipsa. 0A.: Urči definiční obor funkce log 5 (5 5) f ( ) 0B.: Rozhodni, je-li daná rovnice rovnicí elipsy. Pokud ano urči její střed, ohniska, vrcholy, ecentricitu, délky poloos a rovnici tečny v bodě T[0;?] y y = 0.. a) Graf funkce, funkce monotónní, prostá, sudá lichá, inverzní, periodická. b) Monotónnost funkce a její etrémy z hlediska derivace funkce. A.: Je dána funkce y = e +. Pokud eistuje, urči funkci inverzní a načrtni její graf. B.: Urči interval monotónnosti a lokální etrémy funkce y. a) Konstantní a lineární funkce, kvadratická funkce a její význam při řešení nerovnic. b) Parabola. A.: S využitím grafu kvadratické funkce řeš v R nerovnici: 5 4 B.: Na parabole y = najdi bod, který ke nejblíže přímce p: + y + 0 = 0.

4 . a) Lineární lomená funkce. b) Hyperbola. A.: Načrtni graf, urči definiční obor, průsečíky se souřadnými osami funkce f: y B.: Napiš rovnice všech přímek, které procházejí bodem M[0;5] a mají s hyperbolou o rovnici 9y = 9 právě jeden společný bod. 4. a) Funkce s absolutní hodnotou, definice absolutní hodnoty. b) Středový tvar rovnice kuželoseček. 4A.: Sestroj graf funkce y = 4 + 4B.: Kuželosečka je dána rovnicí 9 + 6y y =. Urči o jaký typ kuželosečky se jedná a napiš její rovnici ve středovém tvaru. 5. a) Eponenciální a logaritmická funkce. b) Vzájemná poloha přímky a kuželosečky. 5A.: Načrtni graf a popiš vlastnosti funkce f a f, jestliže f: y = 0,5 -. 5B.: Urči vzájemnou polohu přímky p: 0 y = 0 a kuželosečky k: 4 y = 64. Pokud eistují společné body, vypočti jejich souřadnice a znázorni situaci v souřadných osách. 6. a) Logaritmus, věty o logaritmech, dekadický a přirozený logaritmus. b) Tečna kuželosečky podmínka eistence, rovnice tečny. t T 6A.: Vzorec m m0 (0,5) vyjadřuje radioaktivní přeměnu látky o hmotnosti m. Vyjádři z tohoto vzorce tzv. poločas rozpadu T. 6B.: Je dána přímka p: (m ) (5 m) = 0 a kuželosečka k: 4 y = 64. Pro jakou hodnotu parametru m bude přímka tečnou kuželosečky? 7. a) Eponenciální a logaritmická rovnice. b) Vektorový a smíšený součin vektorů a jejich aplikace. 7A.: Řeš v R nerovnici log + 5log > 0 + log. 7B.: Je dán trojúhelník ABC s vrcholy A[; ; ], B[;0;], C[ ; ; 5]. Urči obsah trojúhelníku ABC. 4

5 8. a) Obecný trojúhelník. b) Gaussova rovina, algebraický tvar kompleního čísla. 8A.: Na hmotný bod působí současně dvě síly o velikosti F = 0 N a F = 5 N, které spolu svírají úhel 60 o. Urči velikost výsledné síly výpočtem i graficky. 8B.: Komplení číslo 6(cos 80 isin80) z uprav a výsledek zapiš v algebraickém tvaru. (cos 0 isin 0) 9. a) Středový a obvodový úhel. b) Goniometrický tvar kompleního čísla. 9A.: Hodiny ukazují půl třetí. Kdybychom protáhli pomyslně obě ručičky, průsečíky s obvodem ciferníku na něm vytnou tětivu, např. AB. Pod jakým úhlem tuto tětivu AB vidíme z pozice čísla na ciferníku? 9B.: Zapiš komplení číslo z = - (sin0 o + i cos0 o ) v goniometrickém tvaru. 0. a) Pythagorova věta, Euklidovy věty a jejich použití. b) Moivreova věta a její použití. 0A.: V pravoúhlém trojúhelníku je přepona délky c. S použitím Euklidových vět vypočti délky stran b, c je li dáno a = 5/4 cm a c b = 4 cm. 0B.: Vypočítej reálnou a imaginární část kompleního čísla z = ( i ).. a) Množiny bodů dané vlastnosti. b) Binomická věta a její použití v oboru kompleních čísel. A.: Sestroj trojúhelník ABC je-li dáno: AB = 7 cm, = 0 o, t a = 6cm. B.: S využitím binomické věty odvoď vzorec pro výpočet sin(4), cos(4).. a) Goniometrické vzorce. b) Řešení lineární a kvadratické rovnice v oboru kompleních čísel. A.: Zjednoduš cos sin cos sin B.: Řeš v C rovnici: + (5i ) 4 8i = 0 5

