Visualizace objemových dat
|
|
- Karla Bártová
- před 8 lety
- Počet zobrazení:
Transkript
1 Visualizace objemových dat Josef Pelikán CGG MFF UK Praha Visualizace 2009 Josef Pelikán, 1 / 28
2 průmyslové aplikace medicína (rentgenová) počítačová tomogra e (CT) nukleární magnetická rezonance (NMR, MRI) pozitronová emisní tomogra e (PET) single photon emission computer tomography (SPECT) + kombinace různých technologií (např. CT+NMR) průmyslová defektoskopie sonogramy, rentgenové přístroje,.. Visualizace 2009 Josef Pelikán, 2 / 28
3 Vědecké aplikace zobrazení naměřených dat geologie, seismologie meteorologie molekulární chemie a biologie zobrazení matematické simulace (dynamická) vektorová pole: průmyslová konstrukce, aerodynamika, meteorologie,.. astronomie a astrofyzika zobrazení implicitně de novaných ploch Visualizace 2009 Josef Pelikán, 3 / 28
4 Předmět vizualizace statická 3D data forma zobrazení f: R 3 R n uspokojivě lze zatím zobrazovat jen data skalární nebo výjimečně vektorová (n 3) ale např. v meteorologii se měří/počítá až 30 veličin v každém bodě! lepší přehled o průběhu veličin dávají animace dynamická 3D data (animace) forma zobrazení f: R 4 R n ([x,y,z,t]) animace je složitější, uživatelem řízená ( steering ) Visualizace 2009 Josef Pelikán, 4 / 28
5 Požadavky názornost zobrazení pozorovatel by měl získat co nejlepší představu o zobrazované funkci (příp. i jejím časovém průběhu) cílem nejsou bezpodmínečně realistické obrázky interakce uživatele ( steering : on-line animace) věrnost, pravdivost výstup by neměl být příliš zkreslený rychlost výpočtu pro animace minimálně několik obrázků za sekundu Visualizace 2009 Josef Pelikán, 5 / 28
6 Visualizace vektorů, tensorů,.. vektorová pole proudění kapaliny vlákna, stužky, šumová textura šipky nebo jiné 3D ikony tensorová pole elipsoidy, příp. jiné ikony vícerozměrná data předzpracování (PCA nebo jiná redukce dimenze) barva, zvuk, ikony, textura, Visualizace 2009 Josef Pelikán, 6 / 28
7 Objemova data formáty rovnoběžná mřížka reprezentace maticí K L M a diferenčními vektory dx, dy, dz stěny jednotlivých buněk rastru jsou rovnoběžné rastr nemusí být uniformní mřížka s pravidelnou topologií reprezentace maticí K L M a sítí parametrických ploch Pu[ ], Pv[ ], Pw[ ] buňky mají pouze stejnou topologii (např. 6 stěn) Visualizace 2009 Josef Pelikán, 7 / 28
8 Formáty, pokračování mřížka s nepravidelnou topologií libovolně rozmístěné uzly hodnot + topologie buněk čtyřstěny, šestistěny (v rovině: trojúhleníky, čtyřúhelníky) hybridní mřížka kombinace pravidelné a nepravidelné topologie viz metody konečných prvků (hybridní síť pro radiační metodu) Visualizace 2009 Josef Pelikán, 8 / 28
9 Pravidelná rovnoběžná mřížka dz } jednotlivé vodorovné řezy dx dy uniformní mřížka... dx = dy = dz Visualizace 2009 Josef Pelikán, 9 / 28
10 Rovnoběžná mřížka Visualizace 2009 Josef Pelikán, 10 / 28
11 Mřížka s pravidelnou topologií Visualizace 2009 Josef Pelikán, 11 / 28
12 Mřížka s nepravidelnou topologií Visualizace 2009 Josef Pelikán, 12 / 28
13 Hybridní mřížka Visualizace 2009 Josef Pelikán, 13 / 28
14 Voxely nebo buňky? voxely (naměřené hodnoty jsou uprostřed) buňky (naměřené hodnoty jsou ve vrcholech) Visualizace 2009 Josef Pelikán, 14 / 28
15 Fáze zpracování objemových dat ➊ pořízení dat (měření nebo výpočet) uvnitř snímacího zařízení (CAT, MRI) mohou již být použity některé netriviální algoritmy: převod několika kumulativních projekčních snímků do jednoho 2D obrazu (dělá skrytý rmware) ➋ úpravy a vylepšení jednotlivých řezů: 2D op. ltrace: vyhlazování, zvětšování kontrastu změny kontrastu - např. automatické vyrovnávání histogramu (stejné operace na všech řezech!) Visualizace 2009 Josef Pelikán, 15 / 28
