Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
|
|
- Luděk Matoušek
- před 8 lety
- Počet zobrazení:
Transkript
1 Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .cz 21. února 2012 Statistika by Birom Statistika by Birom Intervalový odhad 1 / 20
2 Obsah Definice Interpretace Matematická statistika a rozdělení parametrů rozdělení Výsledky matematické statistiky Statistika by Birom Statistika by Birom Intervalový odhad 2 / 20
3 Definice Intervalový odhad I Oboustranný intervalový odhad P(T D < θ < T H ) = 1 α P(θ (T D ; T H )) = 1 α 1 α označujeme jako koeficient spolehlivosti (konfidence), spolehlivost α označujeme jako riziko odhadu (hladina významnosti) 1 α = 0,9; 0,95; 0,99 a 0,999 TH T D se nazývá přesnost odhadu U symetricky konstruovaných intervalů spolehlivosti (µ, π) se T H T D značí 2 a nazývá se maximální přípustná chyba odhadu Bodový odhad lze považovat za extrémní případ intervalového odhadu s nulovou šířkou. Je sice přesný, ale ztrácí spolehlivost 1 α 0. Jednostranný interval omezený zdola (levostranný) P(T D < θ) = 1 α P(θ (T D ; )) = 1 α 1 α označujeme jako koeficient spolehlivosti (konfidence), spolehlivost α označujeme jako riziko podhodnocení (hladina významnosti) 1 α = 0,9; 0,95; 0,99 a 0,999 Statistika by Birom Statistika by Birom Intervalový odhad 3 / 20
4 Definice Intervalový odhad II Jednostranný interval omezený shora (pravostranný) P(θ < T H ) = 1 α P(θ ( ; T H )) = 1 α 1 α označujeme jako koeficient spolehlivosti (konfidence), spolehlivost α označujeme jako riziko nadhodnocení (hladina významnosti) 1 α = 0,9; 0,95; 0,99 a 0,999 Statistika by Birom Statistika by Birom Intervalový odhad 4 / 20
5 Interpretace Interpretace intervalového odhadu Správná interpretace (1 α) 100 % intervalů obsahuje parametr θ. Každý interval překryje odhadovaný parametr s (1 α) 100% pravděpodobností. Interval spolehlivosti je plácačka, která s danou spolehlivostí (1 α) připlácne mouchu (přilepenou) parametr. Nesprávná interpretace Interval spolehlivosti obsahu (1 α) 100 % všech možných hodnot odhadovaného parametru θ. Parametr θ padne do (1 α) 100% intervalu spolehlivosti právě s pravděpodobností 1 α. Parametr θ je šíp, který se spolehlivostí (1 α) zasáhne terč interval spolehlivosti. Náhodný je interval spolehlivosti nikoliv parametr, proto se výroky o pravděpodobnosti MUSÍ týkat intervalu a nikoliv parametru rozdělení, který je daný, neměnný, neznámý a proto jej odhadujeme. Statistika by Birom Statistika by Birom Intervalový odhad 5 / 20
6 Matematická statistika a rozdělení parametrů rozdělení Matematická statistika a rozdělení parametrů rozdělení I Podstatná tvrzení pro určení intervalových odhadů parametru normálního rozdělení O rozdělení náhodného výběru z N(µ; σ 2 ) Má-li populace normální rozdělení s parametry µ a σ 2 pak náhodný výběr má též normální rozdělení s parametry µ a σ 2 X 1, X 2,..., X n i.i.d. N ( µ; σ 2) O rozdělení náhodné veličiny sledující N(µ; σ 2 ) opakování Má-li náhodná veličina normální rozdělení s parametry µ a σ 2, pak náhodná veličina U = X µ σ má normální normované rozdělení N(0; 1). U = X µ σ N(0; 1) Statistika by Birom Statistika by Birom Intervalový odhad 6 / 20
7 Matematická statistika a rozdělení parametrů rozdělení Matematická statistika a rozdělení parametrů rozdělení II Podstatná tvrzení pro určení intervalových odhadů parametru normálního rozdělení O rozdělení střední hodnoty náhodného výběru z N(µ; σ 2 ) Má-li populace normální rozdělení s parametry µ a σ 2, pak výběrový průměr X má normální rozdělení s parametry µ a σ 2 /n X N ( µ; σ 2 /n ) O rozdělení rozptylu náhodného výběru z N(µ; σ 2 ) Má-li populace normální rozdělení s parametry µ a σ 2, pak náhodná veličina χ 2 = s2 (n 1) σ sleduje χ 2 (n 1) rozdělení. 2 χ 2 = s2 (n 1) σ 2 χ 2 (n 1) Statistika by Birom Statistika by Birom Intervalový odhad 7 / 20
8 Matematická statistika a rozdělení parametrů rozdělení Matematická statistika a rozdělení parametrů rozdělení III Podstatná tvrzení pro určení intervalových odhadů parametru normálního rozdělení O studentovo rozdělení opakování Jsou-li U a χ 2 takové nezávislé náhodné veličiny, že U N(0; 1) a χ 2 χ 2 (n) a definujeme-li: T = U t(n 1), χ 2 pak T má studentovo rozdělení o n stupních volnosti. n Statistika by Birom Statistika by Birom Intervalový odhad 8 / 20
9 Intervalový odhad střední hodnoty populace sledující normální rozdělení při známém rozptylu Oboustranný intervalový odhad P ( x n σ u 1 α/2 < µ < x + n σ ) u 1 α/2 = 1 α Jednostranný interval omezený zdola (levostranný) ( P x σ ) u 1 α < µ = 1 α n Jednostranný interval omezený shora (pravostranný) P (µ < x + n σ ) u 1 α = 1 α Hodnota σ n je směrodatná odchylka výběrového průměru a říká se jí standardní chyba. Hodnota = s n u 1 α/2 je maximální přípustnou chybou intervalového odhadu střední hodnoty. Přesnost intervalového odhadu (šířka intervalu) pro střední hodnotu závisí přímo na variabilitě a spolehlivosti a nepřímo na rozsahu výběru. Statistika by Birom Statistika by Birom Intervalový odhad 9 / 20
10 Související otázky s intervalovým odhadem střední hodnoty populace sledující normální rozdělení při známém rozptylu vedle vymezení samotného intervalu spolehlivosti je výsledkem jeho šířka, tj. přesnost odhadu = 2, variabilita dat je svým způsobem konstantní, přesnost odhadu lze zvýšit buďto: zvýšením rozsahu souboru, snížením spolehlivosti. někdy je předepsána přesnost odhadu prostřednictvím maximální přípustné chyby nechceme-li přesáhnout jak předepsanou přesnost, tak spolehlivost 1 α, nesmí rozsah výběru klesnout pod: ( σ u1 α/2 ) 2 n = n nutno zaokrouhlit na nejbližší vyšší cele číslo! nechceme-li přesáhnout předepsanou přesnost a nelze-li zvýšit rozsah souboru je spolehlivost odhadu nejvýše: ( n 1 α = 2Φ σ ) 1 Statistika by Birom Statistika by Birom Intervalový odhad 10 / 20
11 Dvoufázový výběr Postup určení rozsahu výběrového souboru pro dosažení předepsané přesnosti a spolehlivosti odhadu 1. Provedení rozumně velikého výběrového šetření m, 2. Vypočtení nutného rozsahu pro dosažení předepsané přesnosti a spolehlivosti odhadu ( σ u1 α/2 ) 2 n = n nutno zaokrouhlit na nejbližší vyšší cele číslo!, 3. Je-li n m, je vytvořený výběr dostačující, je-li n > m, je třeba výběr doplnit o (n m) dodatečných pozorování. Statistika by Birom Statistika by Birom Intervalový odhad 11 / 20
12 Intervalový odhad střední hodnoty populace sledující normální rozdělení při neznámém rozptylu Oboustranný intervalový odhad ( P x s n t 1 α/2 (n 1) < µ < x + s ) t 1 α/2 (n 1) = 1 α n Jednostranný interval omezený zdola (levostranný) ( P x s ) t 1 α (n 1) < µ = 1 α n Jednostranný interval omezený shora (pravostranný) ( P µ < x + s ) t 1 α (n 1) = 1 α n Hodnota s n je odhadem směrodatné odchylky výběrového průměru a říká se jí standardní chyba. Hodnota = s n t 1 α/2 (n 1) je maximální přípustnou chybou intervalového odhadu střední hodnoty. Přesnost intervalového odhadu (šířka intervalu) pro střední hodnotu závisí přímo na variabilitě a spolehlivosti a nepřímo na rozsahu výběru. Statistika by Birom Statistika by Birom Intervalový odhad 12 / 20
13 Související otázky s intervalovým odhadem střední hodnoty populace sledující normální rozdělení při neznámém rozptylu vedle vymezení samotného intervalu spolehlivosti je výsledkem jeho šířka, tj. přesnost odhadu = 2, variabilita dat je svým způsobem konstantní, přesnost odhadu lze zvýšit buďto: zvýšením rozsahu souboru, snížením spolehlivosti. někdy je předepsána přesnost odhadu prostřednictvím maximální přípustné chyby nechceme-li přesáhnout jak předepsanou přesnost, tak spolehlivost 1 α, nesmí rozsah výběru klesnout pod: ( ) s t1 α/2 (m 1) 2 n = n nutno zaokrouhlit na nejbližší vyšší cele číslo! nechceme-li přesáhnout předepsanou přesnost a nelze-li zvýšit rozsah souboru je spolehlivost odhadu nejvýše: ( ) n 1 α = 2F 1 s Statistika by Birom Statistika by Birom Intervalový odhad 13 / 20
14 Dvoufázový výběr Postup určení rozsahu výběrového souboru pro dosažení předepsané přesnosti a spolehlivosti odhadu 1. Provedení rozumně velikého výběrového šetření m, 2. Vypočtení nutného rozsahu pro dosažení předepsané přesnosti a spolehlivosti odhadu ( ) 2 s t1 α/2 (m 1) n = n nutno zaokrouhlit na nejbližší vyšší cele číslo!, 3. Je-li n m, je vytvořený výběr dostačující, je-li n > m, je třeba výběr doplnit o (n m) dodatečných pozorování. Statistika by Birom Statistika by Birom Intervalový odhad 14 / 20
15 Intervalový odhad rozptylu populace sledující normální rozdělení Oboustranný intervalový odhad ( ) (n 1) s 2 P χ 2 1 α/2 (n 1) < (n 1) σ2 s2 < = 1 α (n 1) χ 2 1 α χ 2 α/2 Jednostranný interval omezený zdola (levostranný) ( ) (n 1) s 2 P < σ2 = 1 α (n 1) Jednostranný interval omezený shora (pravostranný) P (σ 2 < ) (n 1) s2 χ 2 = 1 α α(n 1) Přesnost intervalového odhadu (šířka intervalu) pro rozptyl závisí přímo na variabilitě a rozsahu výběru a nepřímo na spolehlivosti. Statistika by Birom Statistika by Birom Intervalový odhad 15 / 20
16 Intervalový odhad směrodatné odchylky populace sledující normální rozdělení Oboustranný intervalový odhad P (n 1) s < σ < χ 2 1 α/2 (n 1) (n 1) s χ 2 α/2 (n 1) Jednostranný interval omezený zdola (levostranný) P (n 1) s < σ = 1 α χ 21 α (n 1) = 1 α Jednostranný interval omezený shora (pravostranný) ( ) (n 1) s P σ < = 1 α χ 2 α (n 1) Přesnost intervalového odhadu (šířka intervalu) pro rozptyl závisí přímo na variabilitě a rozsahu výběru a nepřímo na spolehlivosti. Statistika by Birom Statistika by Birom Intervalový odhad 16 / 20
17 Intervalový odhad populační pravděpodobnosti (poměru) alternativního rozdělení Oboustranný intervalový odhad ( P p u 1 α/2 p(1 p) n < π < p + u 1 α/2 Jednostranný interval omezený zdola (levostranný) ( ) p(1 p) P p u 1 α < π = 1 α n Jednostranný interval omezený shora (pravostranný) ( ) p(1 p) P π < p + u 1 α = 1 α n Hodnota p(1 p) n p(1 p) n ) = 1 α je odhadem směrodatné odchylky výběrového poměru. p(1 p) n Hodnota = u 1 α je maximální přípustnou chybou intervalového odhadu populačního poměru. Přesnost intervalového odhadu (šířka intervalu) pro populačního poměru závisí přímo na variabilitě a spolehlivosti a nepřímo na rozsahu výběru. Statistika by Birom Statistika by Birom Intervalový odhad 17 / 20
18 Související otázky s intervalovým odhadem populační pravděpodobnosti I vedle vymezení samotného intervalu spolehlivosti je výsledkem jeho šířka, tj. přesnost odhadu = 2, variabilita dat je svým způsobem konstantní, přesnost odhadu lze zvýšit buďto: zvýšením rozsahu souboru snížením spolehlivosti někdy je předepsána přesnost odhadu prostřednictvím maximální přípustné chyby nechceme-li přesáhnout jak předepsanou přesnost, tak spolehlivost 1 α, nesmí rozsah výběru klesnout pod: ( ) 2 p(1 p) u1 α/2 n = n nutno zaokrouhlit na nejbližší vyšší cele číslo! Statistika by Birom Statistika by Birom Intervalový odhad 18 / 20
19 Související otázky s intervalovým odhadem populační pravděpodobnosti II nechceme-li přesáhnout předepsanou přesnost a nelze-li zvýšit rozsah souboru je spolehlivost odhadu nejvýše: ( n ) 1 α = 2Φ 1 p(1 p) Statistika by Birom Statistika by Birom Intervalový odhad 19 / 20
20 Dvoufázový výběr Postup určení rozsahu výběrového souboru pro dosažení předepsané přesnosti a spolehlivosti odhadu 1. Provedení rozumně velikého výběrového šetření m, 2. Vypočtení nutného rozsahu pro dosažení předepsané přesnosti a spolehlivosti odhadu ( ) 2 p(1 p) u1 α/2 n = n nutno zaokrouhlit na nejbližší vyšší cele číslo! 3. Je-li n m, je vytvořený výběr dostačující, je-li n > m, je třeba výběr doplnit o (n m) dodatečných pozorování. Statistika by Birom Statistika by Birom Intervalový odhad 20 / 20
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
ÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup
Statistika Testování hypotéz statistická indukce Úvod do problému Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by Birom
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
Statistika. Základní pojmy a cíle statistiky. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Základní pojmy a cíle statistiky Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Statistika Pojmy a cíle
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Intervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
Testování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
Ing. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
STATISTICKÉ ZJIŠŤOVÁNÍ
STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho
Statistika. Testování hypotéz - statistická indukce Parametrické testy. Roman Biskup
Statistika Testování hypotéz - statistická indukce Parametrické testy Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 1. února 01 Statistika by Birom
6. ZÁKLADY STATIST. ODHADOVÁNÍ. Θ parametrický prostor. Dva základní způsoby odhadu neznámého vektoru parametrů bodový a intervalový.
6. ZÁKLADY STATIST. ODHADOVÁNÍ X={X 1, X 2,..., X n } výběr z rozdělení s F (x, θ), θ={θ 1,..., θ r } - vektor reálných neznámých param. θ Θ R k. Θ parametrický prostor. Dva základní způsoby odhadu neznámého
Intervalové Odhady Parametrů II Testování Hypotéz
Parametrů II Testování Hypotéz Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Odhady parametrů základního souboru. Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára
Odhady parametrů základního souboru Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára Motivační příklad Mám průměrné roční teploty vzduchu z 8 stanic
STATISTICKÉ HYPOTÉZY
STATISTICKÉ HYPOTÉZY ZÁKLADNÍ POJMY Bodové/intervalové odhady Maruška řešila hodnoty parametrů (průměr, rozptyl atd.) Zde bude Maruška dělat hypotézy (předpoklady) ohledně parametrů Z.S. Výsledek nebude
5. Odhady parametrů. KGG/STG Zimní semestr
Základní soubor Výběr, výběrový (statistický) soubor Náhodný výběr Princip Odhad neznámých parametrů základního souboru na základz kladě charakteristik výběru. Přecházíme z části na celek, zevšeobec eobecňujeme
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
Náhodné veličiny, náhodné chyby
Náhodné veličiny, náhodné chyby Máme náhodnou veličinu X, jejíž vlastnosti zkoumáme. Pokud známe její rozložení (např. z nějaké dřívější studie) nebo alespoň předpokládáme znalost rozložení, můžeme ji
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné
8. Normální rozdělení
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum Kontakt: Literatura: Obecné informace Zvárová, J.: Základy statistiky pro biomedicínskéobory I. Vydavatelství
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
12. prosince n pro n = n = 30 = S X
11 cvičení z PSI 1 prosince 018 111 test střední hodnoty normálního rozdělení při známém rozptylu Teploměrem o jehož chybě předpokládáme že má normální rozdělení se směrodatnou odchylkou σ = 3 jsme provedli
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Statistika. Testování hypotéz statistická indukce Neparametrické testy. Roman Biskup
Statistika Testování hypotéz statistická indukce Neparametrické testy Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností
5 Parametrické testy hypotéz
5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.
8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady
PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
prosince oboustranný symetrický 95% interval spolehlivosti pro střední hodnotu životnosti τ. X i. X = 1 n.. Podle CLV má veličina
10 cvičení z PSI 5-9 prosince 016 101 intervalový odhad Veličina X, představující životnost žárovky, má exponenciální rozdělení s parametrem τ Průměrná životnost n = 64 náhodně vybraných žárovek je x =
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead
PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně
Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr
StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
MATEMATICKÁ STATISTIKA
MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost
(8 bod ) Náhodná veli ina X je po et rub p i nezávislých hodech mincí a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost P ( X EX < ) (9 bod ) b) Formulujte centrální limitní v tu a pomocí ní vypo
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
INTERVALOVÉ ODHADY PARAMETRŮ ZÁKLADNÍHO SOUBORU
INTERVALOVÉ ODHADY PARAMETRŮ ZÁKLADNÍHO SOUBORU Interval spolehlivosti pro parametr τ při hladině významnosti α (0,1) je určen statistikami T 1 a T 2 :. P T τ T =1-α ( ) 1 2 X toto je bodový odhad neznámé
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Ranní úvahy o statistice
Ranní úvahy o statistice Neúplný návod ke čtení statistických výsledků Dušan Merta květen 2016 Co nás čeká 1 Základní pojmy 2 Testování hypotéz 3 Confidence interval 4 Odds ratio 2 / 26 Základní pojmy
Úvod do problematiky měření
1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
Pravděpodobnost a statistika
Pravděpodobnost a statistika Bodové odhady a intervaly spolehlivosti Vilém Vychodil KMI/PRAS, Přednáška 10 Vytvořeno v rámci projektu 963/011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 10) Bodové odhady a intervaly
Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D
Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Miroslav Sýkora Kloknerův ústav, ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru
Matematika III. 3. prosince Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 3. prosince 2018 Úvod do testování hypotéz Základní metody statistické indukce Intervalové odhady (angl. confidence intervals) umožňují odhadnout nejistotu
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména
IDENTIFIKACE BIMODALITY V DATECH
IDETIFIKACE BIMODALITY V DATECH Jiří Militky Technická universita v Liberci e- mail: jiri.miliky@vslib.cz Milan Meloun Universita Pardubice, Pardubice Motto: Je normální předpokládat normální data? Zvláštnosti
z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení
2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků
Dva případy chybného rozhodnutí při testování: a) Testační statistika padne mimo obor přijetí nulové H hypotézy O, tj.
Uvedeme obecný postup statistického testování:. Formulace nulové H 0a alternativní hpotéz H A.. Volba hladin významnosti α.. Volba testační statistik např... Určení kritického oboru testové charakteristik.
Odhady Parametrů Lineární Regrese
Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké