4. Přednáška: Kvazi-Newtonovské metody:

Rozměr: px
Začít zobrazení ze stránky:

Download "4. Přednáška: Kvazi-Newtonovské metody:"

Transkript

1 4 Přednáša: Kvazi-Newtonovsé metody: Metody s proměnnou metriou, modifiace Newtonovy metody Efetivní pro menší úlohy s hustou Hessovou maticí Newtonova metoda (opaování): f aproximujeme loálně vadraticou funcí, minimum je další aproximace Taylorův polynom v bodě x : f(x) q(x) = f(x ) + f(x ) T (x x ) (x x ) T H(x )(x x ) Stacionární bod: q(x) = f(x ) + H(x )(x x ) = 0, x = x +1 = x H(x ) 1 f(x ) Vyřešit H(x )d = g, x +1 = x + d - čistá Newtonova metoda V aždém rou se řeší soustava lineárních algebraicých rovnic V blízosti řešení, nebo poud je f(x) ostře onvexní, potom H(x ) je pozitivně definitní Prilady6 Newtonm Věta: Nechť f(x) C 2 (R n ) a 2 f(x) = H(x) je Lipschitzovsy spojitá v oolí řešení x Předpoládejme Newtonovu iterační metodu x +1 = x + p, de p = H 1 (x )g, potom a) poud je x 0 blízo řešení x, potom posloupnost Newtonových iterací onverguje řešení, b) rychlost onvergence posloupnosti {x } je vadraticá, c) posloupnost { f } onverguje nule vadraticy Záladní Newtonova metoda není vhodná pro praticé výpočty H nemusí být symetricá pozitivně definitní a i poud je, nemusí iterace onvergovat (x 0 je daleo od x ) 1

2 Modifiace Newtonovy metody: x +1 = x α S g, g = f(x ) Poud je x blízo řešení, potom α 1 Modifiovaná Newtonova metoda: S = H(x ) 1 Metoda největšího spádu: S = I Modifiovaná Newtonova metoda: S = [βi +H(x )] 1, β > 0 volíme ta, aby matice byla pozitivně definitní Pro β malé, je metoda blíže Newtonově metodě Pro β velé, se metoda blíží největšímu spádu Modifiovaná Newtonova metoda: S = H(x 0 ), resp S H(x 0 ) Hessova matice se napočítá pouze na začátu Prilady6 Modif Newtonm Analogie x +1 = x + α p, aby byl směr p spádový, tj f(x ) T p < 0, musí platit f(x ) T S f(x ) > 0 Zajistit S pozitivně definitní Kvazi-Newtonovsé metody: vhodně najít S H(x ) 1 Kvadraticá úloha: f(x) = 1 2 xt Ax b T x, A symetricá pozitivně definitní matice x +1 = x α S g, g = Ax b, α = gt S g g T S AS g T Lemma: Pro výše popsanou metodu platí e +1 2 A e 2 A ( ) 2 λn λ 1, λ n + λ 1 de λ 1 je minimalní a λ n je maximální vlastní číslo matice S A 2

3 Aproximace pomocí ran-one updatu: Pro vadraticou funci platí H(x ) = A: g +1 g }{{} = Ax +1 b Ax +b = A (x +1 x ) }{{} q Pro nevadraticou funci: g +1 g H(x )(x +1 x ) Konstantní Hessova matice: H(x ) = H: q = Hp, p = Sq ro : Mám S, spočtu p, q potřebuji S +1 : Up-date pomocí matice hodnosti 1: S +1 = S + z z T, ta, aby platilo p = S +1 q (vazi-newtonovsá podmína) p z z T = (p S q )(p S q ) T q T (p S q ) p = S +1 q S +1 = S + z z T p = S q + z z T q z = p S q z T q z z T z z T = (p S q )(p S q ) T (z T q ) 2 p = S q + z z T q / q T q T p = q T S q + q T z z T q (z T q ) 2 = q T (p S q ) = (p S q )(p S q ) T q T (p S q ) / z T Musím zadat S 0 Zachovává symterii Hessovy matice, nemusí zachovávat pozitivní definitnosti Ve jmenovateli může být velmi malé číslo numericý problém Pro vadraticou funci platí, že pro libovolnou S 0 a symetricou matici bude fungovat Jsou lepší možnosti Prilady6 Kvazi Newton Ran1m 3