6 . a) Oblouková míra, orientovaný úhel, funkce sinus, kosinus a tangens. b) Binomická rovnice, n-tá komplení odmocnina z kompleního čísla. 7 A.: Při interferenci dvou vln byl naměřen fázový rozdíl. Bez použití kalkulátoru urči 6 hodnoty goniometrických funkcí sin, cos, tg pro tento úhel. B.: Řeš v C: 4 i 4. a) Goniometrické rovnice. b) Posloupnost definice, způsoby určení posloupnosti. 4A.: Řeš v R: sin = (cos sin ) n n 4B.: Rekurentním vzorcem urči posloupnost log pro > a) Sinová a kosinová věta v obecném trojúhelníku a jejich užití. b) Aritmetická posloupnost. 5A.: V trojúhelníku ABC svírají přímky těžnic t a a t c úhel 60 o. Velikosti těžnic jsou t a = cm, t c = 6 cm. Urči velikosti všech stran a všech úhlů v trojúhelníku ABC. 5B.: Délky stran pravoúhlého trojúhelníku tvoří po sobě jdoucí členy aritmetické posloupnosti. Delší odvěsna má délku 4 cm. Urči délky zbývajících stran. 6. a) Polohové vlastnosti přímek a rovin v prostoru (stereometricky). b) Geometrická posloupnost. 6A.: Je dána krychle ABCDEFGH. Urči a) vzájemnou polohu roviny ABC a přímky TD, kde T je střed BF, b) vzájemnou polohu rovin MOP a EBG. (M, O, P jsou po řadě středy EF, FG, FB) 6B.: Přičteme-li k číslům, 7, 7 totéž číslo, vzniknou první tři po sobě jdoucí členy geometrické posloupnosti. Urči toto číslo i členy posloupnosti. 7. a) Volné rovnoběžné promítání, řezy krychle a jehlanu. b) Limita posloupnosti, věty o limitách. 7A.: Je dána krychle ABCDEFGH. Bod M je střed CG, bod H je střed DN. Sestroj řez dané krychle rovinou AMN. n n n 7B.: Vypočti: lim n n n 6

7 8. a) Kolmost přímek a rovin, vzdálenosti a odchylky (stereometricky). b) Nekonečná geometrická řada a její vztah ke konvergenci posloupnosti. 8A.: V pravidelném trojbokém jehlanu je odchylka boční stěny a roviny podstavy = 45 o. Urči odchylku boční hrany od roviny podstavy. 8B.: Řeš v R: n n a) Objemy a povrchy těles. b) Matice a operace s maticemi. 9A.: Jaké množství vody proteče za hodinu potrubím kruhového průřezu s průměrem 6 cm, teče-li voda rychlostí,5 ms -. 9B.: Je dána matice Výsledek zdůvodni. A 5 4 a matice B 0. Urči A + B, B + A, A.B a B.A a) Determinant matice a metody jeho výpočtu. b) Elementární funkce, jejich vlastnosti a grafy. 0A.: Vypočti determinant matice A 0 0B.: Načrtni graf funkce y =, urči definičním obor a intervaly monotónnosti.. a) Inverzní matice a metoda jejího výpočtu. b) Limita funkce ve vlastním a nevlastním bodě. A.: Je dána matice 4 A. Urči inverzní matici A -. 5 B.: Vypočti limitu funkce y v nevlastních bodech. 7

8 . a) Řešení soustav n lineárních rovnic o n neznámých (pro n =,,4) s využitím determinantů. b) Jednostranné a nevlastní limity funkce v bodě. A.: S použitím determinantů řeš v R soustavu rovnic: y + 4z v = + y z v = y + z +v = + y z + v = 8 B.: Vypočti limity funkce y v bodech nespojitosti. 4. a) Složená funkce, inverzní funkce. b) Derivace elementárních funkcí, derivace složené funkce. A.: Urči inverzní funkci k funkci y = ln(+4). B.: Vypočti derivaci funkce y = sin (+). 4. a) Mocniny s racionálním eponentem, odmocniny. b) L Hospitalovo pravidlo a jeho použití. 4A.: Uprav a zjednoduš výraz: 8 6 4B.: S využitím L Hospitalova pravidla vypočti limitu lim 5 5. a) Derivace funkce, její geometrický a fyzikální význam. b) Primitivní funkce a neurčitý integrál. 5A.: Napiš rovnici tečny a normály ke grafu funkce f: y = ln v jeho bodě T [;?]. 5B.: Najdi všechny primitivní funkce k funkci f: y 8

