Obsah. Statistika Zpracování informací ze statistického šetření Třídění statistického souboru. Třídění dle statistického znaku.

Rozměr: px
Začít zobrazení ze stránky:

Download "Obsah. Statistika Zpracování informací ze statistického šetření Třídění statistického souboru. Třídění dle statistického znaku."

Transkript

1 Obsah Statistika Zpracování informací ze statistického šetření Třídění statistického souboru Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi;-) romanbiskup(at) cz 20 února 2012 Třídění dle statistického znaku Prosté a intervalové třídění Četnosti statistického znaku Tabulky četností Prosté třídění Intervalové třídění Grafická vizualizace rozložení četností Histogram četnosti Výsečový graf Statistika bybirom Statistika Třídění 1/20 Statistika bybirom Statistika Třídění 2/20 Třídění dle statistického znaku Důvody třídění: zpřehledněnísouboru, zjištěníempirickéhorozdělenístatistickéhosouboru, sníženínumerickénáročnostivýpočtustatistickýchcharakteristik Dle počtu třídících znaků: jednostupňové, dvoustupňové(kontingenčnítabulky), vícestupňové Dle typu třídění: tříděníprosté(malýpočetrůznýchhodnotznaku), tříděníintervalové(velkýpočetrůznýchhodnotznaku,spojitýnumerický znak) Základní zásady při třídění: zásadaúplnosti(každájednotkamusíněkampatřit), zásadajednoznačnosti(každájednotkamusímítprávějednomístopřitřídění) Postup třídění I Prosté třídění libovolný statistický znak 1 stanovení počtu pozorování různých hodnot znaku(předpokládejme k různých hodnot) Intervalové třídění numerický statistický znak 1 stanovenípočtuintervalů k,optimálně8 k 20 k 1+3,3 logn (Sturgesovopravidlo) k 8 (maxx minx) 100 k n 2 stanovení délky intervalu h maxx minx h = k 3 rozdělenínaintervaly ; ), ; ),, ; minx +i h;minx +(i +1) h), proi =0,,k 2a minx +(k 1) h;maxx Pro popis statistického znaku je vhodné jak délku intervalů, tak hranice intervalů učesat,tjvhodnězaokrouhlit;jevšaktřebazajistit,abytakto upravené intervaly pokryly všechny hodnoty statistického znaku Statistika bybirom Statistika Třídění 3/20 Statistika bybirom Statistika Třídění 4/20

2 Postup třídění II Meze jednotlivých intervalů je třeba volit tak, aby nedocházelo k nejasnostem, tjabysekaždépozorováníjednoznačně spadalo dourčitéhointervalu 4 stanovení počtu pozorovaní s hodnotou znaku spadajícího do příslušného intervalu Absolutní a relativní četnost I Označme sledovaný statistický znak x, nechť má N pozorování, pak pro i =1,,k: n i absolutníčetnost početpozorováníshodnotouznakurovnoux i,respektivepočet pozorování s hodnotou znaku spadající do i-tého intervalu, zřejměplatí: k n i =N i=1 p i relativníčetnost poměrpočtupozorováníshodnotouznakurovnoux i vzhledem celkovému počtu pozorování, respektive poměr počtu pozorování s hodnotou znaku spadající do i-tého intervalu vzhledem celkovému počtu pozorování, p i = n i N (p i 100%), i =1,,k; Statistika bybirom Statistika Třídění 5/20 Statistika bybirom Statistika Třídění 6/20 Absolutní a relativní četnost II izdezřejmě: k p i =1 (100%) i=1 Statistika bybirom Statistika Třídění 7/20 Kumulativní četnosti I k ni kumulativní(absolutní)četnost početpozorování,unichžjehodnotastatistickéhoznakux x i, respektive počet pozorování zařazených díky hodnotě statistického znaku od prvního až do i-tého intervalu včetně, tj k ni =n 1 +n 2 + +n i = i n j k pi kumulativnírelativníčetnost udávápoměrpočtupozorování,unichžjehodnotastatistickéhoznaku x x i,vzhledemkcelkovémupočtupozorovánírespektivepoměrpočtu pozorování zařazených díky hodnotě statistického znaku od prvního až do i-tého intervalu včetně vzhledem k celkovému počtu pozorování, tj k pi =p 1 +p 2 + +p i = j=1 i p j Je nutné uspořádání znaku x, tj má smysl dělat minimálně pro ordinální znak Nebo ne? Jakou by pak měla kumulativní četnost interpretaci? k nk =N,k pk =1 (100%) Statistika bybirom Statistika Třídění 8/20 j=1

