1/59 Sluneční energie
|
|
- Vojtěch Mareš
- před 9 lety
- Počet zobrazení:
Transkript
1 1/59 Sluneční energie sluneční záření základní pojmy dopadající energie
2 Slunce 2/59 nejbližší hvězda střed naší planetární soustavy sluneční soustavy
3 Slunce 3/59 průměr km 109 x větší než průměr Země hmotnost 2 x kg x větší než Země 99,86 % hmotnosti sluneční soustavy složení: 70 % vodík H, 28 % helium He, 2 % ostatní prvky
4 Slunce 4/59 původ sluneční energie v jaderných reakcích uvnitř jádra Slunce probíhá jaderná syntéza za vysokých teplot cca 10 6 K a tlaků cca MPa slučování jader vodíku (H) jádra hélia (He) 564 x 10 9 kg/s H se přemění na 560 x 10 9 kg/s He rozdíl hmot 4 x 10 9 kg/s se vyzáří ve formě energie E = m.c 2 celkový vyzařovaný výkon: 3,6 x W hustota vyzařovaného výkonu: 6 x 10 7 W/m 2
5 Slunce 5/59 jádro (do 23 % R) teplota desítky mil. K, rentgenové záření produkce 90 % energie Slunce radiační zóna (od 23 do 70 % R) teplota klesá až na K přenos energie zářením (fotony) konvekční zóna (od 70 do 100 % R) menší hustota, konvekční přenos energie fotosféra (viditelný povrch Slunce) teplota 5800 K, sluneční záření
6 Spektrální hustota zářivého toku 6/59 Slunce září jako dokonale černé těleso s povrchovou teplotu 5800 K spektrální hustota slunečního zářivého toku (Planckův zákon) E č (, T ) 2 h c 5 2 e hc kt 1 1 [W/m 2.mm] h = 6,6256 x J.s k = 1,3805 x J/K c = 2,9979 x 10 8 m/s T Planckova konstanta Boltzmannova konstanta rychlost světla ve vakuu povrchová absolutní teplota tělesa [K]
7 Planckův vyzařovací zákon 7/59 Černý, M. (2008)
8 Spektrální hustota zářivého toku 8/59 UV VIS NIR UV: ultrafialové záření 0,2 až 0,4 mm UVA (nad 0,32 mm), UVB, UVC (pod 0,28 mm) VIS: viditelné záření 0,40 až 0,75 mm NIR: blízké infračervené záření 0,75 až 5 mm černé těleso 5800 K
9 Vyzařovaná sluneční energie 9/59 UV VIS NIR 9 % 41 % 50 % černé těleso 5800 K
10 Hustota zářivého toku 10/59 maximum hustoty zářivého toku hledání extrému Planckovy funkce E č (, T ) 0 max T 2898 [mm.k] 5800 K: max = 0,5 mm 373 K: max = 7,8 mm Wienův zákon černé těleso 5800 K
11 Šíření sluneční energie 11/59 s rostoucí vzdáleností od Slunce se výkon rozptyluje na větší plochu na planetu Zemi dopadá cca 0,5 x 10-9 (cca půl miliardtiny) výkonu zářivý tok 1,7 x W svazky slunečních paprsků uvažovány jako rovnoběžné (32 )
12 Země obíhá okolo Slunce 12/59 eliptická dráha (téměř kruhová), Slunce v jednom z ohnisek Slunce Země
13 Hustota zářivého toku vně atmosféry 13/59 na vnější povrch atmosféry dopadá na jednotku plochy kolmé ke směru šíření sluneční zářivý tok mění se v průběhu roku vlivem proměnlivé vzdálenosti Slunce-Země (eliptická dráha Země kolem Slunce) změna vzdálenosti 1,7 %, změna zářivého toku 3,3 % hodnota ve střední vzdálenosti Země-Slunce sluneční konstanta G sc = 1367 W/m 2 (údaj WRC, 1 %) původní měření Ch. Abbot v horách 1322 W/m 2, dnes družice Merkur: 9040 W/m 2... Neptun: 1,5 W/m 2
14 Hustota zářivého toku vně atmosféry 14/ G on G sc 1 0,033 cos 360 n 365 G on [W/m 2 ] dny v roce
15 Průchod slunečního záření atmosférou 15/59 sluneční záření vstupuje do atmosféry (není jednoznačná hranice, exosféra plynule přechází do meziplanetárního prostoru) ionosféra (60 km) atmosférické plyny O 2, N 2 pohlcují ultrafialové a rentgenové záření a ionizují se ozonosféra (20 až 30 km) ozón O 3 pohlcuje zbytek škodlivého ultrafialového záření (UVC) troposféra (nejnižší vrstva, mraky) vodní pára, CO 2, prach, kapičky vody pohlcují infračervené záření
16 Průchod slunečního záření atmosférou 16/59 AM0: AM1: spektrum vně atmosféry spektrum při kolmém průchodu atmosférou AM1,5: spektrum při 37 AM2: spektrum při 60 sluneční záření: 0,3 až 3 mm
17 Roční bilance (průměr) 17/59 odraz od atmosféry 34 % pohlcení v atmosféře 19 % dopad a pohlcení zemským povrchem 47 % z toho tepelné záření zemského povrchu zpět 14 % energie prostředí vypařování vody (oceány) 23 % vodní energie konvekce, proudění vzduchu, vítr 10 % větrná energie biologické reakce, fotosyntéza 1 energie biomasy
18 Geometrie slunečního záření 18/59 sklon plochy b azimut plochy g zeměpisná šířka místa f čas, datum sluneční časový úhel t deklinace d výška slunce nad obzorem h azimut slunce g s úhel dopadu paprsků q
19 Poloha plochy 19/59 zeměpisná šířka f konvence: severně (+), jižně (-) úhel mezi rovinou rovníku a přímkou spojující střed Země a dané místo na povrchu
20 Orientace plochy 20/59 úhel sklonu plochy b konvence: vodorovně 0, svisle 90 úhel mezi vodorovnou rovinou a rovinou plochy azimut plochy g konvence: východ (-), západ (+), jih (0 ) úhel mezi průmětem normály plochy a lokálním poledníkem (jihem) b J g
21 Deklinace 21/ prosince 23. září března 21. června