4 Algoritmus: Dáno: x 0, S 0, spočítat g 0, pro = 1, 1 d = S g 2 α 0, minimalizace f(x + α d ) 3 x +1 = x + α d 4 Spočti g +1 5 p = α d 6 q = g +1 g 7 Update S +1 Věta: Uvažujme vadraticý funcionál f(x) = 1 2 xt Ax b T x pro symtericou pozitivně definitní matici A Nechť S 0 je libovolná symetricá matice a x 0 libovolný bod Je-li ran-one update v aždém rou dobře definován (q T (p S q ) 0) a jsou-li vetory p 0,, p n 1 lineárně nezávislé, potom S n = A 1 a vazi-newtonova metoda nalezne stacionární bod nejvýše po n rocích Aproximace pomocí ran-two updatu: DFP (Davidon, Fletcher, Powell) metoda: ro : Mám S, spočtu p, q potřebuji S +1 : Up-date pomocí matice hodnosti 2: ta, aby p = S +1 q S +1 = S + z z T + v v T, S +1 = S + p p T q T p S q q T ST q T S q p = S +1 q S +1 = S + z z T + v v T p = S q + z z T q + v v T q z a v nejsou jednoznačné (1 rovnice a 2 neznámé) p S q = z z T q +v v T q Napřílad: 1 p = z z T q 2 S q = v v T q 4

5 ad 1 z = p z T q /zt z z T = p p T (z T q ) 2 p = z z T q /q T qt p = q T z z T q (z T q ) 2 = q T p z z T = p p T q T p ad 2 v = S q v T q /vt v v T = (S q )(S q ) T (v T q ) 2 S q = v v T q /q T qt S q = q T v v T q q T S q = (v T q ) 2 v v T = (S q )(S q ) T q T S q Metoda sdružených směrů, při volbě S 0 = I metoda sdružených gradientů (pro vadraticou funci) Zachovává pozitivní definitnost Citlivá na přesnost 1D minimalizace, neboť předpolad věty p T q > 0 je splněn při dostatečně přesném Line-search Prilady6 Ran2 DFPm Věta: Je-li p T q > 0 a je-li S symetricá pozitivně definitní, potom je i matice S +1 = S + p p T q T p S q q T ST q T S q pozitivně definitní BFGS (Broyden, Fletcher, Goldfarb, Shanno) metoda: Pomocí ran-two updatu aproximuji Hessovu matici H inverzi a teprve poté najdu její ta, aby q = H +1 p H +1 = H + z z T + v v T, H +1 = H + q q T q T p H p p T HT p T H p Najít S +1 = H

6 Sherman-Morrisova formule: [H + uv T ] 1 = H 1 H 1 uv T H 1 1+v T H 1 u, de H Rn n, u, v R n Důaz: XY = Y X = I X = [H + uv T ] Y = [H + uv T ] 1 = H 1 H 1 uv T H v T H 1 u XY = ( H + uv ) ( ) T H 1 H 1 uv T H 1 = HH 1 +uv T H 1 HH 1 uv T H 1 H 1 uv T H v T H 1 u 1 + v T H 1 u uvt = 1 + v T H 1 u Y X analogicy = I + uv T H 1 u(1 + vt H 1 u)v T H v T H 1 u Po apliaci Sherman-Morrisovy formule (2x) platí: Odvození: S +1 = H 1 +1 = S +1 = S + 1 apliace formule: S +1 = H + 1 q T p q q T }{{} B ( 1 + qt S ) q p T p q T p p T q 1 p T H p H p } {{ } u = I p q T S + S q p T q T p p T H T }{{} v T [ ] 1 ( [ H + 1 ] 1 H + 1 q q T p q q T q q T T p 1 2 apliace formule: [ H }{{} B + 1 q T p q }{{} u Zachovává pozitivní definitnost q T }{{} v T (H p ) T [ H + 1 q T p q q T ] 1 = H 1 Obvyle má lepší výsledy než DFP metoda Prilady6 Ran2 BFGSm 6 ( H 1 = [B+uv T ] 1 = B 1 B 1 uv T B v T B 1 u ) [ p T H p H p (H p ) T H + 1 q q q T T p ] 1 ( ) 1 p T H p H p 1 q q T p 1 + q T H 1 ( ) q T H 1 1 q T p q ) ] 1

7 Věta: Nechť f(x) je dvarát spojitě diferencovatelná funce, nechť x 0 je počáteční přiblížení, pro teré je vrstevnicová oblast Γ f(x0 ) {x : f(x) f(x 0 )} onvexní množina, Hessova matice je na Γ f(x0 ) pozitivně definitní a f má na Γ f(x0 ) jednoznačné minimum Nechť S 0 je libovolná symetricá pozitivně definitní matice, potom posloupnost {x } generovaná BFGS algoritmem onverguje minimu x funce f(x) Věta: Nechť je Hessova matice H(x )Lipschitzovsy spojitá, f(x) je dvarát spojitě diferencovatelná a nechť posloupnost {x } generovaná BFGS algoritmem onverguje minimu x Dále nechť x x < Potom x onverguje x superlineární rychlostí =1 7

8 Broydenovy metody: Vážená ombinace S DF P a S BF GS, obě používají ran-two update de θ nemusí být onstatní S θ = (1 θ)s DF P + θs BF GS, Platí S+1 θ = SDF +1 P + θv v T, de vt = ( q T S q Pro vadraticý funcionál je jedno jaé θ volíme Zachovává pozitivní definitnost pro θ 0 p p T q ) S q q T H q Rozdíly v chování jsou podstatné pouze u nepřesného Line search Prilady6 Broydenm Věta: Předpoládejme Broydenovu metodu apliovanou na vadraticý funcionál f(x) = 1 2 xt Ax b T x se symetricou pozitivně definitní matici A, s počátečním přiblížením x 0 a libovolnou symetricou pozitivně definitní maticí S 0 Dále předpoládejme, že α je nalezeno exatně Potom tato metoda najde řešení po nejvýše m n rocích a navíc pro = 0,, m 1 platí: S θ +1 q j = p j, j = 0,, p T j Ap j = 0, j = 0,, 1, tj směry jsou sdružené Poud zvolíme S 0 = I, potom jde o metodu sdružených gradientů Poud m = n platí S θ n = A 1 8

9 Metoda nejmenších čtverců: Úloha najít x R n ta, aby min f(x), de f(x) má speciální tvar: x R f(x) = 1 2 m rj 2 = 1 2 r(x) 2, j=1 de r j : R n R jsou hladé funce, tzv rezidua Předpoládáme m n Matematicé modely mohou být formulovány parametricy (chemicé, fyziální, eonomicé parametry) a funce f(x) měří rozdíl mezi chováním modelu (teorií) a naměřenými hodnotami (praxí) Minimalizací vybereme taové hodnoty parametrů, teré nejvíce odpovídají měřeným datům Zdroj velého množství úloh nepodmíněné optimalizace Algoritmy využívají speciální struturu funce f(x) Přílad: Pacient dostane léy a v čase t se změří oncentrace léu v rvi, tj zísám naměřená data t j - čas a y j oncentrace Předchozí měření a pozorování vedou funci (model závislosti oncentrace léu na čase): φ(x; t) = x 1 + x 2 t + x 3 t 2 + x 4 e x 5t, de x = [x 1, x 2, x 3, x 4, x 5 ] T je vetor hledaných parametrů Chceme tyto parametry nalézt ta, aby se co nejvíce shodla sutečnost s modelem, tj 1 min x R 5 2 m [φ(x; t j ) y j ] 2, m 5 LSm Jiná možnost měření rozdílu mezi modelem a pozorováním: j=1 Jacobiho matice: max φ(x; t j) y j min r(x) j=1,,m x R j=1,,m J(x) = φ(x; t j ) y j min x R r(x) 1 r 1 r 1 x 1 r 2 r 2 x 1 r m x 1 r x 2 1 x n r x 2 2 x n = r m r x 2 m x n r 1 (x) T r 2 (x) T r m (x) T 9

10 Gradient a Hessova matice: Za předpoladu, že r (x) : R n R dostatečně hladé, potom f(x) = J(x)r(x), H(x) = J(x) T J(x) + de 2 r j (x) je Hessova matice funce r j (x) Lineární nejmenší čtverce: m r j (x) 2 r j (x), Část modelů jsou lineární funce, tj r j (x) jsou taé lineární: f(x) = 1 2 Jx y 2, r(x) = Jx y, f(x) = J T (Jx y), H(x) = J T J, 2 r j = 0 Stacionární bod: f(x) = J T (Jx y) = 0 J T Jx = J T y - soustava normálních rovnic Metody: Line search Modifiace Newtonovy metoda, vazi-newtonovy metody Gauss-Newtonova metoda: Modifiovaná Newtonova metoda: x +1 = x α H(x ) 1 g, tj řešíme j=1 H(x )d = g, α = min α R f(x + αd ), x +1 = x + α d Gauss-Newtonova metoda: H(x ) J T J a f(x ) = g = J T r tj řešíme J T J d = J T r, α = min α R f(x + αd ), x +1 = x + α d Nepotřebuji počítat (aproximace) druhé derivace Aproximace Hessovy matice H J T J je dobrá, poud veliost druhého členu, tj r j (x) 2 r j (x) bude výrazně menší než vlastní čísla matice J T J 10

11 Směr d je spádový, poud má matice J plnou sloupcovou hodnost Věta: Nechť funce r j (x) jsou Lipschitzovsy spojitě diferencovatelné na oolí omezené vrstevnicové oblasti Γ = {x f(x) f(x 0 )} Nechť pro Jacobiho matici J(x) existuje γ > 0 taové, že J(x)z γ z, nejmenší singulární číslo Jacobiho matice je odražené od nuly Potom pro iterace x generované Gauss-Newtonovou metodou, de α splňuje Wolfeho podmíny platí lim g = lim J T r = 0 Poud v Hessově matici H(x) = J(x) T J(x) + m r j (x) 2 r j (x) dominuje první člen a tedy aproximace je velmi dobrá, je onvergence rychlá (druhého řádu) j=1 11

Základní spádové metody

Základní spádové metody Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)

Více

Metoda konjugovaných gradientů

Metoda konjugovaných gradientů 0 Metoda onjugovaných gradientů Ludě Kučera MFF UK 11. ledna 2017 V tomto textu je popsáno, ja metodou onjugovaných gradientů řešit soustavu lineárních rovnic Ax = b, de b je daný vetor a A je symetricá

Více

Princip gradientních optimalizačních metod

Princip gradientních optimalizačních metod Princip gradientních optimalizačních metod Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Úkol a základní

Více

3. Přednáška: Line search

3. Přednáška: Line search Úloha: 3. Přednáška: Line search min f(x), x R n kde x R n, n 1 a f : R n R je dvakrát spojitě diferencovatelná. Iterační algoritmy: Začínám v x 0 a vytvářím posloupnost iterací {x k } k=0, tak, aby minimum

Více

Princip řešení soustavy rovnic

Princip řešení soustavy rovnic Princip řešení soustavy rovnic Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Formulace úlohy Metody řešení

Více

Numerické metody optimalizace - úvod

Numerické metody optimalizace - úvod Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu

Více

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)

Buckinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,

Více

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování Matematicé programování Označení a definice veličin. opt i/maimalizace w, Žádaná hodnota,transpozice, relace typu nebo Inde diagonální formy vetoru. Obecná omezovací podmína Γ ( ( = ( Є, R, y podmíny typu

Více

3. Mocninné a Taylorovy řady

3. Mocninné a Taylorovy řady 3. Mocninné a Taylorovy řady A. Záladní pojmy. Obor onvergence Mocninné řady jsou nejjednodušším speciálním případem funčních řad. Jsou to funční řady, jejichž členy jsou mocninné funce. V této apitole

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

1 Gaussova kvadratura

1 Gaussova kvadratura Cvičení - zadání a řešení úloh Zálady numericé matematiy - NMNM0 Verze z 7. prosince 08 Gaussova vadratura Fat, že pro něterá rovnoměrná rozložení uzlů dostáváme přesnost o stupeň vyšší napovídá, že pro