16 Fáze zpracování objemových dat ➌ 3D úpravy a vylepšení úpravy formátu: přidávání dalších řezů (interpolací), převzorkování (v uniformní mřížce),.. 3D ltrace: vyhlazování, zvětšování kontrastu ➍ klasi kace dat, segmentace medicína: různé typy tkání (kost, mozek, svalstvo, tuk, vzduch) ruční nebo automatická (např. analýzou histogramu) ➎ zobrazení dat (projekce do 2D) Visualizace 2009 Josef Pelikán, 16 / 28
17 Zobrazování objemu ➊ výpočet izoploch ( surface tting : SF) aproximace izoplochy sítí n-úhelníků (trojúhelníků), výpočet není závislý na úhlu pohledu zobrazení klasickými metodami (HW podpora) uživatel zadává prahovou hodnotu (i více hodnot) ➋ přímé zobrazovací metody ( direct volume rendering : DVR) většinou nepoužívají pomocná gra cká primitiva dávají globání představu o průběhu zobrazované fce Visualizace 2009 Josef Pelikán, 17 / 28
18 Výpočet izoploch tyto metody jsou často rychlejší a po provedení výpočtu dovolují opakované rychlé zobrazení neprůhledné kostky ( cuberille ) napojování izočar topologické problémy ([vícenásobné] větvení) pochodující kostky ( marching cubes ) konstrukce izoploch při průchodu buňkami dělení kostek (podle rozlišení displeje), pochodující čtyřstěny Visualizace 2009 Josef Pelikán, 18 / 28
19 Přímé zobrazovací metody obrázek může obsahovat více informací, ale je závislý na úhlu pohledu V-buffer, splatting konstrukce poloprůhledného zobrazení průchodem scény zepředu dozadu metody vrhání paprsku simulace rozptylu světla v poloprůhledném (pasivním nebo aktivním) prostředí integrace podél dráhy paprsku Visualizace 2009 Josef Pelikán, 19 / 28
20 Interpolace v buňkách polynomiální interpolace a aproximace pro topologicky pravidelné mřížky trilineární interpolace jednoduchý výpočet, není hladká trikvadratická nebo trikubická aproximace hladké, ale vyžadují topologickou pravidelnost radiální aproximace vhodná i pro topologicky nepravidelná data Visualizace 2009 Josef Pelikán, 20 / 28
21 Trilineární interpolace P 101 P 111 P 001 P 011 (,, ) = ( 1 a) P a b c c b P 010 P P P a a ( 1 ) ( 1 ) ( 1 ) ( 1 ) [ ] b c P + cp + [ ( 1 ) ] + b c P + cp [ ] b c P + cp + [ ( 1 ) ] + b c P + cp Visualizace 2009 Josef Pelikán, 21 / 28
22 Trikubická aproximace P 101 P 111 P 001 P 011 c b P 010 P P P 000 a kubické váhové funkce 2 i+ 1 j+ 1 k+ 1 ijk i, j, k= 1 (,, ) ( ) ( ) ( ) P a b c = B a B b B c P Visualizace 2009 Josef Pelikán, 22 / 28
23 Radiální aproximace P 2 P 1... P i x váhová funkce (nulová pro t > D) 0 P 3 d(t) D D t ( ) P x = N i= 1 ( ) ( ) d x P f P N i= 1 ( P ) d x i i i Visualizace 2009 Josef Pelikán, 23 / 28
24 Typy průchodu průchod daty (scénou): jednodušší implementace průmět některých elementů může být zanedbatelný zezadu-dopředu uživatel si během výpočtu může prohlížet vzdálenější partie datového pole zepředu-dozadu nemusí být nutné procházet celé datové pole (zadní elementy již nemají vliv na výsledný obrázek) Visualizace 2009 Josef Pelikán, 24 / 28
25 Typy průchodu průchod průmětnou: buňky procházím mnohokrát (pomalejší výpočet) důležité části vzorkuji hustě zezadu-dopředu jednodušší implementace integrálního výpočtu zepředu-dozadu nemusím počítat celý paprsek (zastavím se na podprahové hodnotě důležitosti) Visualizace 2009 Josef Pelikán, 25 / 28