22 Deklinace d 22/59 úhel náklonu zemské osy vlivem precesního pohybu během rotace úhel, který svírá spojnice středů Země a Slunce s rovinou zemského rovníku zeměpisná šířka místa, kde v daný den v poledne je Slunce kolmo nad obzorem (v nadhlavníku)
23 Výpočet deklinace d 23/59 na základě kalendářního data DD.MM. d 23,45 sin 0,98DD 29,7 MM 109 na základě pořadí dne v roce n d 23,45 sin n 365
24 Výpočet deklinace d 24/ ,45 slunovrat 10 deklinace [ ] rovnodennost slunovrat , pořadí dne v roce
25 Sluneční časový (hodinový) úhel t 25/59 úhel zdánlivého posunu Slunce nad místními poledníky vlivem rotace Země, vztažený ke slunečnímu poledni Země se otočí kolem své osy (360 ) jednou za 24 h posun Slunce 15 za 1 hodinu sluneční časový úhel se určí ze slunečního času ST t 15 ST 12 konvence: dopoledne (-), odpoledne (+)
26 Sluneční čas ST 26/59 každé časové pásmo má čas vztažený k místnímu poledníku časová pásma po 1 h ~ poledníky po 15 SEČ: místní sluneční čas poledníku 15 východní délky (J. Hradec) sluneční čas: denní čas určený ze zdánlivého pohybu Slunce pozorovatel na vztažném poledníku: místní čas = sluneční čas pozorovatel mimo vztažný poledník: místní čas sluneční čas odchylka až 30 minut příklad: sluneční poledne Praha 14,4 12:02 Brno 16,6 11:53 Košice 21,2 11:35
27 Výška Slunce h 27/59 úhel sevřený spojnicí plocha-slunce s vodorovnou rovinou sinh sind sinf cosd cosf cost doplňkový úhel do 90 : úhel zenitu q z qz 90 h
28 Hmota vzduchu vs. zenitový úhel 28/59
29 Air mass (vzduchová hmota) 29/59 poměr mezi hmotou atmosféry, kterou prochází sluneční záření ke hmotě, kterou by prošlo, kdyby Slunce bylo v zenitu (nadhlavníku) AM 1 cosq AM = 0 mimo atmosféru AM = 1 zenit h = 90 AM = 1,5 q z = 48 z 1 sin h AM = 2 q z = 60 h = 30
30 Změna spektra s hmotou atmosféry 30/59 h = 90 AM = 1,00 h = 70 AM = 1,06 h = 50 AM = 1,31 h = 30 AM = 2,00 h = 10 AM = 5,76
31 Čas východu a západu Slunce 31/59 východ / západ Slunce: výška Slunce = 0 sin h sind sinf cos d cosf cost 0 časový úhel východu / západu Slunce t 1,2 arccos tgf tgd teoretická doba slunečního svitu = doba mezi východem a západem t teor t 1,
32 32/59 Azimut Slunce g s úhel mezi průmětem spojnice plocha-slunce a místním poledníkem (jižním směrem) konvence: měří se od jihu na východ (-), na západ (+) sin g s cosd sint cosh
33 Výška a azimut Slunce 33/ června 23. září 21. března 22. prosince Z S J V zdroj: solarpraxis
34 Úhel dopadu slunečního záření 34/59 úhel mezi spojnicí plocha-slunce a normálou plochy cosq sin h cos b cos h sin b cos g s g
35 Rozlišení termínů 35/59 Sluneční energie x solární energie sluneční: přicházející od Slunce, související se Sluncem sluneční záření, sluneční aktivita, dopadající sluneční energie, sluneční konstanta solární: využívající sluneční záření solární kolektor, solární soustava, využitá solární energie, solární zisky
36 Sluneční záření - pojmy 36/59 sluneční ozáření G [W/m 2 ] - zářivý výkon dopadající na jednotku plochy, hustota slunečního zářivého toku dávka ozáření H [kwh/m 2, J/m 2 ] hustota zářivé energie, hustota zářivého toku dopadající za určitý časový úsek, např. hodinu, den H t 2 t 1 G. dt
37 Sluneční záření - pojmy 37/59 přímé sluneční záření (index b, beam) - dopadá na plochu bez rozptylu v atmosféře směrově závislé, v jednom směru výrazná intenzita difúzní sluneční záření (index d, diffuse) - dopadá na plochu po změně směru vlivem rozptylu v atmosféře všesměrové, izotropické: ve všech směrech stejná intenzita odražené sluneční záření (index r, reflected) - dopadá na plochu po změně směru vlivem odrazu od terénu, budov, aj. vzhledem k běžným povrchům (difúzní odraz) se uvažuje společně s difúzním zářením
38 Sluneční záření - pojmy 38/59 odraz od molekul vzduchu, prachových částic, krystalků ledu odražené záření přímé záření difúzní záření odraz od terénu zdroj: solarpraxis
39 Průchod slunečního záření atmosférou 39/59 přímé sluneční ozáření normálové (na plochu kolmou ke směru šíření) po průchodu atmosférou G bn G on Z exp [W/m 2 ] G on Z h L v normálové sluneční ozáření nad hranicí atmosféry součinitel znečištění atmosféry 9, ,5 sin h (0,003 sin h) 0, ,0015 (1 L v 10 4 výška Slunce nadmořská výška daného místa [m] ) jiný vztah např. v ČSN Zátěž klimatizovaných prostor
40 Součinitel znečištění atmosféry 40/59 udává kolikrát by musela být atmosféra hmotnější, aby měla stejnou propustnost pro sluneční záření jako má znečištěná atmosféra udává snížení toku slunečního záření průchodem atmosférou Z lng lng 0n 0n lng lng bn b0 G b0 přímé záření při průchodu zcela čistým vzduchem (Z = 1)
41 Součinitel znečištění atmosféry 41/59 Měsíc Průměrné měsíční hodnoty součinitele Z pro oblasti s rozdílnou čistotou ovzduší horské oblasti venkov města průmyslové oblasti I. 1,5 2,1 3,1 4,1 II. 1,6 2,2 3,2 4,3 III. 1,8 2,5 3,5 4,7 IV. 1,9 2,9 4,0 5,3 V. 2,0 3,2 4,2 5,5 VI. 2,3 3,4 4,3 5,7 VII. 2,3 3,5 4,4 5,8 VIII. 2,3 3,3 4,3 5,7 IX. 2,1 2,9 4,0 5,3 X. 1,8 2,6 3,6 4,9 XI. 1,6 2,3 3,3 4,5 XII. 1,5 2,2 3,1 4,2 zjednodušeně: horské oblasti Z = 2 venkov Z = 3 města Z = 4 průmyslové oblasti Z > 5 roční průměr 1,9 2,75 3,75 5,0
42 Sluneční ozáření na obecnou plochu 42/59 celkové sluneční ozáření obecně orientované a skloněné plochy G T G bt G dt G rt [W/m 2 ] přímé ozáření difúzní ozáření z oblohy odražené ozáření od okolních ploch difúzní charakter
43 Sluneční ozáření na obecnou plochu 43/59 přímé sluneční ozáření na danou plochu cosq cosq GbT Gbn cosq Gb Gb sin h cosq z [W/m 2 ] difúzní sluneční ozáření na danou plochu G 1 cos b 2 dt G d [W/m 2 ] odražené sluneční ozáření na danou plochu G rt g 1 cos b 2 G b G d [W/m 2 ]
44 Odrazivost terénu (albedo) 44/59 poměr mezi odraženou a dopadlou hustotou slunečního zářivého toku pro výpočty se uvažuje g = 0,2 běžná vegetace 0,10 až 0,15 sníh 0,90 zemský povrch: souš 0,35 až 0,45 zemský povrch: moře 0,05 až 0,10 albedo Země (planety) 0,30 (průměr)
45 Sluneční ozáření na vodorovnou rovinu 45/59 přímé sluneční ozáření na vodorovnou rovinu G b G bn sin h [W/m 2 ] difúzní sluneční ozáření na vodorovnou rovinu G d G G sin h 0,33 on bn [W/m 2 ] zjednodušený model: 1/3 ztraceného slunečního záření v atmosféře září dopadá na vodorovnou rovinu (sin h) jako difúzní všesměrové záření
46 Dávka ozáření na obecnou plochu 46/59 teoretická denní dávka slunečního ozáření, integrace slunečního ozáření plochy od východu t 1 do západu t 2 Slunce H T, den, teor t 2 t 1 G T dt [kwh/(m 2.den)] střední denní sluneční ozáření G T, m H T, den, teor t teor [W/m 2 ]
47 Vliv sklonu plochy 47/59 H T,den,teor [kwh/m 2.den] H T,den,teor [kwh/m 2.den] měsíc měsíc azimut 0 (jih) azimut 45 (JZ, JV) optimální sklon: léto zima celoročně 35-45
48 Dávka ozáření na obecnou plochu 48/59 difúzní denní dávka slunečního ozáření, integrace difúzního slunečního ozáření plochy od východu t 1 do západu t 2 Slunce H T, den, dif t 2 t 1 G dt dt [kwh/(m 2.den)] H T,den,teor H T,den.dif G T,m } tabelovány v literatuře pro různé: sklony, azimuty, oblasti (souč. znečištění)
49 Skutečná doba slunečního svitu 49/59 doba trvání přímého slunečního záření > 120 W/m 2 t t s skut, i i [h] ČHMÚ měsíční údaje pro 22 stanic v České republice za posledních 10 let poměrná doba svitu 120 W/m 2 t r t t skut teor [-]
50 Skutečná doba slunečního svitu 50/59 měsíc Skutečná doba slunečního svitu tskut [h] Praha České Budějovice Hradec Králové Brno I II III IV V VI VII VIII IX X XI XII S
51 Skutečná doba slunečního svitu v ČR 51/59 zdroj: ČHMÚ Doba slunečního svitu (přímé záření) v ČR: h/rok
52 Celková dávka slunečního ozáření 52/59 denní dávka slunečního ozáření t r HT, den dif H T, den t r HT, den, teor 1, [kwh/(m 2.den)] měsíční dávka slunečního ozáření H T, mes nht, den [kwh/(m 2.měs)] roční dávka slunečního ozáření XII I H T, rok HT, mes [kwh/(m 2.rok)]
53 Roční dávky ozáření v podmínkách ČR 53/59 MJ/m 2 Roční dávka ozáření v ČR: pro sklon 30 až 45, jižní orientace: 1000 až 1200 kwh/m 2 pro sklon 90, jižní orientace: 750 až 900 kwh/m 2 zdroj: ČHMÚ
54 15-60 Optimální sklon? 54/59 jihovýchod - jihozápad východ jih západ
55 Sluneční energie v číslech 55/59 sluneční ozáření G (výkon) jasná obloha 800 až 1000 W/m 2 polojasno 400 až 700 W/m 2 zataženo 100 až 300 W/m 2 dávka ozáření H (energie) zima jaro, podzim léto 3 kwh/(m 2.den) 5 kwh/(m 2.den) 8 kwh/(m 2.den)
56 Sluneční energie v Evropě 56/59 zdroj: PVGIS
57 Sluneční energie v České republice 57/59 zdroj: PVGIS
58 Sluneční energie v Německu 58/59 Německo a Česká republika podobné podmínky: 1000 až 1200 kwh/m 2 (s výjimkou jižního Německa) podobné solární soustavy podobné typy solárních kolektorů podobné roční tepelné zisky zdroj: PVGIS
59 Sluneční energie v České republice 59/59 Sluneční potenciál Rakouska začíná tam kde potenciál ČR končí... zdroj: PVGIS
1/55 Sluneční energie
1/55 Sluneční energie sluneční záření základní pojmy dopadající energie teoretické výpočty praktické výpočty Slunce 2/55 nejbližší hvězda střed naší planetární soustavy sluneční soustavy Slunce 3/55 průměr
1/66 Sluneční energie
1/66 Sluneční energie sluneční záření základní pojmy dopadající energie 2/66 Slunce nejbližší hvězda střed naší planetární soustavy sluneční soustavy 3/66 Slunce průměr 1 392 000 km 109 x větší než průměr
Budovy a energie Obnovitelné zdroje energie
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov Budovy a energie Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Verze 2.17 Globální oteplování http://www.sciencedirect.com/science/article/pii/s0921818112001658
METODY ASTROFYZIKÁLNÍHO VÝZKUMU. B. Úhel, pod kterým pozorujeme z hvězdy kolmo na směr paprsků poloměr dráhy Země kolem Slunce,
1. Roční paralaxa je, METODY ASTROFYZIKÁLNÍHO VÝZKUMU A. Úhel, pod kterým pozorujeme z hvězdy poloměr Slunce, B. Úhel, pod kterým pozorujeme z hvězdy kolmo na směr paprsků poloměr dráhy Země kolem Slunce,
Fyzika pro chemiky Ukázky testových úloh: Optika 1
Fyzika pro chemiky Ukázky testových úloh: Optika 1 1. Světelný paprsek prochází rozhraním vzduchu a skla. Pod jakým úhlem se paprsek láme ve skle, dopadá-li paprsek na rozhraní ze vzduchu pod úhlem 45
Klimatické faktory. Kategorie klimatu:
Klimatické faktory podnebí dlouhodobý průběh počasí - ovlivňováno energetickou bilancí oblasti, vzdušným prouděním, utvářením povrchu, člověkem počasí momentální stav povětrnostních faktorů Kategorie klimatu:
Krajinná sféra 24.TEST. k ověření znalostí. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
Krajinná sféra 24.TEST k ověření znalostí Planeta Země - TEST Autor: Mgr. Irena Doležalová Datum (období) tvorby: únor 2012 červen 2013 Ročník: šestý Vzdělávací oblast: zeměpis Anotace: Žáci se seznámí
Systémy pro využití sluneční energie
Systémy pro využití sluneční energie Slunce vyzáří na Zemi celosvětovou roční potřebu energie přibližně během tří hodin Se slunečním zářením jsou spojeny biomasa pohyb vzduchu koloběh vody Energie
Název materiálu: Počasí a podnebí - opakování
Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e-mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267
Efektivita provozu solárních kolektorů. Energetické systémy budov I
Efektivita provozu solárních kolektorů Energetické systémy budov I Sluneční energie Doba slunečního svitu a zářivý výkon závisí na: zeměpisné poloze ročním obdobím povětrnostních podmínkách Základní pojmy:
Řešené příklady z OPTIKY II
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Řešené příklady z OPTIKY II V následujícím článku uvádíme několik vybraných příkladů z tématu Optika i s uvedením
Demonstrační experiment pro výuku využívající Crookesův radiometr
David Černý TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je spolufinancován Evropským
(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.
. Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce
Světlo. barevné spektrum
Světlo Světlo je elektromagnetické záření o vlnové délce 400 700 nm. Šíří se přímočaře a ve vakuu je jeho rychlost 300 000 km/s. Může být tělesy vyzařováno, odráženo, nebo pohlcováno. Těleso, které vyzařuje
Sluneční energie v ČR potenciál solárního tepla
1/29 Sluneční energie v ČR potenciál solárního tepla David Borovský Československá společnost pro sluneční energii (ČSSE) CityPlan spol. s r.o. 2/29 Termíny Sluneční energie x solární energie sluneční:
Výpočet umělého osvětlení dle ČSN EN 12464-1:2012
Výpočet umělého osvětlení dle ČSN EN 124641:2012 Stavba : GMK v Bílovci Projekt : Zpracovatelská firma : Štegner Ivo projekční kancelář Zpracovatel : Štegner Ivo Soubor : UM OSVĚTLENÍ.wls MODUS spol. s
Univerzita Tomáše Bati ve Zlíně
Univerzita Tomáše Bati ve líně LABORATORNÍ CVIČENÍ ELEKTROTECHNIKY A PRŮMYSLOVÉ ELEKTRONIKY Název úlohy: pracovali: Měření činného výkonu střídavého proudu v jednofázové síti wattmetrem Petr Luzar, Josef
Polosuchá vápenná metoda odsíření spalin - hmotová bilance
Polosuchá vápenná metoda odsíření spalin - hmotová bilance Příklad SPE Dáno: Množství spalin V NSP = 600000 Nm 3 /h = 166,7 Nm 3 /s Množství SO 2 ve spalinách x SO2 = 0,25 % obj. Účinnost odsíření η OD
Solární soustavy pro bytové domy Tomáš Matuška
Solární soustavy pro bytové domy Tomáš Matuška Československá společnost pro sluneční energii (ČSSE) Novotného lávka 5 116 68 Praha 1 Česká republika info@solarnispolecnost.cz Bytové domy v ČR sčítání
22. Atmosféra Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
Krajinná sféra a její zákl.části 22. Atmosféra Atmosféra Autor: Mgr. Irena Doležalová Datum (období) tvorby: únor 2012 červen 2013 Ročník: šestý Vzdělávací oblast: zeměpis Anotace: Žáci se seznámí se základními
Jaká je nejmenší výška svislého rovinného zrcadla, aby se v něm stojící osoba vysoká 180 cm viděla celá? [90 cm]
Dvě rovinná zrcadla svírají úhel. Na jedno zrcadlo dopadá světelný paprsek, který leží v rovině kolmé na průsečnici obou zrcadel. Paprsek se odrazí na prvním, potom na druhém zrcadle a vychýlí se od původního
Cenové rozhodnutí ERÚ č. 12/2005 ze dne 30. listopadu 2005, o cenách plynů
Cenové rozhodnutí ERÚ č. 12/2005 ze dne 30. listopadu 2005, o cenách plynů Energetický regulační úřad podle 2c zákona č. 265/1991 Sb., o působnosti orgánů České republiky v oblasti cen, ve znění pozdějších
Solární kolektory pro rodinný dům: Stačí 1 metr čtvereční na osobu
Solární kolektory pro rodinný dům: Stačí 1 metr čtvereční na osobu Solárně-termické kolektory, které slouží pro ohřev teplé vody nebo přitápění, již nejsou žádnou novinkou. Na co si dát ale při jejich
Kótování na strojnických výkresech 1.část
Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických
Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.
Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například
Struktura dat zasílaných provozovatelem distribuční soustavy pro účely vyúčtování služby distribuce elektřiny
Příloha č. 20 k vyhlášce č. 408/2015 Sb. Struktura dat zasílaných provozovatelem distribuční soustavy pro účely vyúčtování služby distribuce elektřiny A. Identifikační údaje 1. Číselný kód provozovatele
c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.
9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základy paprskové a vlnové optiky, optická vlákna, Učební text Ing. Bc. Jiří Primas Liberec 2011 Materiál vznikl
1. Člun o hmotnosti m = 50 kg startuje kolmo ke břehu a pohybuje se dále v tomto směru konstantní rychlostí v 0 = 2 m.s -1 vůči vodě. Současně je unášen podél břehu proudem vody, který na něj působí silou
7. Odraz a lom. 7.1 Rovinná rozhraní dielektrik - základní pojmy
Trivium z optiky 45 7 draz a lom V této kapitole se budeme zabývat průchodem (lomem) a odrazem světla od rozhraní dvou homogenních izotropních prostředí Pro jednoduchost se omezíme na rozhraní rovinná
1/45 Provozní měření a vyhodnocování solárních soustav
1/45 Provozní měření a vyhodnocování solárních soustav měření teploty měření průtoku měření tepla provozní vyhodnocování příklady 2/45 Proč měřit? měření pro zajištění funkce (provoz solární soustavy,
Osvětlovací modely v počítačové grafice
Západočeská univerzita v Plzni Fakulta aplikovaných věd Semestrální práce z předmětu Matematické modelování Osvětlovací modely v počítačové grafice 27. ledna 2008 Martin Dohnal A07060 mdohnal@students.zcu.cz
- 1 - Vzdělávací oblast : Člověk a příroda Vyučovací předmět : Zeměpis. Ročník: 6. Mezipředmětové vztahy. Výstup Učivo Průřezová témata.
- 1 - Vzdělávací oblast : Člověk a příroda Vyučovací předmět : Zeměpis Ročník: 6. Výstup Učivo Průřezová témata objasní postavení Slunce ve vesmíru a popíše planetární systém a tělesa sluneční soustavy
Řeší parametry kaskády (obvodu složeného ze sériově řazených bloků)
Kaskádní syntéza Kaskádní syntéza Řeší parametry kaskády (obvodu složeného ze sériově řazených bloků) Šumové číslo (N) Dynamický rozsah (I) Bod zahrazeni produkty třetího řádu Dynamický rozsah bez produktů
Autorský popis objektu
Anotace Architektonický výraz domu vychází ze samotné energetické koncepce. Fasáda jako živoucí stínící mechanismus. Zelená fasáda v podobě zavěšených truhlíků se zelení, stromy a keři osázených terasových
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Solární energie 2 1
Mechanismy. Vazby členů v mechanismech (v rovině):
Mechanismy Mechanismus klikový, čtyřkloubový, kulisový, západkový a vačkový jsou nejčastějšími mechanismy ve strojích (kromě převodů). Mechanismy obsahují členy (kliky, ojnice, těhlice, křižáky a další).
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 OHYB SVĚTLA
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 OHYB SVĚTLA V paprskové optice jsme se zabývali optickým zobrazováním (zrcadly, čočkami a jejich soustavami).
1.11 Vliv intenzity záření na výkon fotovoltaických článků
1.11 Vliv intenzity záření na výkon fotovoltaických článků Cíle kapitoly: Cílem laboratorní úlohy je změřit výkonové a V-A charakteristiky fotovoltaického článku při změně intenzity světelného záření.
LED osvětlen. tlení. telné zdroje LED. LED diody. spektrum LED. Ing. Jana Lepší
Světeln telné zdroje LED osvětlen Ing. Jana Lepší Zdravotní ústav se sídlem v Ústí nad Labem Oddělení faktorů prostředí - pracoviště Plzeň jana.lepsi@zuusti.cz LED dioda - polovodičová elektronická součástka
7.8 Kosmická loď o délce 100 m letí kolem Země a jeví se pozorovateli na Zemi zkrácena na 50 m. Jak velkou rychlostí loď letí?
7. Speciální teorie relativity 7.1 Kosmonaut v kosmické lodi, přibližující se stálou rychlostí 0,5c k Zemi, vyšle směrem k Zemi světelný signál. Jak velká je rychlost signálu a) vzhledem k Zemi, b) vzhledem
Energie větru Síla větru
Energie větru Vítr je vzduc proudící v přírodě, jeož směr a ryclost se obvykle neustále mění. Příčinou energie větru je rotace Země a sluneční energie. Například nad zemským povrcem ořátým sluncem vzrůstá
SOLÁRNÍ KOLEKTORY BRAMAC Zdroj energie s budoucností
SOLÁRNÍ KOLEKTORY BRAMAC Zdroj energie s budoucností Platí od 1. ledna 2016 Člen BRAAS MONIER BUILDING GROUP Budoucnost patří slunci Zdroj energie, který se vyplatí OBSAH Budoucnost patří slunci.........................
Základní ustanovení. změněno s účinností od poznámka vyhláškou č. 289/2013 Sb. 31.10.2013. a) mezi přepravní soustavou a
změněno s účinností od poznámka vyhláškou č 289/203 Sb 30203 08 VYHLÁŠKA ze dne 4 dubna 20 o měření plynu a o způsobu stanovení náhrady škody při neoprávněném odběru, neoprávněné dodávce, neoprávněném
Tel/fax: +420 545 222 581 IČO:269 64 970
PRÁŠKOVÁ NITRIDACE Pokud se chcete krátce a účinně poučit, přečtěte si stránku 6. 1. Teorie nitridace Nitridování je sycení povrchu součásti dusíkem v plynné, nebo kapalném prostředí. Výsledkem je tenká
PROGRAM TEPELNÁ OCHRANA OBJEKTŮ
PROGRAM TEPELNÁ OCHRANA OBJEKTŮ Obsah 1 Proč provádět úsporná opatření ve stávajících stavbách... Varianty řešení... 3 Kritéria pro výběr projektů...3 Přínosy...3.1 Přínosy energetické...3. Přínosy environmentální...