9 6. a) Derivace součtu, součinu a podílu. b) Integrace elementárních funkcí. 6A.: Vypočti derivaci funkce f: d 6B.: Vypočti: e y e ln 7. a) Druhá derivace funkce, konvenost a konkávnost funkce. b) Integrační metody. 7A.: Vypočti inflení bod funkce f: y = (-6). 7B.: Vypočti: e d 8. a) Užití limity funkce (asymptoty se směrnicí, bez směrnice, tečna grafu). b) Průběh funkce. 8A,B.: Vyšetři průběh funkce f: y 9. a) Použití diferenciálního počtu v prai. b) Aplikace integrálního počtu v prai. 9A.: Na konzervu tvaru válce se má spotřebovat 5 dm plechu. Jaké musí mít konzerva rozměry, aby měla maimální objem? 9B.: Rychlost hmotného bodu je dána vztahem v = + t. Urči jak velkou dráhu urazí hmotný bod v době mezi t = 5s a t = 5s. 40. a) Rovnoběžnost přímek a rovin definice, vlastnosti, kritéria. b) Okolí bodu, spojitost funkce v bodě a na intervalu. 40A.: Je dána krychle ABCDEFGH. Bod K je středem stěny EFGH, bod L je střed hrany EH a bod S je střed podstavy ABCD. Urči vzájemnou polohu roviny BCK a přímky SL. Svoji odpověď zdůvodni. 40B.: Urči, jsou-li si funkce f a g rovny. f: y = +, g: y a svoji odpověď zdůvodni. 9

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: MATEMATIKA

Více

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1. . Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce

Více

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly. 9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte

Více

Č část četnost. 部 分 频 率 relativní četnost 率, 相 对 频 数

Č část četnost. 部 分 频 率 relativní četnost 率, 相 对 频 数 A absolutní člen 常 量 成 员 absolutní hodnota čísla 绝 对 值 algebraický výraz 代 数 表 达 式 ar 公 亩 aritmetický průměr 算 术 均 数 aritmetika 算 术, 算 法 B boční hrana 侧 棱 boční hrany jehlanu 角 锥 的 侧 棱 boční stěny jehlanu

Více

4. R O V N I C E A N E R O V N I C E

4. R O V N I C E A N E R O V N I C E 4. R O V N I C E A N E R O V N I C E 4.1 F U N K C E A J E J Í G R A F Funkce (definice, značení) Způsoby zadání funkce (tabulka, funkční předpis, slovní popis, graf) Definiční obor funkce (definice, značení)

Více

Funkce Vypracovala: Mgr. Zuzana Kopečková

Funkce Vypracovala: Mgr. Zuzana Kopečková Funkce Vypracovala: Mgr. Zuzana Kopečková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů OP

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

Maturitní okruhy z matematiky školní rok 2007/2008

Maturitní okruhy z matematiky školní rok 2007/2008 Maturitní okruhy z matematiky školní rok 2007/2008 1. ALGEBRAICKÉ VÝRAZY 2 2 2 3 3 3 a ± b ; a b ; a ± b ; a ± b 1.1. rozklad výrazů na součin: vytýkání, užití vzorců: ( ) ( ) 1.2. určování definičního

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo M9101 provádí početní operace

Více

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky provádí pamětné a písemné početní Čísla přirozená Opakování září, říjen operace v oboru přirozených čísel porovnává a uspořádává čísla celá a Čísla celá, racionální racionální, provádí početní operace

Více

Analytická geometrie (3. - 4. lekce)

Analytická geometrie (3. - 4. lekce) Analytická geometrie (3. - 4. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 16. června 2011 Příklad 1 Příklad 1. Algebraicky

Více

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu Věty o pravoúhlém trojúhelníku Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu b v a obou úseků přepony: v 2 = c a c b c b c a Eukleidova věta o odvěsně A c B Druhá mocnina délky

Více

Matematika pro 9. ročník základní školy

Matematika pro 9. ročník základní školy Matematika pro 9. ročník základní školy Řešení Ćíselné výrazy 1. Prvočíslo je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy

Více

souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem

souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem kartézský souřadný systém Z Y X kartézský souřadný systém Z Y X kartézský souřadný systém Z x y Y X kartézský souřadný systém

Více

12.16 Obsah ř e z u... 95 12.17 O bjem y a povrchy těles... 96 13 Vektory... 99 13.1 Vektor, souřadnice vektoru... 99 13.2 Sčítání a odčítání

12.16 Obsah ř e z u... 95 12.17 O bjem y a povrchy těles... 96 13 Vektory... 99 13.1 Vektor, souřadnice vektoru... 99 13.2 Sčítání a odčítání O bsah Předm luva... 9 1 Základní poznatky o výrocích a m nožinách... 10 1.1 Výrok, operace s výroky... 10 1.2 O bm ěněná implikace, obrácená implikace... 10 1.3 Negace složených výroků... 11 1.4 V ýroky

Více

1)Zapište jako výraz:dekadický logaritmus druhé mocniny součtu 2. odmocnin čísel p,q.

1)Zapište jako výraz:dekadický logaritmus druhé mocniny součtu 2. odmocnin čísel p,q. 7. průzkum bojem 1)Zapište jako výraz:dekadický logaritmus druhé mocniny součtu 2. odmocnin čísel p,q. 2)Jsou dány vektory u = (5;-3), v = (-6;4), f = (53;-33). Určete čísla k,l R taková, že k.u + l.v

Více

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 ) . Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového

Více

Vyučovací předmět / ročník: Matematika / 5. Učivo

Vyučovací předmět / ročník: Matematika / 5. Učivo Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 5. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu

Více

Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady

Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady Státní maturita 0 Maturitní testy a zadání jaro 0 Matematika: didaktický test - základní úrove obtíºnosti MAMZDC0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 0. srpna 0 http://www.vachtova.cz/ Obsah Úloha

Více

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel. Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004 PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)

Více

Nabídka povinných a nepovinných zkoušek maturitní zkoušky, konané v jarním termínu 2016

Nabídka povinných a nepovinných zkoušek maturitní zkoušky, konané v jarním termínu 2016 Nabídka povinných a nepovinných zkoušek maturitní zkoušky, konané v jarním termínu 2016 v souladu se zák. č. 561/2004 Sb., školský zákon, ve znění pozdějších předpisů obor: 33-42 - M / 01 Interiérová tvorba,

Více

5.2.1 Matematika povinný předmět

5.2.1 Matematika povinný předmět 5.2.1 Matematika povinný předmět Učební plán předmětu 1. ročník 2. ročník 3. ročník 6. ročník 7. ročník 8. ročník 9. ročník 4 4+1 4+1 4+1 4+1 4 4 3+1 4+1 Vzdělávací oblast Matematika a její aplikace v

Více

Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice.

Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. Kružnice Kružnice k(s; r) je množina všech bodů roviny, které mají d od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. S r Délka spojnice dvou bodů kružnice, která prochází středem

Více

STEREOMETRIE, OBJEMY A POVRCHY TĚLES

STEREOMETRIE, OBJEMY A POVRCHY TĚLES STEREOMETRIE, OBJEMY POVRCHY TĚLES Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia utoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Matematika - Sekunda Matematika sekunda Výchovné a vzdělávací strategie Učivo ŠVP výstupy

Matematika - Sekunda Matematika sekunda Výchovné a vzdělávací strategie Učivo ŠVP výstupy - Sekunda Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo

Více

Průniky rotačních ploch

Průniky rotačních ploch Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Průniky rotačních ploch Vypracoval: Vojtěch Trnka Třída: 8. M Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Metodický list pro první soustředění kombinovaného studia. předmětu MATEMATIKA A

Metodický list pro první soustředění kombinovaného studia. předmětu MATEMATIKA A Metodický list pro první soustředění kombinovaného studia předmětu MATEMATIKA A Název tématického celku: Zobrazení,reálné funkce jedné reálné proměnné,elementární funkce a jejich základní vlastnosti,lineární

Více

SBORNÍK PŘÍKLADŮ Z MATEMATIKY

SBORNÍK PŘÍKLADŮ Z MATEMATIKY SBORNÍK PŘÍKLADŮ Z MATEMATIKY 1. Výrazy a počítání s nimi... 4 1.1. Mocniny s celým exponentem a s racionálním exponentem... 4 1.2 Počítání s odmocninami... 7 1.3 Úpravy algebraických výrazů... 10 2. Rovnice,

Více

11 Soustavy rovnic a nerovnic, Determinanty a Matice

11 Soustavy rovnic a nerovnic, Determinanty a Matice 11 Soustavy rovnic a nerovnic, Determinanty a Matice (r zné typy soustav rovnic a nerovnic, matice druhy matic, operace s maticemi, hodnost matice, inverzní matice, Gaussova elimina ní metoda, determinanty

Více

Příloha č. 7. ročník 9. 1h 1x za 14 dní. dotace. nepovinný. povinnost

Příloha č. 7. ročník 9. 1h 1x za 14 dní. dotace. nepovinný. povinnost Příloha č. 7 Seminář z matematiky V učebním plánu 2. druhého stupně se zařazuje nepovinný předmět Seminář z matematiky. V tematickém okruhu Čísla a početní operace na prvním stupni, na který navazuje a

Více

SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2

SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2 STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNÍ A STAVEBNÍ TÁBOR, KOMENSKÉHO 1670 SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2 ŠKOLNÍ ROK 2014/2015 Obsah 1 Dělitelnost přirozených čísel... 3 2 Obvody a obsahy

Více

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ),

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), 3.cvičení 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR Bodem A rovnoběžku: Ještě jednu kolmici. Tři úhly, které je možno rozdělit

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Matematika.

Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Matematika. Matematika Matematika pro žáky 6. až 9. ročníku napomáhá k rozvoji paměti, logického myšlení, kritickému usuzování a srozumitelné a věcné argumentaci prostřednictvím matematických problémů. Žáci si prostřednictvím

Více

ŠVP - učební osnovy - Vzdělání pro život - rozšířená výuka matematiky, přírodovědných předmětů a informatiky

ŠVP - učební osnovy - Vzdělání pro život - rozšířená výuka matematiky, přírodovědných předmětů a informatiky 1 Učební osnovy 1.1 Matematika a její aplikace Vzdělávací oblast Matematika a její aplikace v základním vzdělávání je založena především na aktivních činnostech, které jsou typické pro práci s matematickými

Více

10.1.13 Asymptoty grafu funkce

10.1.13 Asymptoty grafu funkce .. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol

Více

Goniometrie trigonometrie

Goniometrie trigonometrie Goniometrie trigonometrie Goniometrie se zabývá funkcemi sinus, kosinus, tangens, kotangens (goniometrické funkce). V tomto článku se budeme zabývat trigonometrií (součást goniometrie) používáním goniometrických

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 7. ročník J.Coufalová : Matematika pro 7.ročník ZŠ (Fortuna) O.Odvárko, J.Kadleček : Sbírka úloh z matematiky pro 7.ročník ZŠ (Prometheus)

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 3. Reálná čísla RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny. K nejvýznamnějším patří množina reálných čísel,

Více

Kód uchazeče ID:... Varianta: 15

Kód uchazeče ID:... Varianta: 15 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 15 1. V únoru byla zaměstnancům zvýšena mzda o 15 % lednové mzdy. Následně

Více

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz. 7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,

Více

IRACIONÁLNÍ ROVNICE. x /() 2 (umocnění obou stran rovnice na druhou) 2x 4 9 /(-4) (ekvivalentní úpravy) Motivace: Teorie: Řešené úlohy:

IRACIONÁLNÍ ROVNICE. x /() 2 (umocnění obou stran rovnice na druhou) 2x 4 9 /(-4) (ekvivalentní úpravy) Motivace: Teorie: Řešené úlohy: IRACIONÁNÍ ROVNICE Motivace: V řadě matematických úloh je nutno ovládat práci s odmocninami a rovnicemi, které obsahují neznámou pod odmocninou, mj. při vyjádření neznámé z technických vzorců. Znalosti

Více

Moravské gymnázium Brno s.r.o. Mgr. Věra Jeřábková, Mgr. Marie Chadimová. Matematika, Mnohoúhelníky, pokračování

Moravské gymnázium Brno s.r.o. Mgr. Věra Jeřábková, Mgr. Marie Chadimová. Matematika, Mnohoúhelníky, pokračování Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Mgr. Věra Jeřábková, Mgr. Marie Chadimová Tematická oblast Matematika, Mnohoúhelníky, pokračování Ročník 2. Datum

Více

Pravoúhlá axonometrie - řezy hranatých těles

Pravoúhlá axonometrie - řezy hranatých těles Pravoúhlá axonometrie - řezy hranatých těles KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS 2008 1 / 41 Příklad (Řez šikmého hranolu) Sestrojte řez šikmého

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu

Více

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic .3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =

Více

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 1 Tutoriál č. 3 Exponenciála matice a její užití řešení Cauchyovy úlohy pro lineární systémy užitím fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 0.1 Exponenciála matice a její užití

Více

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat?

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat? 3..4 Trojúhelní Předpolady: 303 Každé tři různé body neležící v přímce určují trojúhelní. o to je, víme. Ja ho definovat? Př. : Definuj trojúhelní jao průni polorovin. Trojúhelní je průni polorovin, a.

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla Moderní technologie ve studiu aplikované fyiky CZ.1.07/..00/07.0018 4. Komplexní čísla Matematickým důvodem pro avedení komplexních čísel ( latinského complexus složený), byla potřeba rošířit množinu (obor)

Více

Úlohy domácího kola kategorie C

Úlohy domácího kola kategorie C 50. ročník Matematické olympiády Úlohy domácího kola kategorie 1. Najděte všechna trojmístná čísla n taková, že poslední trojčíslí čísla n 2 je shodné s číslem n. Student může při řešení úlohy postupovat

Více

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2. Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v