3 Tabulky četností Prosté třídění Datový soubor Evidence studijních výsledků LS 2005 Obor Počet Zameškáno Zápočet Body Hodnocení PUPN 4 0 Ano 4 1 VZ 0 3 Ano 1,5 4 OP 0 2 Rost 4 2 PP 0 0 Biskup 2 4 VZ 0 3 Ano 1 4 OP 0 1 Rost 2 4 ZOO 1 0 Ano 4 2 BT 13 1 Ano 4 2 OP 0 0 Rost 0,5 4 VZ 1 2 Ano 4 2 VZ 0 3 Ne 0 4 VZ 0 2 Ano 1,5 4 ZOO 2 1 Ano 1,5 4 Tabulky četností Prosté třídění Přípravné práce Evidence studijních výsledků LS 2005 Body počet bodů získaných z písemné části zkoušky ze statistiky LS 2005 (řádný termín) 1N =139;k=13(0;0,5;;6bodů)stanovenípočtupozorování jednotlivých hodnot znaku Statistika bybirom Statistika Třídění 9/20 Statistika bybirom Statistika Třídění 10/20 Tabulky četností Prosté třídění Tabulka četností Evidence studijních výsledků LS 2005 Počet bodů získaných z písemné části zkoušky ze statistiky LS 2005(řádný termín) x i n i p i (%) k ni k pi (%) 0, , ,42 0,5 11 7, ,34 1, , ,73 1, , ,52 2, , ,59 2,5 11 7, ,50 3, , ,33 3,5 8 5, ,09 4,0 7 5, ,12 4,5 3 2, ,28 5,0 1 0, ,00 5,5 0 0, ,00 6,0 0 0, ,00 Σ ,00 Tabulky četností Intervalové třídění Datový soubor Splátkový prodej(2004) Věk Pohlaví Stav Vzdělání Zaměstnání Příjem(Kč) Úvěr(Kč) Splátek 59 žena ženatý základní důchodce žena ženatý střední dělník muž rozvedený střední kuchař muž svobodný vyučený dělník muž ženatý vyučený řidič žena druh základní mateř dovolená muž svobodný vyučený malíř, natěrač muž ženatý střední státzam žena ženatý vyučený podnikatel muž rozvedený vyučený technik muž rozvedený vyučený pekař muž svobodný střední pol inspektor Statistika bybirom Statistika Třídění 11/20 Statistika bybirom Statistika Třídění 12/20

4 Tabulky četností Intervalové třídění Příprava intervalů Splátkový prodej(2004) Úvěr cena zaplacená za celkový spotřebitelský úvěr; 1N =737;k 1+3,3 log737 =10,463, zvolmek=11; 2minx =1584amaxx =25164; 3h = =2151,273, položmeh =2200adolnímezprvního 11 intervalu rovnu pak: ; 3700) ; 5900) ; 8100) ;23500) ; stanovení počtu pozorovaní v jednotlivých intervalech Tabulky četností Intervalové třídění Tabulka četností Splátkový prodej(2004) Cena zaplacená za celkový spotřebitelský úvěr Tabulka četností:celková výše úvěru Četnost Kumulativní Relčetnost Kumulativní OD DO četnost relčetnost 1500 Kč<=x<3 700 Kč , , Kč<=x<5 900 Kč , , Kč<=x<8 100 Kč , , Kč<=x< Kč , , Kč<=x< Kč , , Kč<=x< Kč , , Kč<=x< Kč , , Kč<=x< Kč , , Kč<=x< Kč , , Kč<=x< Kč , , Kč<=x< Kč , ,0000 Vytvořeno ChD , ,0000 Statistika bybirom Statistika Třídění 13/20 Statistika bybirom Statistika Třídění 14/20 Grafická vizualizace rozložení četností vizualizace absolutních četností prosté třídění navodorovnouosusevynášíhodnotysledovanéhoznaku nasvislouosusepakvynášíabsolutníčetnosti nadjednotlivýmihodnotamiznakujsouvynášenyhodnotyodpovídající příslušným absolutním četnostem jednotlivéhodnotyjsounavícspojenylomenoučárou Grafická vizualizace rozložení četností Počet bodů získaných z písemné části zkoušky ze statistiky LS 2005 řádný termín Po et pozor ,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 Vytvořeno v programu MS Excel 2000 Body Statistika bybirom Statistika Třídění 15/20 Statistika bybirom Statistika Třídění 16/20

5 Histogram četnosti Grafická vizualizace rozložení četností Histogram četnosti vizualizace absolutních četností intervalového třídění navodorovnouosusevynášímezeintervalů nasvislouosupakabsolutníčetnosti nadjednotlivýmiintervalyjsouvykreslenysloupcespodstavoušířkyintervalua výškou absolutní četnosti někdyjsouhodnotyvynášenénasvislouosumodifikoványtak,abycelková plocha sloupců byla rovná jedné vše pochopitelně v měřítku;-) Histogram četnosti Grafická vizualizace rozložení četností Histogram četnosti Cena zaplacená za celkový spotřebitelský úvěr Počet pozor Histogram: Celková výše úvěru Kč<=x<3 700 Kč Kč<=x<5 900 Kč Kč<=x<8 100 Kč Kč<=x< Kč Vytvořeno v programu STATISTICA komplet 61 Cz Kč<=x< Kč Kč<=x< Kč Kategorie Kč<=x< Kč Kč<=x< Kč Kč<=x< Kč Kč<=x< Kč Kč<=x< Kč Kč<=x< Kč Statistika bybirom Statistika Třídění 17/20 Statistika bybirom Statistika Třídění 18/20 Grafická vizualizace rozložení četností Výsečový graf Grafická vizualizace rozložení četností Výsečový graf Výsečový(koláčový) graf Výsečový graf vizualizace relativních četností Výsledné známky ze Statistiky 2004/05 LS plochagrafujedělenanakruhovévýsečevpoměru,kterýjedánrelativní četnosti, tj i =360 p i, zřejměplatí: k i=1 i =360 10,43% Graf je obvykle doplněn o legendu a relativní četnosti v procentech 45,40% 17,18% 26,99% Vytvořeno v programu MS Excel Statistika bybirom Statistika Třídění 19/20 Statistika bybirom Statistika Třídění 20/20

Statistika. Zpracování informací ze statistického šetření. Roman Biskup

Statistika. Zpracování informací ze statistického šetření. Roman Biskup Statistika Zpracování informací ze statistického šetření Třídění statistického souboru Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 20. února 2012

Více

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v

Více

Škály podle informace v datech:

Škály podle informace v datech: Škály podle informace v datech: Různé typy dat znamenají různou informaci, resp. různé množství informace Data nominální Rovná se? x 1 = x 2 Data ordinální Větší, menší? x 1 < x 2 Data intervalová O kolik?

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

Obsah. Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Pravděpodobnost. Pravděpodobnost. Děj pokus jev

Obsah. Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Pravděpodobnost. Pravděpodobnost. Děj pokus jev Obsah Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Definice pojmů Náhodný jev Pravděpodobnost Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi;-) roman.biskup(at)email.cz

Více

Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing.

Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing. 1.2 Prezentace statistických dat Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing. Jan Spousta Co se dozvíte Statistické ukazatele.