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

DRN: Kořeny funkce numericky

DRN: Kořeny funkce numericky DRN: Kořeny funkce numericky Kořenem funkce f rozumíme libovolné číslo r splňující f(r) = 0. Fakt. Nechť f je funkce na intervalu a, b. Jestliže f(a) f(b) < 0 (tj. f(a) a f(b) mají opačná znaménka) a f

Více

Nelineární optimalizace a numerické metody (MI NON)

Nelineární optimalizace a numerické metody (MI NON) Nelineární optimalizace a numerické metody (MI NON) Magisterský program: Informatika Obor: Teoretická informatika Katedra: 18101 Katedra teoretické informatiky Jaroslav Kruis Evropský sociální fond Praha

Více

Úvod do optimalizace, metody hladké optimalizace

Úvod do optimalizace, metody hladké optimalizace Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

Aplikovaná numerická matematika - ANM

Aplikovaná numerická matematika - ANM Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových

Více

Program SMP pro kombinované studium

Program SMP pro kombinované studium Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáša 02 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Náhodné veličiny Záladní definice Nechť je dán pravděpodobnostní prostor

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Hledání extrémů funkcí

Hledání extrémů funkcí Hledání extrémů funkcí Budeme se zabývat téměř výhradně hledáním minima. Přes nost nalezeného extrému Obecně není hledání extrému tak přesné jako řešení rovnic. Demonstrovat to můžeme na příkladu hledání

Více

Matematika 5 FSV UK, ZS Miroslav Zelený

Matematika 5 FSV UK, ZS Miroslav Zelený Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení

Více

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 PŘEDNÁŠKA 5 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 Multiriteriální rozhodování

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

Co jsme udělali: Au = f, u D(A)

Co jsme udělali: Au = f, u D(A) Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí

Více

Soustavy lineárních rovnic-numerické řešení. October 2, 2008

Soustavy lineárních rovnic-numerické řešení. October 2, 2008 Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a

Více

EUKLIDOVSKÉ PROSTORY

EUKLIDOVSKÉ PROSTORY EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

Předpoklady: a, b spojité na intervalu I.

Předpoklady: a, b spojité na intervalu I. Diferenciální rovnice Obyčejná diferenciální rovnice řádu n: F t, x, x, x,, x n Řešení na intervalu I: funce x : I R taová, že pro aždé t I je F t, xt, x t,, x n t Maximální řešení: neexistuje řešení na

Více

Numerické řešení nelineárních rovnic

Numerické řešení nelineárních rovnic Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Nehomogenní okrajové podmínky. Pokračování OÚ pro PDR (jen pro fajnšmekry). Jednoznačnost zobecněného řešení. Metoda sítí v 1D. Přibližné řešení okrajových úloh. Aproximace vlastních

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

Faster Gradient Descent Methods

Faster Gradient Descent Methods Faster Gradient Descent Methods Rychlejší gradientní spádové metody Ing. Lukáš Pospíšil, Ing. Martin Menšík Katedra aplikované matematiky, VŠB - Technická univerzita Ostrava 24.1.2012 Ing. Lukáš Pospíšil,

Více

Arnoldiho a Lanczosova metoda

Arnoldiho a Lanczosova metoda Arnoldiho a Lanczosova metoda 1 Částečný problém vlastních čísel Ne vždy je potřeba (a někdy to není ani technicky možné) nalézt celé spektrum dané matice (velké řídké matice). Úloze, ve které chceme aproximovat

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáša 04 Přírodovědecá faulta Katedra matematiy KMA/P506 Pravděpodobnost a statistia KMA/P507 Statistia na PC jiri.cihlar@ujep.cz Záon velých čísel Lemma Nechť náhodná veličina nabývá pouze nezáporných

Více

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

M5170: Matematické programování

M5170: Matematické programování M5170: Matematické programování Petr Zemánek (Masarykova Univerzita, Brno) Kapitola 3: Numerické metody řešení úloh matematického programování I (verze: 28. ledna 2019) Obecný úvod Nyní se již konečně

