Aplikace metody BDDC
|
|
- David Růžička
- před 6 lety
- Počet zobrazení:
Transkript
1 Aplikace metody BDDC v problémech pružnosti P. Burda, M. Čertíková, E. Neumanová, J. Šístek A. Damašek, J. Novotný FS ČVUT, ÚT AVČR / SAMO 06 (FS ČVUT, ÚT AVČR) / SAMO 06 1 / 46
2 Osnova 1 Řešená úloha 2 Metoda BDDC (Balancing Domain Decomposition with Constraints) DD s disjunktními subdoménami Předpodmiňovač BDDC 3 Implementace 4 Aplikace na reálné problémy 5 Závěr (FS ČVUT, ÚT AVČR) / SAMO 06 2 / 46
3 Osnova 1 Řešená úloha 2 Metoda BDDC (Balancing Domain Decomposition with Constraints) DD s disjunktními subdoménami Předpodmiňovač BDDC 3 Implementace 4 Aplikace na reálné problémy 5 Závěr (FS ČVUT, ÚT AVČR) / SAMO 06 3 / 46
4 Řešená úloha Ku = f... diskretizace úlohy PDR na dané oblasti Vlastnosti matice K (symetrická pozitivně definitní) řídká nestrukturovaná špatně podmíněná velká (řádově 10 5, 10 6 ) (FS ČVUT, ÚT AVČR) / SAMO 06 4 / 46
5 Příklad matice tuhosti (FS ČVUT, ÚT AVČR) / SAMO 06 5 / 46
6 Osnova 1 Řešená úloha 2 Metoda BDDC (Balancing Domain Decomposition with Constraints) DD s disjunktními subdoménami Předpodmiňovač BDDC 3 Implementace 4 Aplikace na reálné problémy 5 Závěr (FS ČVUT, ÚT AVČR) / SAMO 06 6 / 46
7 Matice tuhosti - příspěvky subdomén (FS ČVUT, ÚT AVČR) / SAMO 06 7 / 46
8 Matice tuhosti po permutaci (FS ČVUT, ÚT AVČR) / SAMO 06 8 / 46
9 Algebraický popis úlohy Ku = f K = K 1 OO K 2 OO K 3 OO K 1 IO K 2 IO K 3 IO KOI 1 KOI 2 K OI 3 K II u = u 1 O u 2 O u 3 O ui f = f 1 O f 2 O f 3 O fi K II = R i T K i II Ri f I = R i T f i I (FS ČVUT, ÚT AVČR) / SAMO 06 9 / 46
10 Úloha na interface Ku = f = Su I = g S - Schurův doplněk - součet lokálních Schurových doplňků: S = R i T S i R i, kde S i = K i II K i IO (K i OO ) 1 K i OI g = R i T g i, kde g i = f i I K i IO (K i OO ) 1 f i O (FS ČVUT, ÚT AVČR) / SAMO / 46
11 Řešení úlohy na interface řešení soustavy na interface Su I = g : přímé metody (eliminace) iterační metody (PCG) (FS ČVUT, ÚT AVČR) / SAMO / 46
12 PCG u 0, r 0 = g Su 0, β 1 = 0 iterace pro k = 1, 2,... z k 1 = M 1 r k 1 β k = z k 1, r k 1 / z k 2, r k 2 [ p k = z k 1 + β k p k 1 p 1 = z 0] α k = z k 1, r k 1 / p k, Sp k u k = u k 1 + α k p k r k = r k 1 α k Sp k (FS ČVUT, ÚT AVČR) / SAMO / 46
13 Iterační metoda jako předpodmiňovač Řešená soustava Su I = g M 1... předpodmiňovač Richardsonova metoda s předpodmíněním u I = u I + ρm 1 (g Su I ) u I n+1 = u I n + ρm 1 (g Su I n ) (FS ČVUT, ÚT AVČR) / SAMO / 46
14 BDDC metoda BDDC 2003 C.R.Dohrmann, J.Mandel metoda typu Neumann-Neumann aditivní Schwarzova metoda (FS ČVUT, ÚT AVČR) / SAMO / 46