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Základní pojmy a cíle statistiky 1

Základní pojmy a cíle statistiky 1 Základní pojmy a cíle statistiky 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Předmět zkoumání Statistiky Definice statistiky Statistika zasahuje do mnoha oblastí našeho moderního

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

ČETNOSTI A ROZLOŽENÍ ČETNOSTÍ

ČETNOSTI A ROZLOŽENÍ ČETNOSTÍ PSY117/454 Statistická analýza dat v psychologii Přednáška 2 ČETNOSTI A ROZLOŽENÍ ČETNOSTÍ Je snadné lhát s pomocí statistiky. Je těžké říkat pravdu bez ní. Andrejs Dunkels; wikiquote Jaké hodnoty máme

Více

Statistika. Základní pojmy a cíle statistiky. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Základní pojmy a cíle statistiky. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Základní pojmy a cíle statistiky Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Statistika Pojmy a cíle

Více

Mnohorozměrná statistická data

Mnohorozměrná statistická data Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém

Více

Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,

Více

STATISTIKA 1. RNDr. K. Hrach, Ph.D. Zápočet: 75% docházka na cvičení. + odevzdání seminární práce (úkoly na PC)

STATISTIKA 1. RNDr. K. Hrach, Ph.D. Zápočet: 75% docházka na cvičení. + odevzdání seminární práce (úkoly na PC) STATISTIKA 1 RNDr. K. Hrach, Ph.D. Zápočet: 75% docházka na cvičení + odevzdání seminární práce (úkoly na PC) Zkouška: písemná (bez kalkulačky, bez vzorců) KONZULTACE Není hanba, že nevíš, ale že se neptáš.

Více

2. Bodové a intervalové rozložení četností

2. Bodové a intervalové rozložení četností . Bodové a intervalové rozložení četností (Jak získat informace z datového souboru?) Po prostudování této kapitoly budete umět: konstruovat diagramy znázorňující rozložení četností vytvářet tabulky četností

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat

2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat 2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,

Více

Základy popisné statistiky

Základy popisné statistiky Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2

Více

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech. 3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých

Více

Renáta Bednárová STATISTIKA PRO EKONOMY

Renáta Bednárová STATISTIKA PRO EKONOMY Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy

Více

Statistika. pro žáky 8. ročníku. úterý, 26. března 13

Statistika. pro žáky 8. ročníku. úterý, 26. března 13 Statistika pro žáky 8. ročníku Co je to statistika? Statistika je věda, která se snaží zkoumat reálná data a přibližuje nám zkoumaný jev a zákonitosti s ním spojené. Co nám statistika přináší? Co nám statistika

Více

Statistika pro geografy

Statistika pro geografy Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!

Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací! Statistika aneb známe tři druhy lži: úmyslná neúmyslná statistika Statistika je metoda, jak vyjádřit nejistá data s přesností na setinu procenta. den..00..00 3..00..00..00..00..00..00..00..00..00..00 3..00..00..00..00..00..00..00

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika

Více

9.7 TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI

9.7 TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 1 9.7 TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI Problematiku třídění podle jednoho spojitého

Více

Základy biostatistiky

Základy biostatistiky Základy biostatistiky Veřejné zdravotnictví 3.LF UK Viktor Hynčica Úvod se statistikou se setkáváme denně ankety proč se statistika začala používat ve zdravotnictví skupinový přístup k léčení celé populace

Více

STATISTICA Téma 1. Práce s datovým souborem

STATISTICA Téma 1. Práce s datovým souborem STATISTICA Téma 1. Práce s datovým souborem 1) Otevření datového souboru Program Statistika.cz otevíráme z ikony Start, nabídka Programy, podnabídka Statistika Cz 6. Ze dvou nabídnutých možností vybereme

Více

Nejčastější chyby v explorační analýze

Nejčastější chyby v explorační analýze Nejčastější chyby v explorační analýze Obecně doporučuju přečíst přednášku 5: Výběrová šetření, Exploratorní analýza http://homel.vsb.cz/~lit40/sta1/materialy/io.pptx Použití nesprávných charakteristik

Více

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika

Více

Matematika III. 29. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 29. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 29. října 2018 Statistika Statistika Statistika je jako bikini. Co odhaluje, je zajímavé, co skrývá, je podstatné. Aaron Levenstein Statistika Statistika

Více

9.6 TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU

9.6 TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU Statistické třídění dle jednoho nespojitého číselného znaku Aleš Drobník strana 1 9.6 TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU Na následujícím příkladu si vysvětlíme problematiku třídění podle

Více

STATISTIKA S EXCELEM. Martina Litschmannová MODAM,

STATISTIKA S EXCELEM. Martina Litschmannová MODAM, STATISTIKA S EXCELEM Martina Litschmannová MODAM, 8. 4. 216 Obsah Motivace aneb Máme data a co dál? Základní terminologie Analýza kvalitativního znaku rozdělení četnosti, vizualizace Analýza kvantitativního

Více

23. Matematická statistika

23. Matematická statistika Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti

Více

Cvičení 12: Binární logistická regrese

Cvičení 12: Binární logistická regrese Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,

Více

Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek

Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních

Více

STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE

STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí

Více

Statistika I (KMI/PSTAT)

Statistika I (KMI/PSTAT) Statistika I (KMI/PSTAT) Cvičení první aneb Sumační symbolika, úvod do popisné statistiky Statistika I (KMI/PSTAT) 1 / 15 Obsah hodiny Po dnešní hodině byste měli být schopni: správně používat sumační

Více

Kontingenční tabulky v Excelu. Představení programu Statistica

Kontingenční tabulky v Excelu. Představení programu Statistica ASTAc/01 Biostatistika 2. cvičení Kontingenční tabulky v Excelu Základní popisné statistiky Představení programu Statistica Import a základní popis dat ve Statistice, M. Cvanová I. Kontingenční tabulky

Více

Statistika. Testování hypotéz statistická indukce Neparametrické testy. Roman Biskup

Statistika. Testování hypotéz statistická indukce Neparametrické testy. Roman Biskup Statistika Testování hypotéz statistická indukce Neparametrické testy Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by

Více

Popisná statistika. Statistika pro sociology

Popisná statistika. Statistika pro sociology Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika.

Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Metody sociálních výzkumů Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Statistika Význam slova-vychází ze slova stát, s jeho administrativou

Více

8.1.2 TABULKA SKUPINOVÁ

8.1.2 TABULKA SKUPINOVÁ Prezentace dat. Tabulky skupinové a kombinační Aleš Drobník strana 1 8.1.2 TABULKA SKUPINOVÁ Užití: Hlubší analýza konkrétnější oblasti. Například ve vlastní části odborné práce, žákovského projektu apod.

Více

Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava

Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM 2016 Jak získat data? Primární zdroje dat Vlastní měření (fyzika, biologie,

Více

Základy popisné statistiky

Základy popisné statistiky Kapitola Základy popisné statistiky Všude kolem nás se setkáváme se shromažd ováním velkého počtu údajů o nejrůznějších objektech Mohou to být národohospodářské údaje o vývoji ekonomiky dané země sbírané

Více

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)

Charakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky

Více

Popisná statistika. Komentované řešení pomocí MS Excel

Popisná statistika. Komentované řešení pomocí MS Excel Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,

Více

PREZENTACE DAT: SLOŽITĚJŠÍ GRAFY

PREZENTACE DAT: SLOŽITĚJŠÍ GRAFY PREZENTACE DAT: SLOŽITĚJŠÍ GRAFY V kombinační tabulce 8.7 jsme roztřídili soubor pracovníků dle znaku pracovní kategorie na 4 třídy dělníci, techničtí pracovníci, hospodářští pracovníci, provozní a obsluhující

Více

Mnohorozměrná statistická data

Mnohorozměrná statistická data Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA

7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA 7. SEMINÁŘ DESKRIPTIVNÍ STATISTIKA Oblasti využití statistiky v medicíně Zvládání variability Variabilita: biologická, podmínek, měřících přístrojů - hodnocení variability, variabilita náhodná x nenáhodná

Více

Statistika I (KMI/PSTAT)

Statistika I (KMI/PSTAT) Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální

Více

Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?

Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.

Více

Vzorová prezentace do předmětu Statistika

Vzorová prezentace do předmětu Statistika Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota

Více

Deskriptivní statistika (kategorizované proměnné)

Deskriptivní statistika (kategorizované proměnné) Deskriptivní statistika (kategorizované proměnné) Nejprve malé opakování: - Deskriptivní statistika se zabývá popisem dat, jejich sumarizaci a prezentací. - Kategorizované proměnné jsou všechny proměnné,

Více

Analýza dat s využitím MS Excel

Analýza dat s využitím MS Excel Analýza dat s využitím MS Excel Seminář aplikované statistiky Martina Litschmannová Několik fíglů na úvod Absolutní vs. relativní adresování změna pomocí F4 =$H$20 =H$20 =$H20 =H20 Posun po souvislé oblasti

Více

Pro zvládnutí této kapitoly budete potřebovat 4-5 hodin studia.

Pro zvládnutí této kapitoly budete potřebovat 4-5 hodin studia. Úvod (Proč se zabývat statistikou?) Statistika je metoda analýzy dat, která nachází široké uplatnění v celé řadě ekonomických, technických, přírodovědných a humanitních disciplín. Její význam v poslední

Více

Soukromá střední odborná škola Frýdek-Místek, s.r.o.

Soukromá střední odborná škola Frýdek-Místek, s.r.o. Číslo projektu Název školy Název Materiálu Autor Tematický okruh Ročník CZ.1.7/1.5./3.99 Soukromá střední odborná škola Frýdek-Místek, s.r.o. IVT_MSOFFICE_11_Excel Ing. Pavel BOHANES IVT_MSOFFICE 3 Forma

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

HODNOCENÍ VÝUKY STUDENTY PEDF UK ZS 2016/2017

HODNOCENÍ VÝUKY STUDENTY PEDF UK ZS 2016/2017 HODNOCENÍ VÝUKY STUDENTY PEDF UK ZS 216/217 1 Vývoj počtu zúčastněných studentů od roku 21/211 Počet studentů ROK SEMESTR 21 211 212 213 214 215 216 DRUH FORMA ZS LS ZS LS ZS LS ZS (% 1 ) LS (%) ZS (%)

Více

Statistika pro geografy. Rozd lení etností DEPARTMENT OF GEOGRAPHY

Statistika pro geografy. Rozd lení etností DEPARTMENT OF GEOGRAPHY Statistika pro geografy Rozd lení etností DEPARTMENT OF GEOGRAPHY Faculty of Science Palacký University Olomouc t. 17. listopadu 1192/12, 771 46 Olomouc Pojmy etnost = po et prvk se stejnou hodnotou statistického

Více

PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI

PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI Pracovník, který spravuje podnikovou databázi, exportoval do tabulkového procesoru všechny pracovníky podniku

Více

Statistické metody. Martin Schindler KAP, tel , budova G. naposledy upraveno: 9.

Statistické metody. Martin Schindler KAP, tel , budova G. naposledy upraveno: 9. Statistické metody Matematika pro přírodní vědy přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 9. ledna 2015,

Více

PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU

PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU Pracovník, který spravuje podnikovou databázi, exportoval do tabulkového procesoru všechny pracovníky podniku Alfa Blatná s některými sledovanými

Více

Vybrané statistické metody. You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.

Vybrané statistické metody. You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf. Vybrané statistické metody Analýza časových řad Statistická řada je posloupnost hodnot znaku, které jsou určitým způsobem uspořádány. Je-li toto uspořádání realizováno na základě časového sledu hodnot

Více

Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1

Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA 2018 4. dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Typy proměnných nominální (nominal) o dvou hodnotách lze říci pouze

Více

METODOLOGIE I - METODOLOGIE KVANTITATIVNÍHO VÝZKUMU

METODOLOGIE I - METODOLOGIE KVANTITATIVNÍHO VÝZKUMU METODOLOGIE I - METODOLOGIE KVANTITATIVNÍHO VÝZKUMU vyučující doc. RNDr. Jiří Zháněl, Dr. M I 4 Metodologie I 7. ANALÝZA DAT (KVANTITATIVNÍ VÝZKUM) (MATEMATICKÁ) STATISTIKA DESKRIPTIVNÍ (popisná) ANALYTICKÁ

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

APERIO PROBLÉMY A POTŘEBY RODIČŮ

APERIO PROBLÉMY A POTŘEBY RODIČŮ APERIO PROBLÉMY A POTŘEBY RODIČŮ intertová anketa díl B: Statistická analýza dat zpracovatel: Petr Vendera ve spolupráci s DEMA a. s. zpráva byla vydána 30. 3. 2008 výhradně pro objednatele výzkumu Podpořeno

Více

1. cvičení 4ST201. Základní informace: Vyučující: Obsah: Informace o kurzu Popisná statistika Úvod do SASu

1. cvičení 4ST201. Základní informace: Vyučující: Obsah: Informace o kurzu Popisná statistika Úvod do SASu cvičící 1. cvičení 4ST201 Informace o kurzu Popisná statistika Úvod do SASu Obsah: Vysoká škola ekonomická 1 Vyučující: Základní informace:» Konzultační hodiny: pátek 9:00 11:00» Místnost: JM317» Email:

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Informační technologie a statistika 1

Informační technologie a statistika 1 Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek

Více

Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)

Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů) VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p

Více

Tabulka 1. Výběr z datové tabulky

Tabulka 1. Výběr z datové tabulky 1. Zadání domácího úkolu Vyberte si datový soubor obsahující alespoň jednu kvalitativní a jednu kvantitativní proměnnou s alespoň 30 statistickými jednotkami (alespoň 30 jednotlivých údajů). Zdroje dat

Více

Informace ze zdravotnictví Ústeckého kraje

Informace ze zdravotnictví Ústeckého kraje Informace ze zdravotnictví Ústeckého kraje Ústavu zdravotnických informací a statistiky České republiky Ústí nad Labem 12 10.10.2003 Zemřelí a sebevraždy v Ústeckém kraji v roce 2002 Údaje v těchto informacích

Více

Daně z pohledu veřejného mínění listopad 2014

Daně z pohledu veřejného mínění listopad 2014 ev22 TISKOVÁ ZPRÁVA Centrum pro výzkum veřejného mínění Sociologický ústav AV ČR, v.v.i. Jilská, Praha Tel.: 286 80 29 E-mail: jan.cervenka@soc.cas.cz Daně z pohledu veřejného mínění listopad 20 Technické

Více

STATISTIKA 1. RNDr. K. Hrach, Ph.D. Zápočet: odevzdání seminární práce (úkoly na PC) Zkouška: písemná (bez kalkulačky, bez vzorců)

STATISTIKA 1. RNDr. K. Hrach, Ph.D. Zápočet: odevzdání seminární práce (úkoly na PC) Zkouška: písemná (bez kalkulačky, bez vzorců) STATISTIKA 1 RNDr. K. Hrach, Ph.D. Zápočet: odevzdání seminární práce (úkoly na PC) Zkouška: písemná (bez kalkulačky, bez vzorců) STATISTIKA Činnost vedoucí k získávání dat Instituce zajišťující tuto činnost

Více

STATISTIKA VĚDA O USUZOVÁNÍ NA ZÁKLADĚ DAT. Patrícia Martinková Ústav informatiky AV ČR

STATISTIKA VĚDA O USUZOVÁNÍ NA ZÁKLADĚ DAT. Patrícia Martinková Ústav informatiky AV ČR STATISTIKA VĚDA O USUZOVÁNÍ NA ZÁKLADĚ DAT Patrícia Martinková Ústav informatiky AV ČR martinkova@cs.cas.cz www.cs.cas.cz/martinkova 1.LF UK, 22. a 30. března 2017 Motivace 1 Velké množství (medicínských

Více

1. Kategoriální proměnná nominální: (Tabulka a graf četností) Př.: sloupec (PokudanoJakčasto) -> Analyze -> Descriptive statistics -> Frequencies

1. Kategoriální proměnná nominální: (Tabulka a graf četností) Př.: sloupec (PokudanoJakčasto) -> Analyze -> Descriptive statistics -> Frequencies Analýza dat z dotazníkových šetření Cvičení 2. - Jednorozměrné třídění Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/ - Seznamte se s dotazníkem a strukturou

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 7: Třídění druhého stupně. Kontingenční tabulky Co se dozvíte v tomto modulu? Co je třídění druhého stupně Jak vytvořit a interpretovat kontingenční

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Návod na vypracování semestrálního projektu

Návod na vypracování semestrálního projektu Návod na vypracování semestrálního projektu Následující dokument má charakter doporučení. Není závazný, je pouze návodem pro studenty, kteří si nejsou jisti výběrem dat, volbou metod a formou zpracování

Více

Chyby měření 210DPSM

Chyby měření 210DPSM Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů

Více

Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability

Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry

Více

Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup

Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup Statistika Testování hypotéz statistická indukce Úvod do problému Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by Birom

Více

POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica

POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.

Více

Popisná statistika. Jaroslav MAREK. Univerzita Palackého

Popisná statistika. Jaroslav MAREK. Univerzita Palackého Popisná statistika Jaroslav MAREK Univerzita Palackého Přírodovědecká fakulta Katedra matematické analýzy a aplikací matematiky Tomkova 40, 779 00 Olomouc Hejčín tel. 585634606 marek@inf.upol.cz pondělí

Více

Základy statistiky pro obor Kadeřník

Základy statistiky pro obor Kadeřník Variace 1 Základy statistiky pro obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Aritmetický průměr

Více

Míra přerozdělování příjmů v ČR

Míra přerozdělování příjmů v ČR Míra přerozdělování příjmů v ČR Luboš Marek, Michal Vrabec Anotace V tomto článku počítají autoři hodnoty Giniho indexu v České republice. Tento index je spočítán nejprve za celou ČR, poté pro skupinu

Více

Metodologie pro ISK 2, jaro Ladislava Z. Suchá

Metodologie pro ISK 2, jaro Ladislava Z. Suchá Metodologie pro ISK 2, jaro 2014. Ladislava Z. Suchá Metodologie pro Informační studia a knihovnictví 2 Modul 7: Třídění druhého stupně. Kontingenční tabulky Co se dozvíte v tomto modulu? Co je třídění

Více

Dvouvýběrové a párové testy. Komentované řešení pomocí MS Excel

Dvouvýběrové a párové testy. Komentované řešení pomocí MS Excel Dvouvýběrové a párové testy Komentované řešení pomocí MS Excel Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci glukózy v

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 8 Statistický soubor s jedním argumentem Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola

Více

Excel mini úvod do kontingenčních tabulek

Excel mini úvod do kontingenčních tabulek UK FHS Řízení a supervize v sociálních a zdravotnických organizacích (ZS 2005+) Kvantitativní metody výzkumu v praxi Excel mini úvod do kontingenčních tabulek (nepovinnáčást pro KMVP) Jiří Šafr jiri.safratseznam.cz

Více

Analýza dat z dotazníkových šetření. Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/

Analýza dat z dotazníkových šetření. Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/ Analýza dat z dotazníkových šetření Cvičení 3. - Jednorozměrné třídění Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/ - Seznamte se s dotazníkem a strukturou

Více