9.7 TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI
|
|
- Emilie Černá
- před 9 lety
- Počet zobrazení:
Transkript
1 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI Problematiku třídění podle jednoho spojitého číselného znaku si vysvětlíme na následujícím příkladu. Předpokládejme, že pracovník podniku Alfa Blatná, který spravuje podnikovou databázi, exportoval do tabulkového procesoru všechny pracovníky podniku s některými sledovanými atributy (vlastnostmi), které jsou vypsané v tabulce 9.1. Tuto tabulku budeme používat i pro tento příklad. Tabulka 9.1: Zaměstnanci malé organizace Alfa Blatná k Číslo pracovníka Příjmení Pohlaví Titul Stav Počet vyživovaných dětí Pracovní kategorie Hrubá měsíční mzda za červen Zbývá dní dovolené 1 Adam Dělník Bartoš Dělník Beneš Dělník Berka Provozní Bláha 1 Ing. 2 2 Technický Bohuš Dělník Bouše Dělník Boušová Hospodářský Bůbal Dělník Bureš Technický Burešová Provozní
2 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 2 12 Burgerová Dělník Černá Dělník Daněk Dělník Dlask Dělník Dobeš Dělník Drobník 1 RNDr. Bc. 2 2 Hospodářský Erb Dělník Fichtner Dělník Gál Hospodářský Gott Dělník Havel Hospodářský Házová Dělník Hejral Technický Hrubín Dělník Hubač Dělník Hupová Provozní Hus 1 JUDr. 2 3 Hospodářský Janda Dělník Janků Dělník Janků Provozní Jarý Dělník Jiřinec Dělník Jonáš Dělník Kobosil Hospodářský Korousová Dělník Kos Dělník Koucký Dělník Kulíšek Dělník Lahodný Dělník Lahodová Dělník Líbenková 2 Mgr. 2 0 Hospodářský Lín Dělník
3 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 3 44 Linka 1 Doc. 2 2 Hospodářský Líný 1 Mgr. 2 1 Technický Mahel Dělník Masaryk Dělník Mocová Dělník Moravec Technický Nezval Dělník Nohavica Technický Novák Dělník Novák Dělník Nováková Dělník Ondráš Dělník Prádler Hospodářský Rus Technický Svoboda Technický Tatar Technický Tomšů Technický Celkem x x x 106 x x Vysvětlivky: Pohlaví Kód muž 1 žena 2 Stav Kód svobodný/á 1 vdaná/ženatý 2 vdova/vdovec 3 rozvedený/á 4
4 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 4 Příklad 9.4: a) Z tabulky 9.1 vhodné skupinové tabulky roztřídíme soubor pracovníků dle třídícího číselného znaku hrubá měsíční mzda na přiměřený počet tříd neboli intervalů mezd. Pak doplníme procento pracovníků s daným intervalem mezd. Dále vytvoříme graficky histogram rozdělení četnosti pracovníků podle intervalů mezd. Jde o tzv. intervalové (skupinové) rozdělení četnosti. b) Do skupinové tabulky doplníme kumulativní četnost. Tzn. počet pracovníků, kteří mají první interval mezd, první až druhý interval mezd, první až třetí interval mezd atd. Dále vytvoříme graf kumulativní četnosti pracovníků v závislosti na postupně se zvyšujícím intervalu mezd. c) Do skupinové tabulky doplníme poměrné zastoupení pro kumulativní četnosti. d) Uvedeme slovní popis pro první, druhý a třetí řádek tabulky. Řešení: Ad a) Z tabulky 9.1 vhodné skupinové tabulky roztřídíme soubor pracovníků dle třídícího číselného znaku hrubá měsíční mzda na přiměřený počet tříd neboli intervalů mezd. Pak doplníme procento pracovníků s daným intervalem mezd. Dále vytvoříme graficky histogram rozdělení četnosti pracovníků podle intervalů mezd. Jde o tzv. intervalové (skupinové) rozdělení četnosti. Ad b) Do skupinové tabulky doplníme kumulativní četnost. Tzn. počet pracovníků, kteří mají první interval mezd, první až druhý interval mezd, první až třetí interval mezd atd. Dále vytvoříme graf kumulativní četnosti pracovníků v závislosti na postupně se zvyšujícím intervalu mezd. U spojitého číselného znaku neznáme počet tříd. i) Jednak nevíme, od jaké minimální do jaké maximální hrubé měsíční mzdy se budeme pohybovat. Proto musíme ve sloupci Hrubá měsíční mzda tabulky 9.1 nejprve zjistit minimum a maximum. Minimum a maximum zjistíme z tabulky 9.1 buď ručně, anebo výpočtem v MS Excel. Pohledem vidíme, že v tab. 9.1 je nejmenší mzda Kč a nejvyšší Kč. Při výpočtu v MS Excel jde o funkci MIN a MAX: =MIN(oblast) =MAX(oblast) kde oblast je oblast buněk v tabulce 9.1 ve sloupci Hrubá měsíční mzda.
5 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 5 ii) Dalším problémem je, že statistický znak pracovníka hrubá měsíční mzda lze považovat za spojitý nebo částečně spojitý. (Mzdu lze vyplácet na účet pracovníka s přesností na setiny Kč.) Proto musíme třídit rozpětí znaku, u nás mezd, od minimální po maximální mzdu na několik intervalů mezd. Pravidla pro tvorbu intervalů spojitého znaku Pro tvorbu intervalů spojitého znaku platí několik základních pravidel a doporučení: Intervaly mohou být stejně dlouhé. I když nutně to není třeba. Všechny intervaly musejí pokrýt variační rozpětí znaku, tj. u nás mezd, od minima po maximum. Je doporučeno, aby interval byl polouzavřený, tj. aby jedna mez každého intervalu byla otevřená a druhá mez každého intervalu uzavřená, aby hodnota krajního znaku (meze intervalu) jednoznačně patřila do právě jednoho intervalu. Jinými slovy, aby hodnota znaku nebyla započítána dvakrát nebo ani jednou. Počet intervalů k může být podle potřeby libovolný, je doporučeno, aby byl mezi 4 až 20. Ale je zřejmé, že čím větší je počet statistických jednotek souboru n, tím více intervalů k může být. Pro počet intervalů k je doporučený jeden z následujících vzorců. První je Sturgessovo pravidlo, druhý Yuleho vzorec. Oba vedou k přibližně stejnému výsledku, stačí pracovat jen s jedním z nich: k 1 3,322.log( n) 4 k 2,5. n V našem příkladě máme n = 60 pracovníků. Podle Sturgessova pravidla je počet intervalů mezd: k 1 3,322.log(60) 6,91 Vzorec v Excelu vypadá následovně: = 1 + 3,322*LOG(60) Podle Yuleho vzorce je počet intervalů mezd: k 2, ,96 Vzorec v Excelu vypadá následovně:
6 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 6 = 2,5*(60)^(1/4) Vidíme, že oba vzorce vedou k téměř stejnému výsledku. Počet intervalů musí být přirozené číslo. Zvolíme počet intervalů k = 7. Délka intervalu d se přibližně stanoví jako podíl variačního rozpětí R a počtu intervalů k. Variační rozpětí R je rozdíl mezi maximální a minimální mzdou: R X max X min Variační rozpětí je u nás: R Kč Kč Kč Délka intervalu d je: d X max X k min R k V našem příkladě je délka intervalu: Kč Kč d Kč 7 Je doporučeno kvůli přehlednosti budoucí tabulky rozumně zaokrouhlit délku intervalu: Například zaokrouhlit nahoru na pětistovky na číslo Kč. Počet intervalů zůstane k = 7. Nebo zaokrouhlit dolů na tisíce na číslo Kč, pak ale musíme počet intervalů zvýšit třeba na k = 8. Zvolíme první možnost, zaokrouhlení nahoru na pětistovky na číslo Kč. Počet intervalů zůstane k = 7. Zkontrolujeme si, jaké rozpětí mezd pokryjeme tímto zaokrouhleným intervalem Kč při počtu intervalů k = 7: d Kč Kč Vidíme, že variační rozpětí R = Kč je překročeno o Kč = Kč Kč. Proto lze začít mzdu například o Kč níže, než je minimum, tj. od = Kč. A lze mzdu zakončit o 500 Kč nad maximem, maximální mzdou tj. do = Kč. První interval bude Kč až Kč a tyto meze zvyšujeme o Kč. Další interval bude Kč až Kč, další Kč až Kč atd., jak vidíme v tabulce 9.5.
7 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 7 V tabulce 9.5 vytvoříme legendu Interval mezd, kdy dolní mez volíme uzavřenou a horní mez volíme otevřenou. V tabulce 9.5 vytvoříme hlavičku Počet pracovníků, a to absolutně, v %, kumulativně a kumulativně v %. Zařazení pracovníků podle mezd řešíme buď ručně nad tabulkou 9.1, anebo využitím MS Excel. Při využití MS Excel je tabulku nejvýhodnější vyplňovat od sloupce Počet pracovníků kumulativně, kam do prvního řádku napíšeme: =COUNTIF(oblast;"<13500") kde oblast je sloupec buněk v tabulce 9.1, kde se nalézá sloupec Hrubá měsíční mzda za červen a "<13500" znamená, že v oblasti sloupce hledáme počet mezd nižších než Kč. Například: =COUNTIF(H$24:H$83;"<13500") Výsledkem je číslo 4. Takže jsou 4 pracovníci, kteří mají mzdu pod Kč. Protože minimální vyplacená mzda je Kč, zjistíme tím, že v intervalu Kč až Kč jsou mzdy 4 pracovníků. Proto do prvního řádku tabulky 9.5 napíšeme číslo 4 jak do sloupce Počet pracovníků absolutně i Počet pracovníků kumulativně. Do sloupce Počet pracovníků kumulativně do druhého řádku napíšeme: kde =COUNTIF(oblast;"<18000") oblast je sloupec buněk v tabulce 9.1, kde se nalézá sloupec Hrubá měsíční mzda za červen a "<18 000" znamená, že v oblasti sloupce hledáme počet mezd nižších než Kč. Výsledek je 21. Takže je 21 pracovníků, kteří mají hrubou mzdu pod Kč. Protože mzdu pod Kč mají 4 pracovníci, pokud tyto vyloučíme, zjistíme tím zároveň, že v intervalu Kč až Kč jsou mzdy 21 4 = 17 pracovníků. Proto do sloupce Počet pracovníků kumulativně napíšeme 21 a do sloupce Počet pracovníků absolutně napíšeme 17. Do sloupce "Počet pracovníků kumulativně" do třetího řádku napíšeme:
8 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 8 kde =COUNTIF(oblast;"<22500") oblast je sloupec buněk v tabulce 9.1, kde se nalézá sloupec Hrubá měsíční mzda za červen a "<22 500" znamená, že v oblasti sloupce hledáme počet mezd nižších než Kč. Výsledek je 42. Takže je 42 pracovníků, kteří mají mzdu pod Kč. Protože mzdu pod Kč má 21 pracovníků, zjistíme tím zároveň, že v intervalu Kč až Kč jsou mzdy = 21 pracovníků Proto do sloupce Počet pracovníků kumulativně napíšeme 42 a do sloupce Počet pracovníků absolutně napíšeme 21. Takto vyplníme celou tabulku. Dále již může laskavý čtenář postupovat sám. Legendu uzavřeme řádkem Celkem. V řádku Celkem ve sloupci Počet pracovníků absolutně sečteme pracovníky s různým počtem dětí. Výsledek musí být 60, což je počet pracovníků. Ve sloupci Počet pracovníků v % jde o známá poměrná čísla struktury. Spočítáme je jednoduše podle příkladu 9.1. V řádku Celkem ve sloupci Počet pracovníků kumulativně a Počet pracovníků kumulativně v % dáme symbol x, neboť hodnota v tomto řádku nemá smysl. Tabulka vypadá takto: Tab. 9.5: Třídění pracovníků firmy Alfa Blatná podle mzdy za červen 2012 Interval mezd Počet pracovníků dolní mez uzavřená horní mez otevřená absolutně v % kumulativně kumulativně v % ,7 4 6, , , , , , , , , , , , ,0 Celkem x x
9 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 9 Histogram absolutní četnosti vytvoříme sloupcovým grafem ze sloupce Počet pracovníků absolutně. Na ose x budou hodnoty z legendy tabulky 9.5, kde je dolní mez uzavřená a horní mez otevřená. Z grafu vidíme, že počet pracovníků narůstá s výší mzdy až do intervalu mezd Kč až Kč. Nejvyšší počet pracovníků má mzdu Kč až Kč s tím, že do intervalu dolní mez Kč patří a horní mez Kč nepatří. Od intervalu Kč až Kč počet pracovníků klesá. Tzn., že nejčetnější jsou střední mzdy. Intervaly nižších i vyšších mezd má již menší počet pracovníků. S tím souvisí obálka grafu, která připomíná tvarem horu nebo zvon. Jedná se o asymetrickou Gaussovu křivku. Histogram relativní četnosti vytvoříme sloupcovým grafem ze sloupce Počet pracovníků v %. Na ose x budou hodnoty z legendy tabulky 9.5, kde je dolní mez uzavřená a horní mez otevřená. Histogram rozdělení relativní četnosti pracovníků v závislosti na mzdě je v grafu 9.6. Tvar grafu s relativní četností je stejný, jako u grafu s absolutní četností. Jen místo počtů pracovníků je procentuální zastoupení pracovníků.
10 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 10 Graf kumulativní četnosti pracovníků v závislosti na mzdě vytvoříme sloupcovým grafem ze sloupce tabulky 9.5 Počet pracovníků kumulativně. Z grafu 9.7 vidíme, že relativní počet pracovníků, kteří mají mzdu od intervalu Kč až Kč s rozšiřujícím se intervalem narůstá nejprve rychleji, pak pomaleji k hodnotě 60, kdy mzdu Kč až Kč má všech 60 pracovníků.
11 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 11 Ad c) Do skupinové tabulky doplníme poměrné zastoupení pro kumulativní četnosti. Počítáme, kolik procent jsou 4 pracovníci, kteří mají mzdu od Kč do Kč, ze 60, vyjde 6,7 %, kolik procent je 21 pracovníků, kteří mají mzdu Kč do Kč, ze 60, vyjde 35 %, ostatní výpočty si provede čtenář sám a jsou v tabulce 9.5. Graf relativní kumulativní četnosti pracovníků v závislosti na mzdě vytvoříme sloupcovým grafem ze sloupce tabulky 9.5 Počet pracovníků kumulativně v %. Tvar grafu 9.8 s relativní kumulativní četností je stejný, jako u grafu s kumulativní četností. Jen místo počtů pracovníků je procentuální zastoupení pracovníků. Ad d) Uvedeme slovní popis pro první, druhý a třetí řádek tabulky. Slovní popis pro první řádek tabulky: Mzdu od 9000 Kč včetně do Kč mají 4 pracovníci z 60, což je 6,7 % pracovníků. Slovní popis pro druhý řádek tabulky: Mzdu od Kč včetně do Kč má 17 pracovníků z 60, což je 28,3 % pracovníků. Mzdu od Kč včetně do Kč má 21 pracovníků z 60, což je 35 % pracovníků.
12 Statistické třídění, intervalové rozdělení četnosti Aleš Drobník strana 12 Slovní popis pro třetí řádek tabulky: Mzdu od Kč včetně do Kč má 21 pracovníků z 60, což je 35 % pracovníků. Mzdu od Kč včetně do Kč má 42 pracovníků z 60, což je 70 % pracovníků. Úkol 9.4: a) Z tabulky 9.1 vhodné skupinové tabulky roztřídíme soubor pracovníků dle třídícího číselného znaku hrubá měsíční mzda na přiměřený počet tříd neboli intervalů mezd. Pak doplníme procento pracovníků s daným intervalem mezd. Dále vytvoříme graficky histogram rozdělení četnosti pracovníků podle intervalů mezd. Jde o tzv. intervalové rozdělení četnosti. Počet intervalů volíme pro změnu k = 8. b) Do skupinové tabulky doplníme kumulativní četnost. Tzn. počet pracovníků, kteří mají první interval mezd, první až druhý interval mezd, první až třetí interval mezd atd. Dále vytvoříme graf kumulativní četnosti pracovníků v závislosti na postupně se zvyšujícím intervalu mezd. c) Do skupinové tabulky doplníme poměrné zastoupení pro kumulativní četnosti. d) Uvedeme slovní popis pro první, druhý a třetí řádek tabulky. PŘÍKLADY V EXCELU Praktické provedení třídění v MS Excel je v příkladech: 22TrideniDleJednohoCiselnehoZnakuSpojitehoNeresene.xlsx zde je neřešený příklad. 22TrideniDleJednohoCiselnehoZnakuSpojitehoResene.xlsx zde je ten samý příklad řešený. 22TrideniDleJednohoCiselnehoZnakuSpojitehoUkol.xlsx zde je nový neřešený příklad. OPAKOVACÍ OTÁZKY 1. Jak postupujeme při třídění podle jednoho číselného znaku spojitého? 2. Jaká jsou pravidla pro stanovení intervalového rozdělení četnosti. 3. Vysvětlete pojem histogram rozdělení (absolutní) četnosti? Čeho se týká, s čím souvisí? Jak souvisí s Gaussovou křivkou? 4. Vysvětlete pojem histogram rozdělení relativní četnosti? Čeho se týká, s čím souvisí?
9.6 TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU
Statistické třídění dle jednoho nespojitého číselného znaku Aleš Drobník strana 1 9.6 TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU Na následujícím příkladu si vysvětlíme problematiku třídění podle
PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU
PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU Pracovník, který spravuje podnikovou databázi, exportoval do tabulkového procesoru všechny pracovníky podniku Alfa Blatná s některými sledovanými
PŘÍKLAD NA TŘÍDĚNÍ DLE JEDNOHO SLOVNÍHO ZNAKU
PŘÍKLAD NA TŘÍDĚNÍ DLE JEDNOHO SLOVNÍHO ZNAKU Pracovník, který spravuje podnikovou databázi, exportoval do tabulkového procesoru všechny pracovníky podniku Alfa Blatná s některými sledovanými atributy
PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI
PŘÍKLAD NA TŘÍDĚNÍ PODLE JEDNOHO SPOJITÉHO ČÍSELNÉHO ZNAKU. INTERVALOVÉ ROZDĚLENÍ ČETNOSTI Pracovník, který spravuje podnikovou databázi, exportoval do tabulkového procesoru všechny pracovníky podniku
9. STATISTICKÉ TŘÍDĚNÍ
Statistické třídění. Třídění dle jednoho znaku Aleš Drobník strana 1 9. STATISTICKÉ TŘÍDĚNÍ 9.1 CO JE TO STATISTICKÉ TŘÍDĚNÍ Již jsme si říkali, že v 19. a 20. století se stala statistika vědou, která
Prezentace dat. Slovní popis a tabulky prosté Aleš Drobník strana 1
Prezentace dat. Slovní popis a tabulky prosté Aleš Drobník strana 1 8. PREZENTACE DAT Jakými prostředky sdělujeme informace, údaje, účetní a statistické charakteristiky? Používáme tyto prostředky sdělování
8.1.2 TABULKA SKUPINOVÁ
Prezentace dat. Tabulky skupinové a kombinační Aleš Drobník strana 1 8.1.2 TABULKA SKUPINOVÁ Užití: Hlubší analýza konkrétnější oblasti. Například ve vlastní části odborné práce, žákovského projektu apod.
Prezentace dat. Grafy Aleš Drobník strana 1
Prezentace dat. Grafy Aleš Drobník strana 1 8.3 GRAFY Užití: Grafy vkládáme do textu (slovního popisu) vždy, je-li to vhodné. Grafy zvýší přehlednost sdělovaných informací. Výhoda grafu vůči tabulce či
PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI
PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI Přílad 0.6 Pracoví, terý spravuje podovou databáz, eportoval do tabulového procesoru všechy pracovíy podu Alfa Blatá s ěterým sledovaým
9.5 TŘÍDĚNÍ PODLE DVOU SLOVNÍCH ZNAKŮ
Statistické třídění podle dvou slovních znaků Aleš Drobník strana 1 9.5 TŘÍDĚNÍ PODLE DVOU SLOVNÍCH ZNAKŮ Problematiku třídění podle dvou slovních znaků si vysvětlíme na následujícím příkladu. Příklad
5.2.4 POMĚRNÁ ČÍSLA SPLNĚNÍ PLÁNU
Druhy poměrných čísel Aleš Drobník strana 1 5.2.4 POMĚRNÁ ČÍSLA SPLNĚNÍ PLÁNU Poměrná čísla neboli poměrní ukazatelé : Získáme srovnáním (podílem) 2 veličin stejnorodých. Srovnávaná veličina (čitatel)
STATISTICA Téma 1. Práce s datovým souborem
STATISTICA Téma 1. Práce s datovým souborem 1) Otevření datového souboru Program Statistika.cz otevíráme z ikony Start, nabídka Programy, podnabídka Statistika Cz 6. Ze dvou nabídnutých možností vybereme
Škály podle informace v datech:
Škály podle informace v datech: Různé typy dat znamenají různou informaci, resp. různé množství informace Data nominální Rovná se? x 1 = x 2 Data ordinální Větší, menší? x 1 < x 2 Data intervalová O kolik?
Statistika. Zpracování informací ze statistického šetření. Roman Biskup
Statistika Zpracování informací ze statistického šetření Třídění statistického souboru Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 20. února 2012
PREZENTACE DAT: SLOŽITĚJŠÍ GRAFY
PREZENTACE DAT: SLOŽITĚJŠÍ GRAFY V kombinační tabulce 8.7 jsme roztřídili soubor pracovníků dle znaku pracovní kategorie na 4 třídy dělníci, techničtí pracovníci, hospodářští pracovníci, provozní a obsluhující
Protokol č. 1. Tloušťková struktura. Zadání:
Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále
Popisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
Pojem a úkoly statistiky
Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby
Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1
Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,
Srovnání údajů. Poměrná čísla Aleš Drobník strana 1
Srovnání údajů. Poměrná čísla Aleš Drobník strana 4. SROVNÁVÁNÍ ÚDAJŮ Statistika mj. zpracovává údaje (viz definice statistiky). Důležitou součástí zpracování údajů je srovnávání údajů (statistických znaků
Kontrola: Sečteme-li sloupec,,četnost výskytu musí nám vyjít hodnota rozsahu souboru (našich 20 žáků)
Základní výpočty pro MPPZ Teorie Aritmetický průměr = součet hodnot znaku zjištěných u všech jednotek souboru, dělený počtem všech jednotek souboru Modus = hodnota souboru s nejvyšší četností Medián =
Parametrické programování
Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Př. : Stanovte jednotlivé četnosti a číselné charakteristiky zadaného statistického souboru a nakreslete krabicový graf:, 8, 7, 43, 9, 47, 4, 34, 34, 4, 35. Statistický soubor seřadíme vzestupně podle
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR
Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor
TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
Protokol č. 7. Jednotné objemové křivky. Je zadána výměra porostu, výška dřevin a počty stromů v jednotlivých tloušťkových stupních.
Protokol č. 7 Jednotné objemové křivky Zadání: Pro zadané dřeviny stanovte zásobu pomocí JOK tabulek. Součástí protokolu bude tabulka obsahující střední Weisseho tloušťku, Weisseho procento, číslo JOK,
2. Bodové a intervalové rozložení četností
. Bodové a intervalové rozložení četností (Jak získat informace z datového souboru?) Po prostudování této kapitoly budete umět: konstruovat diagramy znázorňující rozložení četností vytvářet tabulky četností
Mnohorozměrná statistická data
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém
Manuál pro zaokrouhlování
Manuál pro zaokrouhlování k předmětu Pravděpodobnost a Statistika (PS) Michal Béreš, Martina Litschmannová 19. března 2019 Obsah 1 Úvod 2 2 Obecné poznámky 2 2.1 Typy zaokrouhlování...........................................
Jednovýběrové testy. Komentované řešení pomocí MS Excel
Jednovýběrové testy Komentované řešení pomocí MS Excel Vstupní data V dalším budeme předpokládat, že tabulka se vstupními daty je umístěna v oblasti A1:C23 (viz. obrázek) Základní statistiky vložíme vzorce
Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing.
1.2 Prezentace statistických dat Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing. Jan Spousta Co se dozvíte Statistické ukazatele.
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
Statistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
Školení obsluhy PC stručný manuál obsluhy pro používání PC
Školení obsluhy PC stručný manuál obsluhy pro používání PC tabulkový procesor MS EXCEL Zpracoval: mgr. Ježek Vl. Str. 1 MS EXCEL - základy tabulkového procesoru Tyto programy jsou specielně navrženy na
Třídění statistických dat
2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.
PREZENTACE DAT: JEDNODUCHÉ GRAFY
PREZENTACE DAT: JEDNODUCHÉ GRAFY V tabulce 8.1 uvádíme přehled některých ukazatelů fiktivní firmy Alfa Blatná. Tabulka 8.1 je prostá, je v ní navíc časové srovnání hodnot v roce 2011 a v roce 2012. a)
Základy popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
2. Numerické výpočty. 1. Numerická derivace funkce
2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž
Protokol č. 6. Objemové tabulky
Protokol č. 6 Objemové tabulky Zadání: Pro zadané dřeviny stanovte zásobu pomocí objemových tabulek. Součástí protokolu bude tabulka obsahující parametry výškové funkce, objem středního kmene a střední
2.7.6 Rovnice vyšších řádů (separace kořenů)
76 Rovnice vyšších řádů (separace kořenů) Předpoklady: 00507, 00705 Přehled rovnic: Řád rovnice Tvar Název způsob řešení (vzorec) ax + b = 0 lineární b a 0, x = a ax + bx + c = 0 kvadratická ± a 0, x,
Renáta Bednárová STATISTIKA PRO EKONOMY
Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
Čas potřebný k prostudování učiva kapitoly: 1,25 hodiny
Fyzikální praktikum III 15 3. PROTOKOL O MĚŘENÍ V této kapitole se dozvíte: jak má vypadat a jaké náležitosti má splňovat protokol o měření; jak stanovit chybu měřené veličiny; jak vyhodnotit úspěšnost
Hydrologie (cvičení z hydrometrie)
Univerzita Karlova v Praze Přírodovědecká fakulta Katedra fyzické geografie a geoekologie Hydrologie (cvičení z hydrometrie) Zhodnocení variability odtokového režimu pomocí základních grafických a statistických
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Nerovnice a nerovnice v součinovém nebo v podílovém tvaru
Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz
Semestrální projekt. do předmětu Statistika. Vypracoval: Adam Mlejnek 2-36. Oponenti: Patrik Novotný 2-36. Jakub Nováček 2-36. Click here to buy 2
Semestrální projekt do předmětu Statistika Vypracoval: Adam Mlejnek 2-36 Oponenti: Patrik Novotný 2-36 Jakub Nováček 2-36 Úvod Pro vypracování projektu do předmětu statistika jsem si zvolil průzkum kvality
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
Odhady parametrů základního souboru. Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára
Odhady parametrů základního souboru Cvičení 6 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen listopad 2016 Ambrožová Klára Motivační příklad Mám průměrné roční teploty vzduchu z 8 stanic
Mnohorozměrná statistická data
Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná
2. popis prostředí, nastavení pracovní plochy
(c) mise 2013 1 2 1. úvod Tabulkový procesor program pro organizaci a správu dat pomocí tabulek určen pro zpracování dat převážně číselného charakteru Využití tabulkových procesorů přehledná prezentace
STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE
STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
5.3 SHRNUTÍ LÁTKY NA POMĚRNÁ ČÍSLA, SOUVISLÝ PŘÍKLAD
Souvislý příklad na poměrná čísla Aleš Drobník strana 1 5.3 SHRNUTÍ LÁTKY NA POMĚRNÁ ČÍSLA, SOUVISLÝ PŘÍKLAD Poměrná čísla se hojně užívají v ekonomické praxi. Všechny druhy poměrných čísel si shrneme
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2Management
6 Ordinální informace o kritériích
6 Ordinální informace o kritériích Ordinální informací o kritériích se rozumí jejich uspořádání podle důležitosti. Předpokládejme dále standardní značení jako v předchozích cvičeních. Existují tři základní
Analýza dat s využitím MS Excel
Analýza dat s využitím MS Excel Seminář aplikované statistiky Martina Litschmannová Několik fíglů na úvod Absolutní vs. relativní adresování změna pomocí F4 =$H$20 =H$20 =$H20 =H20 Posun po souvislé oblasti
SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY
SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim
Matice přechodu. Pozorování 2. Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např.