15 Metody typu Neumann-Neumann 1 u n I - odhad řešení na interface 2 řešení Dirichletovy úlohy na subd.: u n I (u i ) n 3 residuum na subdoménách: (u i ) n (r i ) n 4 residuum na interface : r n I = R i T (r i ) n 5 rozdělení resid.r n I mezi subdomény: (r i I ) n 6 řešení Neumannovy úlohy na subd.: (r i I ) n (u i ) n+1 (r i I ) n - normálové derivace na interface 7 složení řeš. (u i ) n+1 na interface u n+1 I (FS ČVUT, ÚT AVČR) / SAMO / 46
16 Dělení residua a skládání řešení rozdělení resid.r I n mezi subdomény: (r I i ) n složení řeš. (u i ) n+1 na interface u I n+1 například w i = S i jj / S kk - podíl odpovídajících diag. prvků lokální a glob. matice (FS ČVUT, ÚT AVČR) / SAMO / 46
17 Hrubý problém oblast rozdělená na subdomény (FS ČVUT, ÚT AVČR) / SAMO / 46
18 Hrubý problém hrubý problém problémy na subdoménách (FS ČVUT, ÚT AVČR) / SAMO / 46
19 Hrubý problém hrubý problém problémy na subdoménách (FS ČVUT, ÚT AVČR) / SAMO / 46
20 Hrubý problém hrubý problém problémy na subdoménách (FS ČVUT, ÚT AVČR) / SAMO / 46
21 Algebraický zápis BDDC BDDC jako Richardsonova metoda u I n+1 = u I n + M 1 (g Su I n ), kde M 1 = W0 T S 1 0 W 0 + W1 T S 1 1 W Wk T S 1 k W k BDDC jako Schwarzova aditivní metoda u I n+1 u I = (I W T 0 S 1 0 W 0S... W T k S 1 k W k S)(u I n u I ) (FS ČVUT, ÚT AVČR) / SAMO / 46
22 konvergenční vlastnosti BDDC rychlost konvergence nezávisí na počtu subdomén: κ(m 1 S) const( 1 + log 2 (H/h) ) H... charakteristická velikost subdomény h... charakteristická velikost elementu při zachování stálého poměru H/h se nezhoršuje konvergence metody (FS ČVUT, ÚT AVČR) / SAMO / 46
23 Osnova 1 Řešená úloha 2 Metoda BDDC (Balancing Domain Decomposition with Constraints) DD s disjunktními subdoménami Předpodmiňovač BDDC 3 Implementace 4 Aplikace na reálné problémy 5 Závěr (FS ČVUT, ÚT AVČR) / SAMO / 46
24 Cíle implementace multiplatformní řešič se snadnou přenositelností jazyk Fortran 77 paralelní počítače s distribuovanou pamětí knihovna MPI jednoduchost a srozumitelnost programu stejné dělení paměti na procesorech,... nezávislost úlohy na počtu dostupných procesorů umožnění případu nproc nsub maximální využití existujících ověřených procedur užití frontálního řešiče kompatibilita s existujícím inženýrským balíkem pro analýzy PMD vstupní a výstupní soubory, datové struktury (FS ČVUT, ÚT AVČR) / SAMO / 46
25 Hlavní operace v algoritmu přípravná část vytvoření vnořovacích matic pole indexů faktorizace subdoménových matic s vazebními podmínkami frontální algoritmus faktorizace subdoménových matic pro statickou kondenzaci frontální algoritmus výpočet tvarových funkcí hrubého problému sestavení matice tuhosti hrubého problému faktorizace matice hrubého problému frontální algoritmus (FS ČVUT, ÚT AVČR) / SAMO / 46
26 Hlavní operace v algoritmu řešení PCG akce předpodmiňovače obnáší 1 řešení hrubého problému a opravu od hrubého řešení 2 řešení nezávislých subdoménových problémů a opravu od subdoménového řešení násobení maticí soustavy po subdoménách výpočet přes statickou kondenzaci výpočet skalárních součinů, norem vektorů dopočtení řešení ve vnitřních uzlech oblastí (FS ČVUT, ÚT AVČR) / SAMO / 46