26 Fotorealismus nemusí být nejdůležitější, hlavní je názornost zobrazení člověk je však zvyklý na některé fyzikální vlastnosti látek zářící mlha poloprůhledná neizotropní látka, která světelné paprsky vyzařuje a zároveň pohlcuje stínování ploch jednoduchý světelný model; gradientní výpočet N Visualizace 2009 Josef Pelikán, 26 / 28
27 Gradientní stínování výpočet ktivního normálového vektoru jako gradientu zobrazované funkce aproximace gradientu pomocí konečných diferencí: [ ( ) P 1 P P ijk 2 i+ 1, j, k i 1, j, k ( P P ) 1 2 i, j+ 1, k i, j 1, k ( P ) ] i, j, k + Pi, j, k ,, Visualizace 2009 Josef Pelikán, 27 / 28
28 Literatura T. Elvins: A Survey of Algorithms for Volume Visualization, Computer Graphics, vol.26, #3, August 1992, Hansen C. D., Johnson, C. R.: Visualization Handbook, Academic Press, 2005 Visualizace 2009 Josef Pelikán, 28 / 28
Visualizace objemových dat
Visualizace objemových dat 1996-2015 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz 1 / 37 Průmyslové aplikace medicína počítačová tomografie (CT) rentgen nukleární
Přímé zobrazování objemových dat DVR
Přímé zobrazování objemových dat DVR 2009-2016 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz DVR 2016 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 26 Metody přímého
Rekonstrukce izoploch
Rekonstrukce izoploch 1996-2015 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz Surface 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 43 Rekonstrukce izoploch
Zobrazování vektorových polí
Zobrazování vektorových polí 1996-2015 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz 1 / 28 Proudění v tekutinách statické proudění zobrazení v: R3 R3 v každém bodě
Výpočet vržených stínů
Výpočet vržených stínů 1996-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Shadows 2016 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 18 Metody vícenásobný
Deformace rastrových obrázků
Deformace rastrových obrázků 1997-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Warping 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 22 Deformace obrázků
Základy 3D modelování a animace v CGI systémech Cinema 4D C4D
EVROPSKÝ SOCIÁLNÍ FOND Základy 3D modelování a animace v CGI systémech Cinema 4D C4D PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Mgr. David Frýbert 2013 CGI systémy Computer - generated imagery - aplikace
Textury a šumové funkce
Textury a šumové funkce 1998-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Textures 2016 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 28 Účinek textury modulace
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Intersection 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 26 Průsečík
Distribuované sledování paprsku
Distribuované sledování paprsku 1996-2015 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz DistribRT 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 24 Distribuované
Detekce kolizí v 3D Josef Pelikán KSVI MFF UK Praha
Detekce kolizí v 3D 2001-2003 Josef Pelikán KSVI MFF UK Praha e-mail: Josef.Pelikan@mff.cuni.cz W W W: http://cgg.ms.mff.cuni.cz/~pepca/ Aplikace CD mobilní robotika plánování cesty robota bez kontaktu
Katedra informatiky, Univerzita Palackého v Olomouci. 27. listopadu 2013
Katedra informatiky, Univerzita Palackého v Olomouci 27. listopadu 2013 Rekonstrukce 3D těles Reprezentace trojrozměrných dat. Hledání povrchu tělesa v těchto datech. Představení několika algoritmů. Reprezentace
Rekurzivní sledování paprsku
Rekurzivní sledování paprsku 1996-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 21 Model dírkové kamery 2 / 21 Zpětné sledování paprsku L D A B C 3 / 21 Skládání
Photon-Mapping Josef Pelikán CGG MFF UK Praha.
Photon-Mapping 2009-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Photon-mapping 2016 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 25 Základy Photon-mappingu
Watkinsův algoritmus řádkového rozkladu
Watkinsův algoritmus řádkového rozkladu 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 15 Watkinsův algoritmus nepotřebuje výstupní buffer rastrový výstup
Zobrazování barev. 1995-2015 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/
Zobrazování barev 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ ColorRep 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 18 Barevné schopnosti HW True-color
Jana Dannhoferová Ústav informatiky, PEF MZLU
Počítačová grafika 1. Definice oblasti souvisí: a) s definováním množiny všech bodů, které náleží do hranice a zároveň do jejího vnitřku b) s popisem její hranice c) s definováním množiny všech bodů, které
Monochromatické zobrazování
Monochromatické zobrazování 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Mono 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 27 Vnímání šedých odstínů
Hierarchický model. 1995-2013 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16
Hierarchický model 1995-2013 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16 Hierarchie v 3D modelování kompozice zdola-nahoru složitější objekty se sestavují
Reprezentace 3D scény
Reprezentace 3D scény 1995-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 36 Metody reprezentace 3D scén objemové reprezentace přímé informace o vnitřních
Reprezentace bodu, zobrazení
Reprezentace bodu, zobrazení Ing. Jan Buriánek VOŠ a SŠSE P9 Jan.Burianek@gmail.com Obsah Témata Základní dělení grafických elementů Rastrový vs. vektorový obraz Rozlišení Interpolace Aliasing, moiré Zdroje
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2008 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz NPGR004, intersection.pdf 2008 Josef Pelikán, http://cgg.ms.mff.cuni.cz/~pepca
Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010
Ing. Jan Buriánek (ČVUT FIT) Reprezentace bodu a zobrazení BI-MGA, 2010, Přednáška 2 1/33 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické
Urychlovací metody pro Ray-tracing
Urychlovací metody pro Ray-tracing 1996-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Speedup 2016 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 51 Průsečík
Operace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.
Operace s obrazem I Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova 1 Filtrování obrazu 2 Lineární a nelineární filtry 3 Fourierova
3D visualizacev lékařství. Lukáš Maršálek, leden 08 CGG MFF UK CGUdS
3D visualizacev lékařství Lukáš Maršálek, leden 08 CGG MFF UK CGUdS Obsah Motivace Příklady úloh a výstupů Visualizace v kontextu Principy Formalizace zobrazování Základní modality a principy Složitost
Kristýna Bémová. 13. prosince 2007
Křivky v počítačové grafice Kristýna Bémová Univerzita Karlova v Praze 13. prosince 2007 Kristýna Bémová (MFF UK) Křivky v počítačové grafice 13. prosince 2007 1 / 36 Pojmy - křivky a jejich parametrické
Zobrazování a osvětlování
Zobrazování a osvětlování Petr Felkel Katedra počítačové grafiky a interakce, ČVUT FEL místnost KN:E-413 na Karlově náměstí E-mail: felkel@fel.cvut.cz S použitím materiálů Bohuslava Hudce, Jaroslava Sloupa
Modely prostorových těles
1 3 úrovně pohledu na modely 2 Modely prostorových těles 1997 Josef Pelikán, MFF UK Praha 2007 Jiří Sochor, FI MU Brno svět - fyzikální objekty nemůžeme postihnout jejich složitost a mikroskopické detaily
Radiometrie, radiační metody
Radiometrie, radiační metody 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Radiometry 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 34 Globální výpočet
9 Prostorová grafika a modelování těles
9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.
Obsah A ROVINNÁ GRAFIKA 17
Obsah A ROVINNÁ GRAFIKA 17 1. Světlo a barvy v počítačové grafice JS & JŽ 19 1.1 Vlastnosti lidského systému vidění......................... 19 1.1.1 Elektromagnetické spektrum........................
8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra
8. přednáška z předmětu GIS1 Rastrový datový model a mapová algebra Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI,
KŘIVKY A PLOCHY. Obrázky (popř. slajdy) převzaty od
KŘIVKY A PLOCHY JANA ŠTANCLOVÁ jana.stanclova@ruk.cuni.cz Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah matematický popis křivek a ploch křivky v rovině implicitní tvar
Datové struktury. Zuzana Majdišová
Datové struktury Zuzana Majdišová 19.5.2015 Datové struktury Numerické datové struktury Efektivní reprezentace velkých řídkých matic Lze využít při výpočtu na GPU Dělení prostoru a binární masky Voxelová
Surfels: Surface Elements as Rendering Primitives
Surfels: Surface Elements as Rendering Primitives Výzkum v počítačové grafice Martin Herodes Nevýhody plošných primitiv Reprezentace složitých objektů pomocí plošných primitiv (trojúhelníků, čtyřúhelníků
GIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu
Jasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
HDR obraz (High Dynamic Range)
HDR obraz (High Dynamic Range) 2010-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 24 Velká dynamika obrazu světlé partie (krátká expozice) tmavé partie (dlouhá
Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace
Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární
Realita versus data GIS
http://www.indiana.edu/ Realita versus data GIS Data v GIS Typy dat prostorová (poloha a vzájemné vztahy) popisná (atributy) Reprezentace prostorových dat (formát) rastrová Spojitý konceptuální model vektorová
Datové struktury pro prostorové vyhledávání
Datové struktury pro prostorové vyhledávání 1998-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ SpatialData 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1
Počítačová grafika letem světem
1 Počítačová grafika letem světem 2002 Jiří Sochor FI MU Brno sochor@fi.muni.cz http://www.fi.muni.cz/usr/sochor/ 2 Analýza a syntéza obrazu (obrazová) data modelová ní modely analýza (obrazu) syntéza
Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech."
Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech." Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Na
Anti-aliasing a vzorkovací metody
Anti-aliasing a vzorkovací metody 1996-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Sampling 2016 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 34 Prostorový
Topografické mapování KMA/TOMA
Topografické mapování KMA/TOMA ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta aplikovaných věd - KMA oddělení geomatiky Ing. Martina Vichrová, Ph.D. vichrova@kma.zcu.cz Vytvoření materiálů bylo podpořeno prostředky
Metamorfóza obrázků Josef Pelikán CGG MFF UK Praha
Metamorfóza obrázků 1998-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Morphing 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 21 Metamorfóza obrázků -
7. Geografické informační systémy.
7. Geografické informační systémy. 154GEY2 Geodézie 2 7.1 Definice 7.2 Komponenty GIS 7.3 Možnosti GIS 7.4 Datové modely GIS 7.5 Přístup k prostorovým datům 7.6 Topologie 7.7 Vektorové datové modely 7.8
Počítačová grafika 2 (POGR2)
Počítačová grafika 2 (POGR2) Pavel Strachota FJFI ČVUT v Praze 19. února 2015 Kontakt Ing. Pavel Strachota, Ph.D. Katedra matematiky Trojanova 13, místnost 033a E-mail: pavel.strachota@fjfi.cvut.cz WWW:
Jana Dannhoferová Ústav informatiky, PEF MZLU
Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně
Analýza časového vývoje 3D dat v nukleární medicíně
Diplomová práce Analýza časového vývoje 3D dat v nukleární medicíně Jan Kratochvíla Prezentováno Seminář lékařských aplikací 12. prosince 2008 Vedoucí: Mgr. Jiří Boldyš, PhD., ÚTIA AV ČR Konzultant: Ing.
Úvod do GIS. Prostorová data II. část. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.
Úvod do GIS Prostorová data II. část Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Prostorová data Analogová prostorová data Digitální
Fyzikálně založené modely osvětlení
Fyzikálně založené modely osvětlení 1996-2015 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz Physical 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 31 Historie
Kompresní metody první generace
Kompresní metody první generace 998-20 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Stillg 20 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca / 32 Základní pojmy komprese
Zobrazování. Zdeněk Tošner
Zobrazování Zdeněk Tošner Ultrazvuk Zobrazování pomocí magnetické rezonance Rentgen a počítačová tomografie (CT) Ultrazvuk Akustické vlnění 20 khz 1 GHz materiálová defektoskopie sonar sonografie (v lékařství
Reprezentace 3D modelu
Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 1/25 Reprezentace 3D modelu Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké
Nukleární medicína je obor zabývající se diagnostikou a léčbou pomocí otevřených radioaktivních zářičů, aplikovaných do vnitřního prostředí
Nukleární medicína je obor zabývající se diagnostikou a léčbou pomocí otevřených radioaktivních zářičů, aplikovaných do vnitřního prostředí organismu. zobrazovací (in vivo) diagnostika laboratorní (in
GIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu
Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36
Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic
Počítačová tomografie (1)
Počítačová tomografie (1) velký počet měření průchodů rtg paprsků tělem - projekční data matematické metody pro rekonstrukci CT obrazů z projekčních dat Počítačová tomografie (2) generace CT 1. generace
Produktové Dokumenty (Datum 28.11.2014) Srovnání verzí: pcon.planner 7.0 Rozdíly mezi verzemi Standard-, ME a PRO
Produktové Dokumenty (Datum 28.11.2014) Srovnání verzí: pcon.planner 7.0 Rozdíly mezi verzemi Standard-, ME a PRO Základní formáty STD ME PRO Nahrávání a ukládání souborů DWG a DWT Převod a podpora starších
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
Počítačová analýza lekařských dat
Počítačová analýza lekařských dat Václav Krajíček Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University Osnova Medicína a počítače Lékařské zobrazovací
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
13 Barvy a úpravy rastrového
13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody
FLUENT přednášky. Metoda konečných objemů (MKO)
FLUENT přednášky Metoda konečných objemů (MKO) Pavel Zácha zdroj: [Bakker, 2008], [Vodička, 2011], [Runchal, 2008], [Kozubková, 2008] Historie - zřejmě nestarší způsob řešení parciálních diferenciálních
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze
Seminář z geoinformatiky Úvod do geodézie Seminář z geo oinform matiky Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Úvod do geodézie
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND
Úvod do GIS. Prostorová data I. část. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.
Úvod do GIS Prostorová data I. část Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Prostorová data Analogová prostorová data Digitální prostorová
Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování
problematika geometrického modelování manifold, Eulerova rovnost základní typy modelů hranový model stěnový model objemový model datové reprezentace modelů základní metody geometrického modelování těleso
Využití magneticko-rezonanční tomografie v měřicí technice. Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň
Využití magneticko-rezonanční tomografie v měřicí technice Ing. Jan Mikulka, Ph.D. Ing. Petr Marcoň Osnova Podstata nukleární magnetické rezonance (MR) Historie vývoje MR Spektroskopie MRS Tomografie MRI
11 Zobrazování objektů 3D grafiky
11 Zobrazování objektů 3D grafiky Studijní cíl Tento blok je věnován základním algoritmům zobrazení 3D grafiky. Postupně budou probrány základní metody projekce kolmé promítání, rovnoběžné promítání a
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.
Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu
Test z fyzikálních fyzikálních základ ů nukleární medicíny
Test z fyzikálních základů nukleární medicíny 1. Nukleární medicína se zabývá a) diagnostikou pomocí otevřených zářičů a terapií pomocí uzavřených zářičů aplikovaných in vivo a in vitro b) diagnostikou
Terestrické 3D skenování
Jan Říha, SPŠ zeměměřická www.leica-geosystems.us Laserové skenování Technologie, která zprostředkovává nové možnosti v pořizování geodetických dat a výrazně rozšiřuje jejich využitelnost. Metoda bezkontaktního
Úvod Typy promítání Matematický popis promítání Implementace promítání Literatura. Promítání. Pavel Strachota. FJFI ČVUT v Praze
Promítání Pavel Strachota FJFI ČVUT v Praze 30. března 2011 Obsah 1 Úvod 2 Typy promítání 3 Matematický popis promítání 4 Implementace promítání Obsah 1 Úvod 2 Typy promítání 3 Matematický popis promítání
2010 Josef Pelikán, CGG MFF UK Praha
Filtrace obrazu 21 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ 1 / 32 Histogram obrázku tabulka četností jednotlivých jasových (barevných) hodnot spojitý případ hustota pravděpodobnosti
Návod k použití softwaru Solar Viewer 3D
Návod k použití softwaru Solar Viewer 3D Software byl vyvinut v rámci grantového projektu Technologie a systém určující fyzikální a prostorové charakteristiky pro ochranu a tvorbu životního prostředí a
Metody zpracování a analýzy medicínských obrazových dat: možnosti využití v neurovědním výzkumu
Metody zpracování a analýzy medicínských obrazových dat: možnosti využití v neurovědním výzkumu Ing. Daniel Schwarz, Ph.D. Bc. Eva Janoušov ová INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ O čem budu mluvit? Neurovědy
9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D.