Více

3.2.9 Věta o středovém a obvodovém úhlu

3.2.9 Věta o středovém a obvodovém úhlu 3..9 ěta o středovém a obvodovém úhlu Předpolady: ody, rozdělují ružnici na dva oblouy. Polopřímy a pa rozdělují rovinu na dva úhly. rcholy obou úhlů leží ve středu ružnice říáme, že jde o středové úhly

Více

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární

Více

Řešení nelineárních rovnic

Řešení nelineárních rovnic Řešení nelineárních rovnic Metody sečen (sekantová a regula falsi) Máme dva body x 1 a x mezi nimiž se nachází kořen Nový bod x 3 volíme v průsečíku spojnice bodů x 1, f x 1 a x, f x (sečny) s osou x ERRBISPAS

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

Úlohy domácího kola kategorie B

Úlohy domácího kola kategorie B 54. roční Matematicé olympiády Úlohy domácího ola ategorie 1. Určete všechny dvojice (a, b) reálných čísel, pro teré má aždá rovnic x + ax + b 0, x + (a + 1)x + b + 1 0 dva růné reálné ořeny, přičemž ořeny

Více

5. cvičení z Matematiky 2

5. cvičení z Matematiky 2 5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými

Více

Aplikovaná matematika I

Aplikovaná matematika I Metoda nejmenších čtverců Aplikovaná matematika I Dana Říhová Mendelu Brno c Dana Říhová (Mendelu Brno) Metoda nejmenších čtverců 1 / 8 Obsah 1 Formulace problému 2 Princip metody nejmenších čtverců 3

Více

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní

Více

Soustavy lineárních rovnic-numerické řešení

Soustavy lineárních rovnic-numerické řešení Soustavy lineárních rovnic-numerické řešení November 9, 2008 Soustavy lineárních rovnic-numerické řešení 1 / 52 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22

Více

Matematika 4 FSV UK, LS Miroslav Zelený

Matematika 4 FSV UK, LS Miroslav Zelený Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice

Více

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018 Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf

Více

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 13. přednáška Obyčejné diferenciální rovnice Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a

Více

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity) 4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost

Více

Analýza a zpracování signálů. 5. Z-transformace

Analýza a zpracování signálů. 5. Z-transformace nalýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X j F j x, je omplexní číslo r e r e Oboustranná

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

1 0 0 u 22 u 23 l 31. l u11

1 0 0 u 22 u 23 l 31. l u11 LU dekompozice Jedná se o rozklad matice A na dvě trojúhelníkové matice L a U, A=LU. Matice L je dolní trojúhelníková s jedničkami na diagonále a matice U je horní trojúhelníková. a a2 a3 a 2 a 22 a 23

Více

Numerické metody a programování. Lekce 4

Numerické metody a programování. Lekce 4 Numerické metody a programování Lekce 4 Linarní algebra soustava lineárních algebraických rovnic a 11 a 12 x 2 a 1, N x N = b 1 a 21 a 22 x 2 a 2, N x N = b 2 a M,1 a M,2 x 2 a M,N x N = b M zkráceně A

Více

( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm)

( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm) 3.5.9 Přílady na otočení Předpolady: 3508 Př. 1: Je dána ružnice ( ;5cm), na teré leží body, '. Vně ružnice leží bod L, uvnitř ružnice bod M. Naresli obrazy bodů L, M v zobrazení řeš bez úhloměru. R (

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

Algoritmy numerické optimalizace. Michal Kočvara

Algoritmy numerické optimalizace. Michal Kočvara Algoritmy numerické optimalizace Michal Kočvara 8. ledna 2004 2 Obsah 1 Úvod 5 1.1 Značení.................................. 5 1.1.1 Funkce............................... 5 1.1.2 Konvexita.............................

Více

M5170: Matematické programování

M5170: Matematické programování M5170: Matematické programování Petr Zemánek (Masarykova Univerzita, Brno) Kapitola 3: Numerické metody řešení úloh matematického programování I (verze: 13. listopadu 2018) Obecný úvod Nyní se již konečně

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH DEFINICE. Funkce f více proměnných. má v bodě C D(f) lokální maximum, resp. lokální minimum, jestliže existuje okolí U bodu C takové, že f(c) je maximální (resp. minimální

Více

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou 1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový

Více

Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda.

Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda. Úvod Soustavy nelineárních rovnic pomocí systému Maple. Newtonova metoda. Mnoho technických problémů vede na řešení matematických úloh, které se následně převedou na úlohy řešení soustav nelineárních rovnic

Více

Západočeská Univerzita v Plzni Fakulta Aplikovaných Věd Katedra Matematiky. Použití gradientních metod v úlohách na nelineární

Západočeská Univerzita v Plzni Fakulta Aplikovaných Věd Katedra Matematiky. Použití gradientních metod v úlohách na nelineární Západočeská Univerzita v Plzni Fakulta Aplikovaných Věd Katedra Matematiky Bakalářská Práce Použití gradientních metod v úlohách na nelineární nejmenší čtverce Plzeň 2016 Pavel Šimána Čestné prohlášení

Více

IV120 Spojité a hybridní systémy. Jana Fabriková

IV120 Spojité a hybridní systémy. Jana Fabriková IV120 Spojité a hybridní systémy Základní pojmy teorie řízení David Šafránek Jiří Barnat Jana Fabriková Problém řízení IV120 Základní pojmy teorie řízení str. 2/25 Mějme dynamický systém S definovaný stavovou

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Cvičení 5 - Inverzní matice

Cvičení 5 - Inverzní matice Cvičení 5 - Inverzní matice Pojem Inverzní matice Buď A R n n. A je inverzní maticí k A, pokud platí, AA = A A = I n. Matice A, pokud existuje, je jednoznačná. A stačí nám jen jedna rovnost, aby platilo,

Více

Lineární programování

Lineární programování Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,

Více

Kapitola 11: Lineární diferenciální rovnice 1/15

Kapitola 11: Lineární diferenciální rovnice 1/15 Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +

Více

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky 3. 9. 6 Obsah přednášky Literatura Derivace

Více

Příklady pro cvičení 22. dubna 2015

Příklady pro cvičení 22. dubna 2015 Úvod Předběžná verze (015) 1 1 Normy vektorů a matic, vlastnosti matic Příklad 1.1 Pro dané vektory x = ( 1; ; 1) T, y = (; 3; 1) T určete x =? x =? x 1 =? y =? y =? y 1 =? Příklad 1. Je dán vektor x =

Více

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír

Více

Michal Bulant. Masarykova univerzita Fakulta informatiky

Michal Bulant. Masarykova univerzita Fakulta informatiky Matematika III 3. přednáška Funkce více proměnných: derivace vyšších řádů, lokální a absolutní extrémy Michal Bulant Masarykova univerzita Fakulta informatiky 6. 10. 2010 Obsah přednášky 1 Literatura 2

Více

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x). Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých

Více

Numerické metody a programování. Lekce 8

Numerické metody a programování. Lekce 8 Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:

Více

Geometrická zobrazení

Geometrická zobrazení Pomocný text Geometricá zobrazení hodná zobrazení hodná zobrazení patří nejjednodušším zobrazením na rovině. Je jich vša hrozně málo a často se stává, že musíme sáhnout i po jiných, nědy výrazně složitějších

Více

FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Matematika V. Dynamická optimalizace

Matematika V. Dynamická optimalizace Matematika V. Dynamická optimalizace Obsah Kapitola 1. Variační počet 1.1. Derivace funkcí na vektorových prostorech...str. 3 1.2. Derivace integrálu...str. 5 1.3. Formulace základní úlohy P1 var. počtu,

Více

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky 6. 9. Obsah přednášky Literatura Derivace vyšších

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

em do konce semestru. Obsah Vetknutý nosník, str. 8 Problém č.8: Průhyb nosníku - Ritzova metoda

em do konce semestru. Obsah Vetknutý nosník, str. 8 Problém č.8: Průhyb nosníku - Ritzova metoda Zápočtové problémy Na následujících stránkách naleznete druhou sérii zápočtových problémů věnovanou nosníkům. Ti, co ještě nemají žádný problém přidělený, si mohou vybrat libovolný z nich. Řešení můžete

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více