27 Požadavky na komunikaci mezi procesory algoritmus BDDC vyžaduje 4 druhy komunikace, spojené s hrubým problémem globální charakter komunikace (MPI REDUCE) proměnné na interface point to point komunikace s náhodným pořadím (MPI ISEND, MPI IRECV, MPI WAITALL) postprocessing spolupráce na globálním vektoru řešení (MPI REDUCE) výpočet norem a skalárních součinů vektorů (MPI ALLREDUCE) (FS ČVUT, ÚT AVČR) / SAMO / 46
28 Osnova 1 Řešená úloha 2 Metoda BDDC (Balancing Domain Decomposition with Constraints) DD s disjunktními subdoménami Předpodmiňovač BDDC 3 Implementace 4 Aplikace na reálné problémy 5 Závěr (FS ČVUT, ÚT AVČR) / SAMO / 46
29 Paralelní počítače použité pro testování Sun Fire server E15k Lomond EPCC, Edinburgh 52 procesorů UltraSPARC III Cu 1.2-GHz sdílená pamět, při použití MPI pracuje jako s distribuovanou pamětí operační systém Solaris, Sun MPI Compaq Alpha server ES47 / 1000 MHz Hastrman Ústav termomechaniky, Praha 4 procesory Alpha EV7 sdílená pamět, při použití MPI pracuje jako s distribuovanou pamětí operační systém Tru64 UNIX, DEC MPI (FS ČVUT, ÚT AVČR) / SAMO / 46
30 Dýza turbíny elementů, uzlů, stupňů volnosti (FS ČVUT, ÚT AVČR) / SAMO / 46
31 Napětí Von Mises (FS ČVUT, ÚT AVČR) / SAMO / 46
32 Napětí Von Mises (FS ČVUT, ÚT AVČR) / SAMO / 46
33 12 subdomén manuálně, 218 uzlů hrubé sítě, 172 iterací PCG Frame Sep 2006 DYZA X Z Y (FS ČVUT, ÚT AVČR) / SAMO / 46
34 Dýza turbíny - měření reálného času (sec) Lomond: PMD fefs s nproc nsub/proc faktorizace iterace pcg celkem Hastrman: PMD fefs - 75 s nproc nsub/proc faktorizace iterace pcg celkem (FS ČVUT, ÚT AVČR) / SAMO / 46
35 12 subdomén automaticky, 250 uzlů hrubé sítě, 31 iterací PCG Frame Sep 2006 DYZA XZ Y (FS ČVUT, ÚT AVČR) / SAMO / 46
36 Dýza turbíny - měření reálného času (sec) Lomond: PMD fefs s nproc nsub/proc faktorizace iterace pcg celkem Hastrman: PMD fefs - 75 s nproc nsub/proc faktorizace iterace pcg celkem (FS ČVUT, ÚT AVČR) / SAMO / 46
37 Konstrukce náhrady jamky kyčelního kloubu elementů, uzlů, stupňů volnosti (FS ČVUT, ÚT AVČR) / SAMO / 46
38 Napětí Von Mises (FS ČVUT, ÚT AVČR) / SAMO / 46
39 4 subdomény manuálně, 20 uzlů hrubé sítě, 33 iterací PCG Frame Sep 2006 CELEKT Y Z X (FS ČVUT, ÚT AVČR) / SAMO / 46
40 Náhrada kyčelního kloubu - měření reálného času (sec) Hastrman: PMD fefs s nproc nsub/proc faktorizace iterace pcg celkem (FS ČVUT, ÚT AVČR) / SAMO / 46
41 4 subdomény automaticky, 20 uzlů hrubé sítě, 61 iterací PCG Frame Sep 2006 CELEKT YZ X (FS ČVUT, ÚT AVČR) / SAMO / 46
42 32 subdomén automaticky, 1600 uzlů hrubé sítě, 27 iterací PCG Frame Sep 2006 CELEKT Y Z X (FS ČVUT, ÚT AVČR) / SAMO / 46