9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Lehký úvod Digitální modely terénu jsou dnes v geoinformačních systémech
Rastrová reprezentace
Rastrová reprezentace Zaměřuje se na lokalitu jako na celek Používá se pro reprezentaci jevů, které plošně pokrývají celou oblast, případně se i spojitě mění. Používá se i pro rasterizované vektorové vrstvy,
Ultrazvukové diagnostické přístroje. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Ultrazvukové diagnostické přístroje X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvuková diagnostika v medicíně Ultrazvuková diagnostika diagnostická zobrazovací
Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
Osvětlování a stínování
Osvětlování a stínování Pavel Strachota FJFI ČVUT v Praze 21. dubna 2010 Obsah 1 Vlastnosti osvětlovacích modelů 2 Světelné zdroje a stíny 3 Phongův osvětlovací model 4 Stínování 5 Mlha Obsah 1 Vlastnosti
Základní techniky zobrazování Josef Pelikán, MFF UK Praha
Základní techniky zobrazování 2005 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz Obsah výpočet viditelnosti ( depth-buffer ) obrazové buffery ( frame buffers )
GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6 Lubomír Vašek Zlín 2013 Obsah... 3 1. Základní pojmy... 3 2. Princip rastrové reprezentace... 3 2.1 Užívané
Počítačová grafika 1 (POGR 1)
Počítačová grafika 1 (POGR 1) Pavel Strachota FJFI ČVUT v Praze 8. října 2015 Kontakt Ing. Pavel Strachota, Ph.D. Katedra matematiky Trojanova 13, místnost 033a E-mail: WWW: pavel.strachota@fjfi.cvut.cz
Analýza pohybu. Karel Horák. Rozvrh přednášky: 1. Úvod. 2. Úlohy analýzy pohybu. 3. Rozdílové metody. 4. Estimace modelu prostředí. 5. Optický tok.
1 / 40 Analýza pohybu Karel Horák Rozvrh přednášky: 1. Úvod. 2. Úlohy analýzy pohybu. 3. Rozdílové metody. 4. Estimace modelu prostředí. 5. Optický tok. 2 / 40 Analýza pohybu Karel Horák Rozvrh přednášky:
Využití velkoplošné vizualizace v
Využití velkoplošné vizualizace v neurovědách Jan Fousek Fakulta informatiky, Masarykova univerzita 3. června 2015 Osnova vizualizace výsledků analýzy experimentálních měření prohĺıžení velkoobjemových
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
VIZUALIZACE ZNAČENÝCH BUNĚK MODELOVÉHO ORGANISMU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND
aneb jiný úhel pohledu na prvák
Účelná matematika aneb jiný úhel pohledu na prvák Jan Hejtmánek FEL, ČVUT v Praze 24. června 2015 Jan Hejtmánek (FEL, ČVUT v Praze) Technokrati 2015 24. června 2015 1 / 18 Outline 1 Motivace 2 Proč tolik
Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů -
Počítačová dynamika tekutin (CFD) Řešení rovnic - metoda konečných objemů - Rozdělení parciálních diferenciálních rovnic 2 Obecná parciální diferenciální rovnice se dvěma nezávislými proměnnými x a y:
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
Vývoj počítačové grafiky
Vývoj počítačové grafiky Počítačová grafika Základní pojmy Historie ASCII Art 2D grafika Rastrová Vektorová 3D grafika Programy Obsah Počítačová grafika obor informatiky, který používá počítače k tvorbě
PB001: Úvod do informačních technologíı
PB001: Úvod do informačních technologíı Luděk Matyska Fakulta informatiky Masarykovy univerzity podzim 2013 Luděk Matyska (FI MU) PB001: Úvod do informačních technologíı podzim 2013 1 / 29 Obsah přednášky
Univerzita Karlova v Praze. Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Filip Vůjtěch
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE 24 Filip Vůjtěch Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Filip Vůjtěch Vizualizace tomografických