Více

1.7. Mechanické kmitání

1.7. Mechanické kmitání 1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického

Více

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY INDIVIDUÁLNÍ VÝUKA Matematika METODIKA Soustavy rovnic Mgr. Marie Souchová květen 2011 Tato část učiva následuje po kapitole Rovnice. Je rozdělena do částí

Více

Matematický KLOKAN 2009 www.matematickyklokan.net. kategorie Benjamín

Matematický KLOKAN 2009 www.matematickyklokan.net. kategorie Benjamín Matematický KLOKAN 2009 www.matematickyklokan.net kategorie Benjamín Úlohy za 3 body 1. Hodnota kterého výrazu je sudé číslo? (A) 200 + 9 (B) 200 9 (C) 200 9 (D) 2 + 0 + 0 + 9 (E) 2 0 + 0 + 9 2. Kolik

Více

Rostislav Horčík. 13. října 2006

Rostislav Horčík. 13. října 2006 3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem

Více

15 s. Analytická geometrie lineárních útvarů

15 s. Analytická geometrie lineárních útvarů 5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý

Více

KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení)

KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení) KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení) KVADRATICKÉ ROVNICE (početně) Teorie: Kvadratická rovnice o jedné neznámé se nazývá každá taková rovnice, kterou lze ekvivalentními úpravami

Více

Kótování na strojnických výkresech 1.část

Kótování na strojnických výkresech 1.část Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických

Více

TÉMATICKÝ PLÁN OSV. čte, zapisuje a porovnává přirozená čísla do 20, užívá a zapisuje vztah rovnosti a nerovnosti

TÉMATICKÝ PLÁN OSV. čte, zapisuje a porovnává přirozená čísla do 20, užívá a zapisuje vztah rovnosti a nerovnosti TÉMATICKÝ PLÁN MA 1.ročník Očekávaný výstup /dle RVP/ Žák: Konkretizace výstupu, učivo, návrh realizace výstupu PT Číslo a početní operace používá přirozená čísla k modelování reálných situací, počítá

Více

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném

Více

Lineární algebra. Vektorové prostory

Lineární algebra. Vektorové prostory Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:

Více

Matematika. Charakteristika vyučovacího předmětu. Výchovné a vzdělávací strategie pro rozvíjení klíčových kompetencí žáků

Matematika. Charakteristika vyučovacího předmětu. Výchovné a vzdělávací strategie pro rozvíjení klíčových kompetencí žáků Vzdělávací obor: Matematika a její aplikace Matematika Obsahové, časové a organizační vymezení Charakteristika vyučovacího předmětu 1.-2. ročník 4 hodiny týdně 3.-5. ročník 5 hodin týdně Vzdělávací obsah

Více

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Volitelný předmět Matematický seminář ročník 8.

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Volitelný předmět Matematický seminář ročník 8. Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Volitelný předmět Matematický seminář ročník 8. Výuka matematického semináře bude probíhat jednou týdně v dvouhodinovém bloku.

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14.června

Více

Maturita Matematika Vzorové příklady pro opakování k profilové části maturity

Maturita Matematika Vzorové příklady pro opakování k profilové části maturity Maturita Matematika Vzorové příklady pro opakování k profilové části maturity 1 Operace s čísly, číselné obory 1) Která z následujících čísel jsou přirozená / celá / racionální / iracionální / reálná:

Více

7. Stropní chlazení, Sálavé panely a pasy - 1. část

7. Stropní chlazení, Sálavé panely a pasy - 1. část Základy sálavého vytápění (2162063) 7. Stropní chlazení, Sálavé panely a pasy - 1. část 30. 3. 2016 Ing. Jindřich Boháč Obsah přednášek ZSV 1. Obecný úvod o sdílení tepla 2. Tepelná pohoda 3. Velkoplošné

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] 1 CÍL KAPITOLY Cílem této kapitoly je naučit uživatele efektivně navrhovat objekty v režimu

Více

Výroba ozubených kol. Použití ozubených kol. Převody ozubenými koly a tvary ozubených kol

Výroba ozubených kol. Použití ozubených kol. Převody ozubenými koly a tvary ozubených kol Výroba ozubených kol Použití ozubených kol Ozubenými koly se přenášejí otáčivé pohyby a kroutící momenty. Přenos je zde nucený, protože zuby a zubní mezery do sebe zabírají. Kola mohou mít vnější nebo

Více

SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 1O POLOHOVÉ VYTYČOVÁNÍ Pod pojem polohového vytyčování se

Více

6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi

6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi 6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky od Ing. Magdaleny Čepičkové

Více

(3) Zvolíme pevné z a sledujme dráhu, kterou opisuje s postupujícím časem koncový bod vektoru E v rovině z = konst. Upravíme vztahy (2) a (3)

(3) Zvolíme pevné z a sledujme dráhu, kterou opisuje s postupujícím časem koncový bod vektoru E v rovině z = konst. Upravíme vztahy (2) a (3) Učební tet k přednášce UFY1 Předpokládejme šíření rovinné harmonické vln v kladném směru os z. = i + j kde i, j jsou jednotkové vektor ve směru os respektive a cos ( ) ω ϕ t kz = + () = cos( ωt kz+ ϕ )

Více

Příprava na 1. čtvrtletní písemku pro třídu 1EB

Příprava na 1. čtvrtletní písemku pro třídu 1EB Variace 1 Příprava na 1. čtvrtletní písemku pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné

Více

Definice tolerování. Technická dokumentace Ing. Lukáš Procházka

Definice tolerování. Technická dokumentace Ing. Lukáš Procházka Technická dokumentace Ing. Lukáš Procházka Téma: geometrické tolerance 1) Definice geometrických tolerancí 2) Všeobecné geometrické tolerance 3) Základny geometrických tolerancí 4) Druhy geometrických

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Mechanismy. Vazby členů v mechanismech (v rovině):

Mechanismy. Vazby členů v mechanismech (v rovině): Mechanismy Mechanismus klikový, čtyřkloubový, kulisový, západkový a vačkový jsou nejčastějšími mechanismy ve strojích (kromě převodů). Mechanismy obsahují členy (kliky, ojnice, těhlice, křižáky a další).

Více

Základy matematiky kombinované studium 714 0365/06

Základy matematiky kombinované studium 714 0365/06 Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

3. Polynomy Verze 338.

3. Polynomy Verze 338. 3. Polynomy Verze 338. V této kapitole se věnujeme vlastnostem polynomů. Definujeme základní pojmy, které se k nim váží, definujeme algebraické operace s polynomy. Diskutujeme dělitelnost polynomů, existenci

Více

3. Slimák lezl na strom 10m vysoký. Přes den vylezl 4m ale v noci vždycky sklouzl o 3m. Za kolik dní dosáhl vrcholu stromu?

3. Slimák lezl na strom 10m vysoký. Přes den vylezl 4m ale v noci vždycky sklouzl o 3m. Za kolik dní dosáhl vrcholu stromu? Logické úlohy 1. Katka přišla k Janě, která krmila na dvoře drůbež. Katka se ptala: Víš, kolik máte kuřat, kolik housat a kolik kachňat? Jana odpověděla: Vím, a ty si to vypočítej: dohromady máme 90hlav.

Více

Školní vzdělávací program pro základní vzdělávání - VLNKA Učební osnovy / Matematika a její aplikace / M

Školní vzdělávací program pro základní vzdělávání - VLNKA Učební osnovy / Matematika a její aplikace / M I. název vzdělávacího oboru: MATEMATIKA (M) II. charakteristika vzdělávacího oboru: a) organizace: Vzdělávací obsah vzdělávacího oboru Matematika je realizován ve všech ročnících základního vzdělávání.

Více

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem. 1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její

Více

Seminář z matematiky. 2 hodiny ve 3. ročníku, 4 hodiny ve 4. ročníku. Charakteristika předmětu

Seminář z matematiky. 2 hodiny ve 3. ročníku, 4 hodiny ve 4. ročníku. Charakteristika předmětu Seminář z matematiky 2 hodiny ve 3. ročníku, 4 hodiny ve 4. ročníku Charakteristika předmětu Předmět Seminář z matematiky navazuje na základní výuku matematiky. Slouží k rozšiřování a prohlubování již

Více

Předpokládané znalosti ze středoškolské matematiky. Pokuste se rozhodnout o pravdivosti následujících výroků a formulujte jejich negace.

Předpokládané znalosti ze středoškolské matematiky. Pokuste se rozhodnout o pravdivosti následujících výroků a formulujte jejich negace. Předpokládané znalosti ze středoškolské matematiky 1. Matematická logika Výroky, složené výroky: konjunkce (, a zároveň ), disjukce (, nebo), negace výroků ( před nebo čárka nad označením výroku), implikace

Více

269/2015 Sb. VYHLÁŠKA

269/2015 Sb. VYHLÁŠKA 269/2015 Sb. - rozúčtování nákladů na vytápění a příprava teplé vody pro dům - poslední stav textu 269/2015 Sb. VYHLÁŠKA ze dne 30. září 2015 o rozúčtování nákladů na vytápění a společnou přípravu teplé

Více

Plochy stavebně-inženýrské praxe

Plochy stavebně-inženýrské praxe Plochy stavebně-inženýrské praxe 9. Plochy rourové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 95 98. Persistent

Více

Oblastní stavební bytové družstvo, Jeronýmova 425/15, Děčín IV

Oblastní stavební bytové družstvo, Jeronýmova 425/15, Děčín IV Oblastní stavební bytové družstvo, Jeronýmova 425/15, Děčín IV Směrnice pro vyúčtování služeb spojených s bydlením Platnost směrnice: - tato směrnice je platná pro městské byty ve správě OSBD, Děčín IV

Více

Vysoká škola báňská Technická univerzita Ostrava KUŽELOSEČKY, KOLINEACE

Vysoká škola báňská Technická univerzita Ostrava KUŽELOSEČKY, KOLINEACE Vysoká škola báňská Technická univerzita Ostrava KUŽELOEČKY KOLINECE Deskriptivní geometrie Krista Dudková Radka Hamříková O T R V 0 0 5 OH 1. Kuželosečky 5 1.1. Řezy na kuželové ploše 5 1.. Elipsa 7 odová

Více

Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Opakování učiva 2. ročníku Sčítání a odčítání oboru do 100

Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Opakování učiva 2. ročníku Sčítání a odčítání oboru do 100 VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA 3. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Opakování učiva 2. ročníku

Více

GEOMETRICKÁ TĚLESA. Mnohostěny

GEOMETRICKÁ TĚLESA. Mnohostěny GEOMETRICKÁ TĚLESA Geometrické těleso je prostorový geometrický útvar, který je omezený (ohraničený), tato hranice mu náleží. Jeho povrch tvoří rovinné útvary a také různé složitější plochy. Geometrická

Více

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ Pozemkem se podle 2 písm. a) katastrálního zákona rozumí část zemského povrchu, a to část taková, která je od sousedních částí zemského povrchu (sousedních pozemků)

Více

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM.

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM. STEREOMETRIE Zadání 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK = AK ; M EH; HM = EM ) Sestrojte řez pravidelného čtyřbokého jehlanu ABCDV rovinou KLM; K AB; BK = AK ; L CD; DL = CL ; M

Více

Výchovné a vzdělávací strategie pro rozvoj klíčových kompetencí žáků

Výchovné a vzdělávací strategie pro rozvoj klíčových kompetencí žáků CVIČENÍ Z MATEMATIKY Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení Předmět je realizován od 6. ročníku až po 9. ročník po 1 hodině týdně. Výuka probíhá v kmenové učebně nebo

Více

Exponenciální funkce, rovnice a nerovnice

Exponenciální funkce, rovnice a nerovnice Eonenciální funkce, rovnice a nerovnice Mamut s korovou omáčkou (Eonenciální funkce) a) AN b) NE c) NE d) AN e) NE f) NE g) AN h) NE a), b), c) d) e) f) e+ b - - - D( f )=R H( f )=( ) P neeistuje P [ ]

Více

1) Vypočítej A) 32 B) 44 C) 48 D) 56. 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 A) 12 B) 13 C) 14 D) 15

1) Vypočítej A) 32 B) 44 C) 48 D) 56. 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 A) 12 B) 13 C) 14 D) 15 Varianta A 4 4 4 4 4 4 4 4 1) Vypočítej A) 32 B) 44 C) 48 D) 56 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 20 120 A. A) 12 B) 13 C) 14 D) 15 3) Najdi největší a nejmenší trojciferné číslo skládající

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Číslo projektu Z.1.07/1.5.00/34.0743 Název školy Moravské gymnázium rno s.r.o. utor Tematická oblast Mgr. Marie hadimová Mgr. Věra Jeřábková Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Ročník

Více

MODEL MOSTU. Ing.Jiřina Strnadová. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti. Předmět:Fyzika

MODEL MOSTU. Ing.Jiřina Strnadová. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti. Předmět:Fyzika MODEL MOSTU Ing.Jiřina Strnadová Předmět:Fyzika Praha a EU Investujeme do vaší budoucnosti Model mostu Teoretický úvod: Příhradové nosníky (prutové soustavy) jsou složené z prutů, které jsou vzájemně spojené

Více

Pokyny k hodnocení úlohy 1 ZADÁNÍ. nebo NEDOSTATEČNÉ ŘEŠENÍ. nebo CHYBNÉ ŘEŠENÍ. nebo CHYBĚJÍCÍ ŘEŠENÍ 0

Pokyny k hodnocení úlohy 1 ZADÁNÍ. nebo NEDOSTATEČNÉ ŘEŠENÍ. nebo CHYBNÉ ŘEŠENÍ. nebo CHYBĚJÍCÍ ŘEŠENÍ 0 PZK 9 M9-Z-D-PR_OT_ST M9PZD6CT Pokyny k hodnocení Pokyny k hodnocení úlohy BODY ZADÁNÍ Vypočtěte, kolikrát je rozdíl čísel,4 a,7 (v tomto pořadí) menší než jejich součet. (V záznamovém archu je očekáván

Více