43 Náhrada kyčelního kloubu - měření reálného času (sec) Hastrman: PMD fefs s nproc nsub/proc faktorizace iterace pcg celkem (FS ČVUT, ÚT AVČR) / SAMO / 46
44 Osnova 1 Řešená úloha 2 Metoda BDDC (Balancing Domain Decomposition with Constraints) DD s disjunktními subdoménami Předpodmiňovač BDDC 3 Implementace 4 Aplikace na reálné problémy 5 Závěr (FS ČVUT, ÚT AVČR) / SAMO / 46
45 Shrnutí studium metod domain decomposition pro lineární úlohy vyvinutí paralelní verze implementace metody BDDC program otestován na několika paralelních strojích (FS ČVUT, ÚT AVČR) / SAMO / 46
46 Výhled optimalizace programu na velkých úlohách lepší pochopení závislostí mezi počet iterací číslo podmíněnosti počet subdomén velikost interface velikost hrubého problému rozšíření na problémy nelineární pružnosti a mechaniky tekutin (FS ČVUT, ÚT AVČR) / SAMO / 46
Static Load Balancing Applied to Time Dependent Mechanical Problems
Static Load Balancing Applied to Time Dependent Mechanical Problems O. Medek 1, J. Kruis 2, Z. Bittnar 2, P. Tvrdík 1 1 Katedra počítačů České vysoké učení technické, Praha 2 Katedra stavební mechaniky
domain decomposition
Srovnání některých metod domain decomposition Bedřich Sousedík obor: Matematika ve stavebním inženýrství školitel: Prof. RNDr. Ivo Marek, DrSc. školitel specialista: Professor Jan Mandel Katedra matematiky
Úvod do přesnosti MKP, generace sítí a metod řešení soustav lineárních rovnic
ENumerická analýza transportních procesů - NTP2 Přednáška č. 8 Úvod do přesnosti MKP, generace sítí a metod řešení soustav lineárních rovnic Úvod do přesnosti metody konečných prvků Úvod do přesnosti metody
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vlastní čísla a vektory Google Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
Motivace. Software. Literatura a odkazy
Využití paralelních výpočtů ve stavební mechanice Motivace Paralelní počítače Software Možnosti využití ve stavební mechanice Příklady Literatura a odkazy 1 Motivace Časová náročnost výpočtů Rozsáhlé úlohy
Globální matice konstrukce
Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
Ústav technické matematiky FS ( Ústav technické matematiky FS ) / 35
Úvod do paralelního programování 2 MPI Jakub Šístek Ústav technické matematiky FS 9.1.2007 ( Ústav technické matematiky FS ) 9.1.2007 1 / 35 Osnova 1 Opakování 2 Představení Message Passing Interface (MPI)
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných
Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že
Kapitola Zadání Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování alespoň jedné úlohy je nutnou podmínkou pro úspěšné složení zkoušky resp. získaní (klasifikovaného) zápočtu (viz.
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda
Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových
stránkách přednášejícího.
Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost
SUPERPOČÍTAČE DANIEL LANGR ČVUT FIT / VZLÚ
SUPERPOČÍTAČE DANIEL LANGR ČVUT FIT / VZLÚ TITAN / HOPPER / NOTEBOOK TITAN HOPPER NOTEBOOK Počet CPU jader 299 008 153 216 2 Operační paměť [GB] 598 016 217 000 8 Počet GPU (CUDA) jader 50 233 344 0 8
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
AVDAT Nelineární regresní model
AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných
Co jsme udělali: Au = f, u D(A)
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
Numerické metody a programování. Lekce 4
Numerické metody a programování Lekce 4 Linarní algebra soustava lineárních algebraických rovnic a 11 a 12 x 2 a 1, N x N = b 1 a 21 a 22 x 2 a 2, N x N = b 2 a M,1 a M,2 x 2 a M,N x N = b M zkráceně A
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
Numerická stabilita algoritmů
Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá
Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
1 0 0 u 22 u 23 l 31. l u11
LU dekompozice Jedná se o rozklad matice A na dvě trojúhelníkové matice L a U, A=LU. Matice L je dolní trojúhelníková s jedničkami na diagonále a matice U je horní trojúhelníková. a a2 a3 a 2 a 22 a 23
OPS Paralelní systémy, seznam pojmů, klasifikace
Moorův zákon (polovina 60. let) : Výpočetní výkon a počet tranzistorů na jeden CPU chip integrovaného obvodu mikroprocesoru se každý jeden až dva roky zdvojnásobí; cena se zmenší na polovinu. Paralelismus
Rozdíly mezi MKP a MHP, oblasti jejich využití.
Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí
Numerické metody a programování
Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským
Nelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
Matematika v programovacích
Matematika v programovacích jazycích Pavla Kabelíková am.vsb.cz/kabelikova pavla.kabelikova@vsb.cz Úvodní diskuze Otázky: Jaké programovací jazyky znáte? S jakými programovacími jazyky jste již pracovali?
GPGPU Aplikace GPGPU. Obecné výpočty na grafických procesorech. Jan Vacata
Obecné výpočty na grafických procesorech Motivace Úvod Motivace Technologie 3 GHz Intel Core 2 Extreme QX9650 Výkon: 96 GFLOPS Propustnost paměti: 21 GB/s Orientační cena: 1300 USD NVIDIA GeForce 9800
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních
Numerická simulace proudění v hydrostatickém ložisku
Numerická simulace proudění v hydrostatickém ložisku Martin Hanek Vedoucí práce prof. RNDr. Pavel Burda, CSc. Školitelé specialisti Ing. Jakub Šístek, PhD., Ing. Eduard Stach Abstrakt Ve své práci se zabývám
Metody vnitřních bodů pro řešení úlohy lineární elasticity s daným třením
Metody vnitřních bodů pro řešení úlohy lineární elasticity s daným třením J. Machalová, P. Ženčák, R. Kučera Katedra matematické analýzy a aplikací matematiky PřF UP Olomouc Katedra matematiky a deskriptivní
Stabilizace Galerkin Least Squares pro
Fakulta strojní ČVUT Ústav technické matematiky Stabilizace Galerkin Least Squares pro MKP na řešení proudění o vyšších Reynoldsových číslech Ing. Jakub Šístek Doc. RNDr. Pavel Burda, CSc. RNDr. Jaroslav
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM
OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic
Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků
Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2014 Obsah Variační principy
AVDAT Vektory a matice
AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x
Numerické metody a programování. Lekce 7
Numerické metody a programování Lekce 7 Řešení nelineárních rovnic hledáme řešení x problému f x = 0 strategie: odhad řešení iterační proces postupného zpřesňování řešení výpočet skončen pokud je splněno
Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Metoda sítí v 1D. Myšlenka náhrada derivací diferenčními podíly Přibližné řešení okrajových úloh Aproximace vlastních čísel Literatura: Kapitola 2 d) ze skript Karel Rektorys:
Pružnost a plasticita II CD03
Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
pro Maxwellovy rovnice