Geometrická optika 1
Geometrická optika 1 Popis pomocí světelných paprsků těmi se šíří energie a informace, zanedbává vlnové vlastnosti světla světelný paprsek = přímka, podél níž se šíří světlo, jeho energie index lomu (základní
L A S E R. Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami.
L A S E R Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami Stimulovaná emise Princip laseru Specifické vlastnosti laseru jako zdroje
(1) (3) Dále platí [1]:
Pracovní úkol 1. Z přiložených ů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 2. Změřte zvětšení a zorná pole mikroskopu pro všechny možné kombinace ů a ů. Naměřené
Proudění vzduchu, nucené větrání
AT 02 TZB II a technická infrastruktura LS 2009 Harmonogram t. část Přednáška Cvičení 1 UT Mikroklima budov, výpočet tepelných ztrát Tepelná ztráta obálkovou metodou Proudění vzduchu 2 3 Otopné soustavy
Spoje se styčníkovými deskami s prolisovanými trny
cvičení Dřevěné konstrukce Spoje se styčníkovými deskami s prolisovanými trny Úvodní poznámky Styčníkové desky s prolisovanými trny se používají pro spojování dřevěných prvků stejné tloušťky v jedné rovině,
ÚVOD. V jejich stínu pak na trhu nalezneme i tzv. větrné mikroelektrárny, které se vyznačují malý
Mikroelektrárny ÚVOD Vedle solárních článků pro potřeby výroby el. energie, jsou k dispozici i další možnosti. Jednou jsou i větrné elektrárny. Pro účely malých výkonů slouží malé a mikroelektrárny malých
3. Dynamika. Obecné odvození: a ~ F a ~ m. Zrychlení je přímo úměrné F a nepřímo úměrné m. 3. 2. 1 Výpočet síly a stanovení jednotky newton. F = m.
3. Dynamika Zabývá se říčinou ohybu (jak vzniká a jak se udržuje). Vše se odehrávalo na základě řesných okusů, vše shrnul Isac Newton v díle Matematické základy fyziky. Z díla vylývají 3 ohybové zákony.
Obnovitelné zdroje energie OZE OZE ČR A VE SVĚTĚ, DEFINICE, POTENCIÁL. Doc. Ing. Tomáš Dlouhý CSc.
Struktura přednášek Obnovitelné zdroje energie OZE Doc. Ing. Tomáš Dlouhý CSc. 1. OZE v ČR a ve světě 2. Vodní energie 3. Větrná energie 4. Solární energie fotovoltaické panely 5. Solární energie solární
2) Další místo napojení je ze stávajícího venkovního osvětlení a doplňuje VO u nových rodinných domů.
1 OBSAH: 1. Rozsah projektovaného souboru... 2 2. Volba proudových soustav, napětí a způsob napájení... 2 3. Údaje o instalovaných výkonech... 2 4. Prostředí... 2 5. Stupen důležitosti dodávky el. energie...
SMĚRNICE EVROPSKÉHO PARLAMENTU A RADY 2009/76/ES
L 201/18 Úřední věstník Evropské unie 1.8.2009 SMĚRNICE EVROPSKÉHO PARLAMENTU A RADY 2009/76/ES ze dne 13. července 2009 o hladině akustického tlaku kolových zemědělských a lesnických traktorů působícího
200057825 - Valcha - Nežárka - 42,679 ř.km
ZÁKLADNÍ PARAMETRY PŘÍČNÉ PŘEKÁŽKY VAZBA NA HYDROLOGICKÉ ČLENĚNÍ POVODÍ DRUH pevný SPÁD [m] 1,8 ČÍSLO HYDROL.POŘ. 107030490 ÚSEK HR. ČLENĚNÍ VODNÍHO TOKU 1179800 TVAR přímý STŘ. DÉLKA [m] 28,8 ÚTVAR POVRCH.VOD
Pracovní list SVĚTELNÉ JEVY Jméno:
Zadání projektu Optické jevy Časový plán: Zadání projektu, přidělení funkcí, časový a pracovní plán 9. 5. Vlastní práce 4 vyučovací hodiny do 22. 5. Prezentace 24.5. Test a odevzdání portfólií ke kontrole
ZADÁVACÍ DOKUMENTACE PRO ZADÁVACÍ ŘÍZENÍ PODLE ZÁKONA Č. 137/2006 Sb. O VEŘEJNÝCH ZAKÁZKÁCH V PLATNÉM ZNĚNÍ, PROJEKTOVÁ DOKUMENTACE VE STUPNI RDS
ZADÁVACÍ DOKUMENTACE PRO ZADÁVACÍ ŘÍZENÍ PODLE ZÁKONA Č. 137/2006 Sb. O VEŘEJNÝCH ZAKÁZKÁCH V PLATNÉM ZNĚNÍ, PROJEKTOVÁ DOKUMENTACE VE STUPNI RDS ODKANALIZOVÁNÍ OBCE STŘÍBRNÁ SKALICE A. PRŮVODNÍ ZPRÁVA
Antény. Zpracoval: Ing. Jiří. Sehnal. 1.Napájecí vedení 2.Charakteristické vlastnosti antén a základní druhy antén
ANTÉNY Sehnal Zpracoval: Ing. Jiří Antény 1.Napájecí vedení 2.Charakteristické vlastnosti antén a základní druhy antén Pod pojmem anténa rozumíme obecně prvek, který zprostředkuje přechod elektromagnetické
1.7. Mechanické kmitání
1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického
Souřadnicové soustavy (systémy) na území naší republiky Klady a rozměry mapových listů velkých a středních měřítek. Kartografie.
Souřadnicové soustavy (systémy) na území naší republiky Klady a rozměry mapových listů velkých a středních měřítek Kartografie přednáška 4 Souřadnicové systémy na území ČR každý stát nebo skupina států
KALOVÉ KOŠE KOŠE DO ULIČNÍCH VPUSTÍ KOŠE DO DVORNÍCH VPUSTÍ LAPAČE NEČISTOT
KALOVÉ KOŠE KOŠE DO ULIČNÍCH VPUSTÍ KOŠE DO DVORNÍCH VPUSTÍ LAPAČE NEČISTOT KALOVÉ KOŠE KOŠE DO ULIČNÍCH VPUSTÍ Koš do UV A4 vysoký pozinkovaný Ø 385 Koš podle DIN 4052-A4 pro uliční vpusti, vysoký hmotnost:
Pasivní dům Vějíř v Bystrci
Pasivní dům Vějíř v Bystrci Autor: Vize Ateliér, s r.o. Běhounská 22, 602 00, Brno Tel.: +420 777 887 839, e-mail: info@vizeatelier.eu, web: www.vizeatelier.eu. 1. Úvod V Brně Bystrci se právě staví tento
ZATÍŽENÍ SNĚHEM A VĚTREM
II. ročník celostátní konference SPOLEHLIVOST KONSTRUKCÍ Téma: Cesta k pravděpodobnostnímu posudku bezpečnosti, provozuschopnosti a trvanlivosti konstrukcí 21.3.2001 Dům techniky Ostrava ISBN 80-02-01410-3
a) Jaká je hodnota polytropického exponentu? ( 1,5257 )
Ponorka se potopí do 50 m. Na dně ponorky je výstupní tunel o průměru 70 cm a délce, m. Tunel je napojen na uzavřenou komoru o objemu 4 m. Po otevření vnějšího poklopu vnikne z části voda tunelem do komory.
Bude nás sledovat inteligentní prach? Ing. Bibiána Buková, PhD. (17. 12. 2004)
Bude nás sledovat inteligentní prach? Ing. Bibiána Buková, PhD. (17. 12. 2004) Využití inteligentního prachu je návrh futuristický, uvažuje s možností využít zařízení, označovaného jako inteligentní prach
Pracovní listy s komponentou ICT
Téma: Dálkový průzkum Země Časová dotace: 3 hodiny Pracovní listy s komponentou ICT Cíl: Pochopení principu dálkového průzkumu Země, práce se snímkem v prostředí programu MultiSpec, zobrazování snímku
METEOROLOGICKÁ STANICE GARNI 857
METEOROLOGICKÁ STANICE GARNI 857 Popis Meteorologická stanice zobrazuje čas řízený rádiovým signálem DCF-77, měří barometrický tlak, vnitřní teplotu a relativní vlhkost, pomocí bezdrátových čidel měří
PR MYSLOVÁ ZÓNA ZBOŽÍ
M STO DV R KRÁLOVÉ NAD LABEM PR MYSLOVÁ ZÓNA ZBOŽÍ Adresa: nám stí T. G. Masaryka 38 544 01 Dv r Králové nad Labem I O: 277 819 Telefon / Fax: 499 320 111 / 499 320 178 www: www.mudk.cz e-mail: starosta@mudk.cz
Geodézie. přednáška 3. Nepřímé měření délek. Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.
Geodézie přednáška 3 Nepřímé měření délek Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Nepřímé měření délek při nepřímém měření délek se neměří přímo žádaná
Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY
Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 16. ČERVNA 2012 Název zpracovaného celku: NOSNÍKY NOSNÍKY Nosníky jsou zpravidla přímá tělesa (pruty) uloţená na podporách nebo
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Nevyváženost rotorů rotačních strojů je důsledkem změny polohy (posunutí, naklonění) hlavních os setrvačnosti rotorů vzhledem
Měření momentu setrvačnosti z doby kmitu
Úloha č. 4 Měření momentu setrvačnosti z doby kmitu Úkoly měření:. Určete moment setrvačnosti vybraných těles, kruhové a obdélníkové desky.. Stanovení momentu setrvačnosti proveďte s využitím dvou rozdílných
Jaderná energie. Obrázek atomů železa pomocí řádkovacího tunelového mikroskopu
Jaderná energie Atom Všechny věci kolem nás se skládají z atomů. Atom obsahuje jádro (tvořené protony a neutrony) a obal tvořený elektrony. Protony a elektrony jsou částice elektricky nabité, neutron je
Baronesa. Zveme Vás na Mezinárodní rok astronomie v Pardubicích
Baronesa Zveme Vás na Mezinárodní rok astronomie v Pardubicích Planeta Jupiter dostala v polovině července letošního roku zásah zatím neznámým tělesem. Na jejím povrchu se tak dala několik týdnů sledovat
269/2015 Sb. VYHLÁŠKA
269/2015 Sb. - rozúčtování nákladů na vytápění a příprava teplé vody pro dům - poslední stav textu 269/2015 Sb. VYHLÁŠKA ze dne 30. září 2015 o rozúčtování nákladů na vytápění a společnou přípravu teplé
ČVUT v Praze. Fakulta stavební Thákurova 7, 166 29 Praha 6 email: kamil.stanek@fsv.cvut.cz http://fotovoltaika.fsv.cvut.cz BUDOVY PŘEHLED TECHNOLOGIE
ČVUT v Praze Fakulta stavební Thákurova 7, 166 29 Praha 6 email: kamil.stanek@fsv.cvut.cz http://fotovoltaika.fsv.cvut.cz FOTOVOLTAIKA PRO BUDOVY PŘEHLED TECHNOLOGIE Palivo: Sluneční záření 150 miliónů
Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu.
Svarové spoje Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Vybrané druhy svarů a jejich posouzení dle EN ČSN 1993-1-8. Koutový svar -T-spoj - přeplátovaný
VÝVOJ POVLAKŮ PRO STAVEBNÍ APLIKACE. ABSTRACT anglicky
VÝVOJ POVLAKŮ PRO STAVEBNÍ APLIKACE Ing. PAVEL WONDRAK AGC Flat Glass Czech, a.s., člen AGC Group; Teplice,Czech email: pavel.wondrak@eu.agc.com ABSTRACT anglicky The following papers explains the function
SMĚŠOVACÍ KALORIMETR -tepelně izolovaná nádoba s míchačkou a teploměrem, která je naplněná kapalinou
KALORIMETRIE Kalorimetr slouží k měření tepla, tepelné kapacity, případně měrné tepelné kapacity Kalorimetrická rovnice vyjadřuje energetickou bilanci při tepelné výměně mezi kalorimetrem a tělesy v kalorimetru.
Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice.
Kružnice Kružnice k(s; r) je množina všech bodů roviny, které mají d od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. S r Délka spojnice dvou bodů kružnice, která prochází středem
UNIVERZITA V PLZNI. Model ALADIN A08N0205P MAN/MA
ZÁPADOČESKÁ UNIVERZITA V PLZNI Semestrální práce z předmětu Matematické Modelování Model ALADIN Jitka Váchová A08N0P MAN/MA 1 1 Úvod Model ALADIN (Aire Limitée, Adaption Dynamique, Development International)
Jednofázový alternátor
Jednofázový alternátor - 1 - Jednofázový alternátor Ing. Ladislav Kopecký, 2007 Ke generování elektrického napětí pro energetické účely se nejčastěji využívá dvou principů. Prvním z nich je indukce elektrického
ČSN 1264-4: 4: 2002) ČSN EN
Převážně sálavé otopné plochy - úvod Mezi převážně sálavé plochy řadíme i tepelně aktivované stavební konstrukce se zabudovanými teplovodními rozvody nebo elektrickými topnými kabely (rohožemi, fóliemi).
5 ZKOUŠENÍ CIHLÁŘSKÝCH VÝROBKŮ
5 ZKOUŠENÍ CIHLÁŘSKÝCH VÝROBKŮ Cihelné prvky se dělí na tzv. prvky LD (pro použití v chráněném zdivu, tj. zdivo vnitřních stěn, nebo vnější chráněné omítkou či obkladem) a prvky HD (nechráněné zdivo).
AMC/IEM HLAVA B PŘÍKLAD OZNAČENÍ PŘÍMOČARÉHO POHYBU K OTEVÍRÁNÍ
ČÁST 2 Hlava B JAR-26 AMC/IEM HLAVA B [ACJ 26.50(c) Umístění sedadla palubních průvodčí s ohledem na riziko zranění Viz JAR 26.50 (c) AC 25.785-1A, Část 7 je použitelná, je-li prokázána shoda s JAR 26.50(c)]
3. STRUKTURA EKOSYSTÉMU
3. STRUKTURA EKOSYSTÉMU 3.1 ZÁKLADNÍ ČLENĚNÍ STRUKTURY ZÁKLADNÍ STRUKTURA Různé typy členění: na sféry prostředí -litosféra geologický podklad -pedosféra půda -hydrosféra voda -atmosféra vzduch -biosféra
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Uživatelská nastavení parametrických modelářů, využití
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ KRESLENÍ SOUČÁSTÍ A SPOJŮ 2 LOŽISKA
Příloha smlouvy č.1. Technické specifikace. Hlavní dalekohled do západní kopule
Příloha smlouvy č.1 Technické specifikace Hlavní dalekohled do západní kopule požadované zadavatelem Optika Objektiv dalekohledu je zrcadlový nebo čočko-zrcadlový, poskytuje ostrý obraz v celém zorném
Obnovitelné zdroje energie Otázky k samotestům
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Obnovitelné zdroje energie Otázky k samotestům Ing. Michal Kabrhel, Ph.D. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
OBEC PŘIBYSLAVICE. Zastupitelstvo obce Přibyslavice. Obecně závazná vyhláška. Obce Přibyslavice Č. 1/2015
OBEC PŘIBYSLAVICE Zastupitelstvo obce Přibyslavice Obecně závazná vyhláška Obce Přibyslavice Č. 1/2015 O stanovení systému shromažďování, sběru, přepravy, třídění, využívání a odstraňování komunálních
NÁVOD K OBSLUZE TMAVÝCH PLYNOVÝCH ZÁŘIČŮ ETASTAR
NÁVOD K OBSLUZE TMAVÝCH PLYNOVÝCH ZÁŘIČŮ ETASTAR TYPU : ES 03, 06, 09, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42... kategorie II 2H 3P EST 06, 09, 12, 15, 18, 21, 24, 27, 30... kategorie II 2H 3P ESRM
Teleskopie díl pátý (Triedr v astronomii)
Teleskopie díl pátý (Triedr v astronomii) Na první pohled se může zdát, že malé dalekohledy s převracející hranolovou soustavou, tzv. triedry, nejsou pro astronomická pozorování příliš vhodné. Čas od času
Vzdělávací oblast: ČLOVĚK A PŘÍRODA Vyučovací předmět: Zeměpis Ročník: 6.
Vzdělávací oblast: ČLOVĚK A PŘÍRODA Vyučovací předmět: Zeměpis Ročník: 6. Objasní postavení Slunce ve vesmíru a popíše planetární systém a tělesa sluneční soustavy Charakterizuje polohu, povrch, pohyby
TECHNICKÉ SLUŽBY OCHRANY OVZDUŠÍ OSTRAVA spol. s r.o. ROZPTYLOVÁ STUDIE. č. E/3795/2013
TECHNICKÉ SLUŽBY OCHRANY OVZDUŠÍ OSTRAVA spol. s r.o. ROZPTYLOVÁ STUDIE č. E/3795/2013 Rozšíření CZT a výstavba zdroje tepla na biomasu v Budišově nad Budišovkou Zadavatel: Vypracoval: Město Budišov nad
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.4 Prvky elektronických obvodů Kapitola
COPY SPS. Návrh převodovky. Vypracoval Jaroslav Řezníček IV.B 2.KONSTRUKČNÍ CVIČENÍ ZA 4. ROČNÍK
SPS 2.KONSTRUKČNÍ CVIČENÍ ZA 4. ROČNÍK Návrh převodovky Vypracoval Jaroslav Řezníček IV.B 26.listopadu 2001 Kinematika Výpočet převodového poměru (i), krouticích momentů počet zubů a modul P 8kW n n 1
Pravidla o poskytování a rozúčtování plnění nezbytných při užívání bytových a nebytových jednotek v domech s byty.
Pravidla o poskytování a rozúčtování plnění nezbytných při užívání bytových a nebytových jednotek v domech s byty. Preambule Rada města Slavičín se usnesla podle 102 odst.3 zákona č. 128/2000Sb., vydat