Matice přechodu Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např. u příkladu 7 (v ) dostaneme: Nyní bychom mohli postupovat jako u matice homomorfismu
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT
Analýza dat z dotazníkových šetření. Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/
Analýza dat z dotazníkových šetření Cvičení 3. - Jednorozměrné třídění Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/ - Seznamte se s dotazníkem a strukturou
MODELY HOSPODÁŘSKÝCH LESŮ IV. Postup výpočtu etátu
MODELY HOSPODÁŘSKÝCH LESŮ IV. Postup výpočtu etátu Obecný postup výpočtu etátu A) TĚŽBA MÝTNÍ Stanovení těžebních procent pro zadaný hospodářský soubor (dále jen HS) podle parametrů u - obmýtí a o - obnovní
Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy
Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream
Popisná statistika. Komentované řešení pomocí programu R. Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze
Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Načtení vstupních dat Máme k dispozici data o počtech bodů z 1. a 2. zápočtového
Lineární funkce, rovnice a nerovnice 4 lineární nerovnice
Lineární funkce, rovnice a nerovnice 4 lineární nerovnice 4.1 ekvivalentní úpravy Při řešení lineárních nerovnic používáme ekvivalentní úpravy (tyto úpravy nijak neovlivní výsledek řešení). Jsou to především
Deskriptivní statistika (kategorizované proměnné)
Deskriptivní statistika (kategorizované proměnné) Nejprve malé opakování: - Deskriptivní statistika se zabývá popisem dat, jejich sumarizaci a prezentací. - Kategorizované proměnné jsou všechny proměnné,
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
Nejčastější chyby v explorační analýze
Nejčastější chyby v explorační analýze Obecně doporučuju přečíst přednášku 5: Výběrová šetření, Exploratorní analýza http://homel.vsb.cz/~lit40/sta1/materialy/io.pptx Použití nesprávných charakteristik
Výsledný graf ukazuje následující obrázek.
Úvod do problematiky GRAFY - SPOJNICOVÝ GRAF A XY A. Spojnicový graf Spojnicový graf používáme především v případě, kdy chceme graficky znázornit trend některé veličiny ve zvoleném časovém intervalu. V
Vzorce. Suma. Tvorba vzorce napsáním. Tvorba vzorců průvodcem
Vzorce Vzorce v Excelu lze zadávat dvěma způsoby. Buď známe přesný zápis vzorce a přímo ho do buňky napíšeme, nebo použijeme takzvaného průvodce při tvorbě vzorce (zejména u složitějších funkcí). Tvorba
Níže uvedená tabulka obsahuje technické údaje a omezení aplikace Excel (viz také článek Technické údaje a omezení aplikace Excel (2007).
Níže uvedená tabulka obsahuje technické údaje a omezení aplikace - (viz také článek Technické údaje a omezení aplikace Excel (). otevřených sešitů a systémovými prostředky a systémovými prostředky a systémovými
ZÁKLADY STATISTICKÉHO ZPRACOVÁNÍ ÚDAJŮ 5. hodina , zapsala Veronika Vinklátová Revize zápisu Martin Holub,
ZÁKLADY STATISTICKÉHO ZPRACOVÁNÍ ÚDAJŮ 5. hodina - 22. 3. 2018, zapsala Revize zápisu Martin Holub, 27. 3. 2018 I. Frekvenční tabulky opakování z minulé hodiny Frekvenční tabulka je nejzákladnější nástroj
První návštěva v knihovně
Knihovnické minimum První návštěva v knihovně Přihláška čtenáře Čtenář by měl mít vyplněnou jednoduchou Přihlášku čtenáře. U dětských čtenářů je dobré mít podepsanou přihlášku od rodičů! Přihláška se vypisuje
Kapitola Hlavička. 3.2 Teoretický základ měření
23 Kapitola 3 Protokol o měření Protokol o měření musí obsahovat všechny potřebné údaje o provedeném měření, tak aby bylo možné podle něj měření kdykoliv zopakovat. Proto protokol musí obsahovat všechny
JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4
ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.
pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera
Výstup RVP: Klíčová slova: pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Mirek Kubera žák diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, volí
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
Registrační číslo projektu: CZ.1.07/1.5.00/34.0185. Název projektu: Moderní škola 21. století. Zařazení materiálu: Ověření materiálu ve výuce:
STŘEDNÍ ODBORNÁ ŠKOLA A STŘEDNÍ ODBORNÉ UČILIŠTĚ NERATOVICE Školní 664, 277 11 Neratovice, tel.: 315 682 314, IČO: 683 834 95, IZO: 110 450 639 Ředitelství školy: Spojovací 632, 277 11 Neratovice tel.:
2.5 STATISTISKÉ ZJIŠŤOVÁNÍ, ZÁKLADNÍ STATISTICKÉ POJMY
Základní statistické pojmy Aleš Drobník strana 1 2.5 STATISTISKÉ ZJIŠŤOVÁNÍ, ZÁKLADNÍ STATISTICKÉ POJMY Organizace (zpravodajská jednotka) provádějí různé druhy statistického zjišťování z důvodu: vlastní
MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b.
MS EXCEL 2010 ÚLOHY ÚLOHA Č.1 Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. Do buněk B2 a B3 očekávám zadání hodnot. Buňky B6:B13 a D6:D13
5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
23. Matematická statistika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti
František Hudek. červen 2012
VY_32_INOVACE_FH09 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace František Hudek červen 2012 8. ročník
Microsoft Excel - tabulky
Microsoft Excel - tabulky RNDr. Krejčí Jan, Ph.D. 5. listopadu 2015 RNDr. Krejčí Jan, Ph.D. (UJEP) Microsoft Excel - tabulky 5. listopadu 2015 1 / 1 Osnova RNDr. Krejčí Jan, Ph.D. (UJEP) Microsoft Excel
MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b.
MS EXCEL 2010 ÚLOHY ÚLOHA Č.1 Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. Do buněk B2 a B3 očekávám zadání hodnot. Buňky B6:B13 a D6:D13
Tabulkový procesor. Základní rysy
Tabulkový procesor Tabulkový procesor je počítačový program zpracovávající data uložená v buňkách tabulky. Program umožňuje použití vzorců pro práci s daty a zobrazuje výsledné hodnoty podle vstupních
Základy zpracování kalkulačních tabulek
Radek Maca Makovského 436 Nové Město na Moravě 592 31 tel. 0776 / 274 152 e-mail: rama@inforama.cz http://www.inforama.cz Základy zpracování kalkulačních tabulek Mgr. Radek Maca Excel I 1 slide ZÁKLADNÍ
Tabulka 1. Výběr z datové tabulky
1. Zadání domácího úkolu Vyberte si datový soubor obsahující alespoň jednu kvalitativní a jednu kvantitativní proměnnou s alespoň 30 statistickými jednotkami (alespoň 30 jednotlivých údajů). Zdroje dat
Mgr. et Mgr. Jan Petrov, LL.M. Ph.D. BYZNYS A PRÁVO
BYZNYS A PRÁVO Byznys a právo OBSAH ZÁKLADNÍ FUNKCE EXCELU... 2 FUNKCE ODMOCNINA A ZAOKROULIT... 4 FORMÁT A OBSAH BUNĚK... 5 RELATIVNÍ ODKAZY... 9 ABSOLUTNÍ ODKAZY... 11 Byznys a právo ZÁKLADNÍ FUNKCE
Excel tabulkový procesor
Pozice aktivní buňky Excel tabulkový procesor Označená aktivní buňka Řádek vzorců zobrazuje úplný a skutečný obsah buňky Typ buňky řetězec, číslo, vzorec, datum Oprava obsahu buňky F2 nebo v řádku vzorců,
II. Vzorce v Excelu Tipy pro práci s Wordem Kontingenční tabulky v Excelu, 1. část
II. Vzorce v Excelu Tipy pro práci s Wordem Kontingenční tabulky v Excelu, 1. část Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek, M. Cvanová Zdroje dat Excelu Import