Rychlé výpočetní metody pro Maxwellovy rovnice VŠB TU Ostrava, 14. dubna 2005 D. Lukáš Katedra aplikované matematiky, Centrum pokročilých a inovačních technologií, VŠB Technická univerzita Ostrava email:
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
Numerické metody optimalizace - úvod
Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
Představení a vývoj architektur vektorových procesorů
Představení a vývoj architektur vektorových procesorů Drong Lukáš Dro098 1 Obsah Úvod 3 Historie, současnost 3 Architektura 4 - pipelining 4 - Operace scatter a gather 4 - vektorové registry 4 - Řetězení
DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska 2004 Jan KRYŠTŮFEK Motivace Účel diplomové práce: Porovnání nelineárního řízení
Stavební fakulta Katedra mechaniky. Jaroslav Kruis, Petr Štemberk
České vysoké učení technické v Praze Stavební fakulta Katedra mechaniky Fuzzy množiny, fuzzy čísla a jejich aplikace v inženýrství Jaroslav Kruis, Petr Štemberk Obsah Nejistoty Teorie pravděpodobnosti
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1
9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom
Návod k použití programu pro výpočet dynamické odezvy spojitého nosníku
Návod k použití programu pro výpočet dynamické odezvy spojitého nosníku Obsah. Úvod.... Popis řešené problematiky..... Konstrukce... 3. Výpočet... 3.. Prohlížení výsledků... 4 4. Dodatky... 6 4.. Newmarkova
Principy počítačů I Netradiční stroje
Principy počítačů I Netradiční stroje snímek 1 Principy počítačů Část X Netradiční stroje VJJ 1 snímek 2 Netradiční procesory architektury a organizace počítačů, které se vymykají struktuře popsané Johnem
Numerické metody 6. května FJFI ČVUT v Praze
Extrémy funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Více dimenzí Kombinatorika Lineární programování Programy 1 Úvod Úvod - Úloha Snažíme se najít extrém funkce, at už jedné
Datové struktury 2: Rozptylovací tabulky
Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy
Co je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
PLASTOVÁ AKUMULAČNÍ, SEDIMENTAČNÍ A RETENČNÍ NÁDRŽ HN A VN POSOUZENÍ PLASTOVÉ NÁDRŽE VN-2 STATICKÝ POSUDEK
PLASTOVÁ AKUMULAČNÍ, SEDIMENTAČNÍ A RETENČNÍ NÁDRŽ HN A VN POSOUZENÍ PLASTOVÉ NÁDRŽE VN-2 STATICKÝ POSUDEK - - 20,00 1 [0,00; 0,00] 2 [0,00; 0,38] +z 2,00 3 [0,00; 0,72] 4 [0,00; 2,00] Geometrie konstrukce
Požadavky ke zkoušce
Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 2 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní
B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.
4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti
Princip řešení soustavy rovnic
Princip řešení soustavy rovnic Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Formulace úlohy Metody řešení
Zpráva s popisem softwarového návrhu a specifikací rozhraní prototypového modulu pro odhad chyby a zjemnění sítě
TA02011196 1/5 Zpráva s popisem softwarového návrhu a specifikací rozhraní prototypového modulu pro odhad chyby a zjemnění sítě MEER (Modul for Error Estimation and Refinement) je knihovna sloužící pro
SIMULACE ŠÍŘENÍ NAPĚŤOVÝCH VLN V KRYSTALECH MĚDI A NIKLU
SIMULACE ŠÍŘENÍ NAPĚŤOVÝCH VLN V KRYSTALECH MĚDI A NIKLU V. Pelikán, P. Hora, A. Machová Ústav termomechaniky AV ČR Příspěvek vznikl na základě podpory záměru ÚT AV ČR AV0Z20760514. VÝPOČTOVÁ MECHANIKA
FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 38 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 2 3 4 5 6 2 / 38 2 / 38 čárkou Definition 1 Bud základ β N pevně dané číslo β 2, x bud reálné číslo s
Architektura počítače
Architektura počítače Výpočetní systém HIERARCHICKÁ STRUKTURA Úroveň aplikačních programů Úroveň obecných funkčních programů Úroveň vyšších programovacích jazyků a prostředí Úroveň základních programovacích
Cvičení MI-PRC I. Šimeček
Cvičení MI-PRC I. Šimeček xsimecek@fit.cvut.cz Katedra počítačových systémů FIT České vysoké učení technické v Praze Ivan Šimeček, 2011 MI-PRC, LS2010/11, Cv.1-6 Příprava studijního programu Informatika
a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.
Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační
Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction
Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC
SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojm: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocnin neznámé, tj. a n n + a n 1 n 1 +... + a 2 2 + a 1 + a 0 = 0, kde n je přirozené číslo.
Základní spádové metody
Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)
III. MKP vlastní kmitání
Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz III. MKP vlastní kmitání 1. Rovnice vlastního kmitání 2. Rayleighova Ritzova metoda 3. Jacobiho metoda 4. Metoda inverzních iterací
Numerická matematika 1
Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................
Výpočetní dynamika tekutin (Computational Fluid Dynamics)
Výpočetní tekutin (Computational Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Cíle CFD výpočetní tekutin se zabývá počítačovým simulováním proudění tekutin
Vyučovací hodina. 1vyučovací hodina: 2vyučovací hodiny: Opakování z minulé hodiny. Procvičení nové látky
Vyučovací hodina 1vyučovací hodina: Opakování z minulé hodiny Nová látka Procvičení nové látky Shrnutí 5 min 20 min 15 min 5 min 2vyučovací hodiny: Opakování z minulé hodiny Nová látka Procvičení nové
Literatura: Kapitola 5 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA Dnešní látka: Metoda sítí pro D úlohy. Poissonova rovnice. Vlnová rovnice. Rovnice vedení tepla. Literatura: Kapitola 5 ze skript Karel Rektorys: Matematika 3, ČVUT, Praha,. Text přednášky
Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Nehomogenní okrajové podmínky. Pokračování OÚ pro PDR (jen pro fajnšmekry). Jednoznačnost zobecněného řešení. Metoda sítí v 1D. Přibližné řešení okrajových úloh. Aproximace vlastních
Teorie systémů TES 1. Úvod
Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. Teorie systémů TES 1. Úvod ZS 2011/2012 prof. Ing. Petr Moos, CSc. Ústav informatiky a telekomunikací Fakulta dopravní ČVUT v Praze
Numerická matematika Písemky
Numerická matematika Písemky Bodování Každá písemka je bodována maximálně 20 body. Celkem student může získat za písemky až 40 bodů, pro udělení zápočtu musí získat minimálně 20 bodů. Písemka č. 1 Dva
Čísla, reprezentace, zjednodušené výpočty
Čísla, reprezentace, zjednodušené výpočty Přednáška 5 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 1 Čísla 4 bitová dec bin. hex. 0 0000 0 1 0001
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Postup při výpočtu prutové konstrukce obecnou deformační metodou
Vysoké učení technické v Brně Fakulta stavební Ústav stavební mechaniky Postup při výpočtu prutové konstrukce obecnou deformační metodou Petr Frantík Obsah 1 Vytvoření modelu 2 2 Styčníkové vektory modelu
Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D.
OPTIMALIZACE BRAMOVÉHO PLYNULÉHO ODLÉVÁNÍ OCELI ZA POMOCI NUMERICKÉHO MODELU TEPLOTNÍHO POLE Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. Fakulta strojního inženýrství
Transformace digitalizovaného obrazu
Transformace digitalizovaného obrazu KIV/PPR Martina Málková (tina.malkova@centrum.cz) *15.10.1984 1 Zadání Realizujte transformaci digitalizovaného obrazu zadaného jako matice (m,n) s celočíselnými prvky.
CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace
CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace Ondřej Burian Pavel Zácha Václav Železný ČVUT v Praze, Fakulta strojní, Ústav energetiky NUSIM 2013 Co je to CFD?
2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC
.6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
Výpočtové nadstavby pro CAD
Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se
Arnoldiho a Lanczosova metoda
Arnoldiho a Lanczosova metoda 1 Částečný problém vlastních čísel Ne vždy je potřeba (a někdy to není ani technicky možné) nalézt celé spektrum dané matice (velké řídké matice). Úloze, ve které chceme aproximovat
1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS
OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb Anotace: Optimalizace objektů pozemních staveb
Odhad stavu matematického modelu křižovatek
Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce