Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů -

Rozměr: px
Začít zobrazení ze stránky:

Download "Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů -"

Transkript

1 Počítačová dynamika tekutin (CFD) Řešení rovnic - metoda konečných objemů -

2 Rozdělení parciálních diferenciálních rovnic 2 Obecná parciální diferenciální rovnice se dvěma nezávislými proměnnými x a y: v závislosti na koeficientech a, b a c lze určit typ rovnice: (b 2-4ac) > 0 typ hyperbolický. (b 2-4ac) = 0 typ parabolický. (b 2-4ac) < 0 typ eliptický. Poznámka: jestliže a, b, a c závisí na x a y, rovnice mohou být různého typu v závislosti na pozici v x-y prostoru. V tomto případě jsou rovnice smíšeného typu. Typ parabolický Typ eliptický Typ hyperbolický (nestacionární vedení tepla v rovinné desce) (Laplaceova rovnice) (vlnová rovnice)

3 Rozdělení parciálních diferenciálních rovnic 3 Obecně NS rovnice je smíšeného typu Prostředí Děj ustálený Děj neustálený Viskózní typ eliptický typ parabolický Nevazké (M<1) typ eliptický typ hyperbolický Nevazké (M>1) typ hyperbolický typ hyperbolický Tenká vrstva typ parabolický typ parabolický

4 Diskretizační přístupy 4 Metoda sítí Finite Difference Method nejstarší metoda pro diskretizaci PDR; využívá diferenciálního tvaru rovnic; aproximace derivací v uzlových bodech; užívá cca 5% komerčních řešičů Metoda konečných objemů Finite Volume Method využívá integrálního tvaru rovnic; aproximace toků přes hranice kontrolního objemu; užívá cca 80% komerčních řešičů. Metoda konečných prvků Finite Element Method podobná metodě konečných objemů, ale řešení je aproximováno po částech lineární funkcí; nejvíce užívaná při pevnostních výpočtech, málo vhodná pro turbulentní proudění; užívá cca 15% komerčních řešičů. Lattice gas/lattice Boltzmann

5 Metoda sítí 5 patří mezi nejstarší numerické metody postup řešení publikoval před rokem 1910 L. F. Richardson první skutečné numerické řešení: tok kolem válce (Thom,1933) Scientific American (1965): "Computer Experiments in Fluid Dynamics." F. H. Harlow and J. E. Fromm; poprvé jasně a populárně vyjádřená myšlenka computer experiments => počátek CFD Výhoda: snadné užití Nevýhoda: požadavek na jednoduché sítě A.Thom, The Flow Past Circular Cylinders at Low Speeds, Proc. Royal Society, A141, pp , London, 1933

6 Metoda sítí 6 dopředná diference, 1. řád zpětná diference, 1. řád centrální diference, 2. řád centrální diference, 2. řád u centrální dopředná u i zpětná derivace i-1, j+1 i, j+1 i+1, j+1 u i 1 u i+1 i-1, j i, j i+1, j x i 1 x i+1 i-1, j-1 i, j-1 i+1, j-1 i 2 i 1 i i + 1 i + 2

7 7 Řešená oblast je rozdělena na konečný počet malých kontrolních objemů pomocí sítě (grid, mesh). Základní rovnice (kontinuity, pohybové, energie, transportní, ), které popisují spojité prostředí, jsou disktetizovány do soustavy algebraických rovnic.

8 8 Výpočetní síť - základní označení Hraniční uzel (node, vertex) Hrana (edge) Plocha stěny (face) Výpočetní uzel (centroid) Kontrolní objem, buňka (cell) Kontrolní objemy se nepřekrývají. Hodnoty složek rychlosti a skalárních veličin jsou v geometrických středech kontrolních objemů, hodnoty na hranicích objemu se získávají interpolací.

9 9 Výpočetní síť - kontrolní objem Tok přes hranice kontrolního objemu je integrálním součtem přes čtyři (2D) nebo šest (3D) ploch kontrolního objemu. 2D NW N NE n yv, xu, W SW w P s S e E SE plochy: North, N South, S East, E West, W Front, F Back, B

10 10 Diskretizace rovnic (příklad 1) - transportní rovnice (konstantní hustota, laminární tok, ustálený stav, 2D) 2D N n W w P e E s yv, S xu, c c A koncentrace složky A, D D A difuzní koeficient, S S A - zdroj

11 Diskretizace rovnic (příklad 1) 11 Integrace transportní rovnice přes objem Aplikace Gaussovy věty

12 Diskretizace rovnic (příklad 1) 12 Tok napříč kontrolního objemu je suma přes stěny. P Aproximace plošného integrálu ze střední hodnoty na stěně. Po úpravě

13 Diskretizace rovnic (příklad 1) Diferenční aproximace vpřed dy n W N A n x P E A w A e A ee A s 13 2D y dy s S 1 Určení hodnot v centrech buněk nejjednodušší interpolační schéma: protiproud 1. řádu předpokládá se, že hodnota na stěně je rovná hodnotě v centru buňky ležící vlevo (proti proudu), např. dx w dxe

14 Diskretizace rovnic (příklad 1) 14 N C počet sousedících buněk koeficienty a jsou odlišné pro každou buňku při každé iteraci pole koncentrací je vypočítáno přepočtem c P z této rovnice iteračně pro každou buňku v řešené oblasti

15 Diskretizace rovnic (příklad 2) 15 Rovnice kontinuity (konstantní hustota, ustálený stav, jednosměrný tok ve směru x) : ( ) 0 x ru Diskretizace rovnice = převedení na řešitelný algebraický tvar: ( ru)d V ( ru)dx dy dz ru da rua e rua w x x V V A Au A u e P w W Prostorové interpolační schéma: protiproud 1. řádu y dz z u W dy w P dx e E x

16 Interpolační schémata (prostorová) φ(x) 16 Protiproudá interpolace 1. řádu (First-order upwind) Předpokládá se, že hodnota φ na stěně je rovná hodnotě v centru buňky ležící vlevo (proti proudu). Protiproudá interpolace 2. řádu (Second order upwind) Určuje hodnotu φ na stěně z hodnot v centrech dvou buněk ležící vlevo (proti proudu). Centrální diference (Central differencing) Určujeme hodnotu φ na stěně pomocí lineární interpolace mezi hodnotami ve středu sousedících buněk. Protiproudá kvadratická interpolace (QUICK) Kvadratická křivka je aproximována ze dvou uzlů ležící proti proudu (upstream) a jednoho uzlu, který leží po proudu (downstream). φ W φ W W W W φ P P w φ(x) e P w e φ(x) φp P w φ(x) φ P φ P e φ e φ e φ e φ e E E E φ E φe W P E w e interpolovaná hodnota směr toku

17 Interpolační schémata (prostorová) - shrnutí 17 Interpolační schémata vyšších řádů jsou více přesnější, ale méně stabilnější a výpočet trvá déle. Pro dobrou stabilitu a přesnost se často doporučuje začít výpočet s first order upwind a po cca 100 iteracích přepnout na second order upwind. Centrální diferenční schéma by mělo být užíváno krátkodobých výpočtech při dostatečně jemné výpočetní síti, při které je hodnota Pecletova čísla vždy menší než jedna. Pecletovo číslo je poměr mezi konvektivním a difuzním transportem: Pe = ρul D Lineární interpolace nemůže být použita při proudění s velkou vířivostí. QUICK interpolace je velmi přesná, ale v oblastech s velkými gradienty může způsobit problémy se stabilitou výpočtu.

18 Interpolační schémata (příklad) 18 Protiproudé 1. řádu 100 ºC Protiproudé 2. řádu 100 ºC 8 x 8 0 ºC 0 ºC 100 ºC 100 ºC 64 x 64 0 ºC 0 ºC zdroj:

Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod -

Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod - Hydromechanické procesy Počítačová dynamika tekutin (CFD) - úvod - M. Jahoda Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty,

Více

Počítačová dynamika tekutin užitečný nástroj pro inženýry

Počítačová dynamika tekutin užitečný nástroj pro inženýry Počítačová dynamika tekutin užitečný nástroj pro inženýry M. Jahoda Úvod Počítačová dynamika tekutin (Computational Fluid Dynamics, CFD) je moderní metoda, která se zabývá prouděním tekutin, přenosem tepla

Více

FLUENT přednášky. Metoda konečných objemů (MKO)

FLUENT přednášky. Metoda konečných objemů (MKO) FLUENT přednášky Metoda konečných objemů (MKO) Pavel Zácha zdroj: [Bakker, 2008], [Vodička, 2011], [Runchal, 2008], [Kozubková, 2008] Historie - zřejmě nestarší způsob řešení parciálních diferenciálních

Více

Matematické modely a způsoby jejich řešení. Kateřina Růžičková

Matematické modely a způsoby jejich řešení. Kateřina Růžičková Matematické modely a způsoby jejich řešení Kateřina Růžičková Rovnice matematické fyziky Přednáška převzata od Doc. Rapanta Parciální diferencíální rovnice Diferencialní rovnice obsahujcí parcialní derivace

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok - Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé

Více

Řešení 1D vedení tepla metodou sítí a metodou

Řešení 1D vedení tepla metodou sítí a metodou ENumerická analýza transportních procesů - NTP2 Přednáška č. 9 Řešení 1D vedení tepla metodou sítí a metodou konečných objemů Metoda sítí (metoda konečných diferencí - MKD) Metoda sítí Základní myšlenka

Více

Počítačová dynamika tekutin (CFD) - úvod -

Počítačová dynamika tekutin (CFD) - úvod - Počítačová dynamika tekutin (CFD) - úvod - Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty, průběhu chemických reakcích

Více

úloh pro ODR jednokrokové metody

úloh pro ODR jednokrokové metody Numerické metody pro řešení počátečních úloh pro ODR jednokrokové metody Formulace: Hledáme řešení y = y() rovnice () s počáteční podmínkou () y () = f(, y()) () y( ) = y. () Smysl: Analyticky lze spočítat

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Potenciální proudění

Potenciální proudění Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace

Více

Typy příkladů na písemnou část zkoušky 2NU a vzorová řešení (doc. Martišek 2017)

Typy příkladů na písemnou část zkoušky 2NU a vzorová řešení (doc. Martišek 2017) Typy příkladů na písemnou část zkoušky NU a vzorová řešení (doc. Martišek 07). Vhodnou iterační metodou (tj. metodou se zaručenou konvergencí) řešte soustavu: x +x +4x 3 = 3.5 x 3x +x 3 =.5 x +x +x 3 =.5

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Propojení matematiky, fyziky a počítačů

Propojení matematiky, fyziky a počítačů Propojení matematiky, fyziky a počítačů Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ..7/.3./45.9 V Ústí n. L., únor 5 Ing. Radek Honzátko, Ph.D. Propojení matematiky, fyziky a počítačů

Více

Počítačová dynamika tekutin (CFD) Okrajové podmínky

Počítačová dynamika tekutin (CFD) Okrajové podmínky Počítačová dynamika tekutin (CFD) Okrajové podmínky M. Jahoda Okrajové podmínky 2 Řídí pohyb tekutiny. Jsou požadovány matematickým modelem. Specifikují toky do výpočetní oblasti, např. hmota, hybnost

Více

Colloquium FLUID DYNAMICS 2007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 2007 p.1

Colloquium FLUID DYNAMICS 2007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 2007 p.1 Colloquium FLUID DYNAMICS 27 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 27 p.1 NUMERICKÉ ŘEŠENÍ STACIONÁRNÍHO A NESTACIONÁRNÍHO TRANSSONICKÉHO PROUDĚNÍ VE VNĚJŠÍ AERODYNAMICE

Více

Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami

Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami (Numerical Modelling of Flow of Two Immiscible Fluids Past a NACA 0012 profile) Ing. Tomáš

Více

Skalární a vektorový popis silového pole

Skalární a vektorový popis silového pole Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Numerická matematika Písemky

Numerická matematika Písemky Numerická matematika Písemky Bodování Každá písemka je bodována maximálně 20 body. Celkem student může získat za písemky až 40 bodů, pro udělení zápočtu musí získat minimálně 20 bodů. Písemka č. 1 Dva

Více

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při

Více

Numerické řešení diferenciálních rovnic

Numerické řešení diferenciálních rovnic Numerické řešení diferenciálních rovnic Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu 1/1 Numerické řešení diferenciálních

Více

CFD simulace vícefázového proudění na nakloněné desce: porovnání smáčivosti různých kapalin. Martin Šourek

CFD simulace vícefázového proudění na nakloněné desce: porovnání smáčivosti různých kapalin. Martin Šourek CFD simulace vícefázového proudění na nakloněné desce: porovnání smáčivosti různých kapalin Martin Šourek VŠCHT Praha Ústav matematiky Praha 13. Prosince 2016 Úvod Model Výsledky Závěr Úvod 13.12.2016

Více

Přednášky z předmětu Aplikovaná matematika, rok 2012

Přednášky z předmětu Aplikovaná matematika, rok 2012 Přednášky z předmětu Aplikovaná matematika, rok 2012 Robert Mařík 23. ledna 2015 2 Obsah 1 Přednášky 2012 5 2 Písemky 2012 9 3 4 OBSAH Kapitola 1 Přednášky 2012 1. prednaska, 16.2.2012 -----------------------

Více

Numerické metody a statistika

Numerické metody a statistika Numerické metody a statistika Radek Kučera VŠB-TU Ostrava 016-017 ( ) Numerické metody a statistika 016-017 1 / Numerické integrování ( ) Numerické metody a statistika 016-017 / Geometrický význam integrálu

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 13.10.2014 Mechanika tekutin 1/13 1 Mechanika tekutin - přednášky 1. Úvod, pojmy,

Více

Jaroslav Tuma. 8. února 2010

Jaroslav Tuma. 8. února 2010 Semestrální práce z předmětu KMA/MM Odstraňování šumu z obrazu Jaroslav Tuma 8. února 2010 1 1 Zpracování obrazu Zpracování obrazu je disciplína zabývající se zpracováním obrazových dat různého původu.

Více

Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby

Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Jiří Pospíšil, Miroslav Jícha pospisil.j@fme.vutbr.cz Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický

Více

přenosu tepla seznámí s teoretickou stránkou této problematiky, kterou si dále osvojují v následných

přenosu tepla seznámí s teoretickou stránkou této problematiky, kterou si dále osvojují v následných Koncepce virtuální laboratoře přenosu tepla Volavý, Jaroslav 1 & Knotek, Stanislav 2 & Jícha, Miroslav 3 1 Ing., VUT v Brně, Fakulta strojního inženýrství, Enegetický ústav, Odbor termomechaniky a techniky

Více

Modelování proudění ve vysokém rozlišení

Modelování proudění ve vysokém rozlišení Modelování proudění ve vysokém rozlišení Vladimír Fuka vedoucí práce: doc. RNDr. Josef Brechler, CSc. Cíle práce Vytvořit základ počítačového modelu proudění. Vyzkoušet některé nové postupy. Ověřit funkčnost

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Matematika I. dvouletý volitelný předmět

Matematika I. dvouletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy

Více

Výpočtové nadstavby pro CAD

Výpočtové nadstavby pro CAD Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se

Více

Matematika pro chemické inženýry

Matematika pro chemické inženýry Matematika pro chemické inženýry Drahoslava Janovská Plošný integrál Přednášky Z 216-217 ponzorováno grantem VŠCHT Praha, PIGA 413-17-6642, 216 Povinná látka. Bude v písemkách a bude se zkoušet při ústní

Více

5.1 Modelování drátových antén v časové oblasti metodou momentů

5.1 Modelování drátových antén v časové oblasti metodou momentů 5.1 Modelování drátových antén v časové oblasti metodou momentů Základní teorie V kapitolách 4.1, 4.4 resp. 4.5 byly drátový dipól, mikropáskový dipól a flíčková anténa modelovány metodou momentů ve frekvenční

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Kapitola 8: Dvojný integrál 1/26

Kapitola 8: Dvojný integrál 1/26 Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet

Více

21. Úvod do teorie parciálních diferenciálních rovnic

21. Úvod do teorie parciálních diferenciálních rovnic 21. Úvod do teorie parciálních diferenciálních rovnic Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2014/15 21.1 Základní termíny Definice Vektor tvaru α = (α 1,...,α m ), kde α j N {0}, j

Více

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny

Více

Spojitý popis plazmatu, magnetohydrodynamika

Spojitý popis plazmatu, magnetohydrodynamika Spojitý popis plazmatu, magnetohydrodynamika Spojitý popis plazmatu V mnoha případech nepotřebujeme znát detailně popis plazmatu, dalším možným popisem plazmatu je tzv. spojitý (fluidní), tj. makroskopický

Více

Počítačová dynamika tekutin (CFD) Turbulence

Počítačová dynamika tekutin (CFD) Turbulence Počítačová dynamika tekutin (CFD) Turbulence M. Jahoda Turbulence 2 Turbulentní proudění vzniká při vysokých Reynoldsových číslech (Re>>1); je způsobováno komplikovanou interakcí mezi viskózními a setrvačnými

Více

Numerická simulace proudění okolo válce za použití metody LES (Large eddy simulation)

Numerická simulace proudění okolo válce za použití metody LES (Large eddy simulation) Numerická simulace proudění okolo válce za použití metody LES (Large eddy simulation) Bc. Zdeněk Sumara Vedoucí práce: Ing. Pavol Vitkovič Abstrakt Práce je zaměřena na simulaci turbulentního proudění

Více

1 POPIS MATEMATICKÉHO MODELU. 1.1 Použitý software FLOW-3D. Vodní nádrže , Brno

1 POPIS MATEMATICKÉHO MODELU. 1.1 Použitý software FLOW-3D. Vodní nádrže , Brno 1 POPIS MATEMATICKÉHO MODELU 1.1 Použitý software FLOW-3D Pro modelování proudění byl zvolen komerční softwarový balík FLOW-3D. Jedná se o CFD (Computional Fluid Dynamics) nástroj využívající matematické

Více

Aproximace posuvů [ N ],[G] Pro každý prvek se musí nalézt vztahy

Aproximace posuvů [ N ],[G] Pro každý prvek se musí nalézt vztahy Aproimace posuvů Pro každý prvek se musí nalézt vztahy kde jsou prozatím neznámé transformační matice. Neznámé funkce posuvů se obvykle aproimují ve formě mnohočlenů kartézských souřadnic. Například 1.

Více

Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že

Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že Kapitola Zadání Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování alespoň jedné úlohy je nutnou podmínkou pro úspěšné složení zkoušky resp. získaní (klasifikovaného) zápočtu (viz.

Více

VEKTOROVÁ POLE Otázky

VEKTOROVÁ POLE Otázky VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,

Více

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Optimalizace systémů tlakových kanalizací pomocí matematického modelování jejich provozních stavů Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Ing.

Více

PARCIÁLN LNÍ ROVNICE

PARCIÁLN LNÍ ROVNICE PARCIÁLN LNÍ DIFERENCIÁLN LNÍ ROVNICE VE ZPRACOVÁNÍ OBRAZU Autor práce: Vedoucí práce: Anna Kratochvílová Ing.Tomáš Oberhuber Zadání Najít vhodný matematický model pro segmentaci obrazových dat Navrhnout

Více

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce Příklady na cvičení k přednášce NMMA334 Úvod do parciálních diferenciálních rovnic 1 Kanonický tvar lineárních PDR 2. řádu pro funkce dvou proměnných 1. Určete typ parciální diferenciální rovnice u xx

Více

ANALÝZA KONSTRUKCÍ. 5. přednáška

ANALÝZA KONSTRUKCÍ. 5. přednáška ANALÝZA KONSTRUKCÍ 5. přednáška Nosné stěny rovinná napjatost Způsoby výpočtu napjatosti: Deformační metodou Primární neznámé: posuny u(,y), v(,y) Výchozí rovnice: statické Silovou metodou Primární neznámá:

Více

Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě

Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě Řeší s porozumněním rovnice s parametrem Rovnice, nerovnice a jejich soustavy Řovnice, nerovnice a jejich soustavy Třetí, 24 hodin Zvolí vhodnou metodu řešení rovnice nebo nerovnice Vysvětlí zvolený způsob

Více

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla; TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla

Více

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015 Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31

Více

VEKTOROVÁ POLE VEKTOROVÁ POLE

VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

Numerické řešení 2D stlačitelného proudění s kondenzací. Michal Seifert

Numerické řešení 2D stlačitelného proudění s kondenzací. Michal Seifert Numerické řešení 2D stlačitelného proudění s kondenzací Michal Seifert Úkoly diplomové práce Popsat matematické modely proudící tekutiny Popis numerických metod založených na metodě konečných objemů Porovnání

Více

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014

Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Harmonogram výuky předmětu Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Vedoucí cvičení: ing. Václav Klika, Ph.D. & MSc. Karolína Korvasová & & ing. Matěj Tušek, Ph.D. Katedra

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Historie mechaniky tekutin

Historie mechaniky tekutin Počítačová dynamika tekutin (CFD) - historie - 2 Aristotelés ze Stagiry (384 322 př.n.l) řecký filosof, žák Platónův vychovatel Alexandra III. Velikého základní koncept kontinua kontinuum = spojité prostředí

Více

Netradiční výklad tradičních témat

Netradiční výklad tradičních témat Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Literatura: Kapitola 5 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitola 5 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA Dnešní látka: Metoda sítí pro D úlohy. Poissonova rovnice. Vlnová rovnice. Rovnice vedení tepla. Literatura: Kapitola 5 ze skript Karel Rektorys: Matematika 3, ČVUT, Praha,. Text přednášky

Více

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.

Více

Výsledný tvar obecné B rce je ve žlutém rámečku

Výsledný tvar obecné B rce je ve žlutém rámečku Vychází N-S rovnice, kterou ovšem zjednodušuje zavedením určitých předpokladů omezujících předpokladů. Bernoulliova rovnice v základním tvaru je jednorozměrný model stacionárního proudění nevazké a nestlačitelné

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf

Více

MATEMATIKA V MEDICÍNĚ

MATEMATIKA V MEDICÍNĚ MATEMATIKA V MEDICÍNĚ Tomáš Oberhuber Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Matematika pro život TOMÁŠ OBERHUBER (FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ MATEMATIKA

Více

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

Globální matice konstrukce

Globální matice konstrukce Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.

Více

Parciální diferenciální rovnice

Parciální diferenciální rovnice Parciální diferenciální rovnice Obsah kurzu Co bude obsahovat... úvod do PDR odvození některých PDR klasická teorie lineárních PDR 1. a 2. řádu řešení poč. a okraj. úloh vlastnosti řešení souvislost s

Více

D - Přehled předmětů studijního plánu

D - Přehled předmětů studijního plánu D - Přehled předmětů studijního plánu Vysoká škola: Součást vysoké školy: Název studijního programu: Název studijního oboru: Slezská univerzita v Opavě Matematický ústav v Opavě Matematika Obecná matematika

Více

Integrace funkcí více proměnných, numerické metody

Integrace funkcí více proměnných, numerické metody Matematika III 6. přednáška Integrace funkcí více proměnných, numerické metody Michal Bulant Masarykova univerzita Fakulta informatiky 27. 10. 2010 Obsah přednášky 1 Literatura 2 Integrální počet více

Více

12. Křivkové integrály

12. Křivkové integrály 12 Křivkové integrály Definice 121 Jednoduchou po částech hladkou křivkou v prostoru R n rozumíme množinu bodů [x 1,, x n ], které jsou dány parametrickými rovnicemi x 1 = ϕ 1 t), x 2 = ϕ 2 t), x n = ϕ

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace

Více

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z: PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se

Více

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2014 Obsah Variační principy

Více

Integrace. Numerické metody 7. května FJFI ČVUT v Praze

Integrace. Numerické metody 7. května FJFI ČVUT v Praze Integrace Numerické metody 7. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Kvadraturní vzorce Gaussovy kvadratury Více dimenzí Programy 1 Úvod Úvod - Úloha Máme funkci f( x) a snažíme se najít určitý integrál

Více

Počítačová simulace tepelných procesů s využitím výpočetních MKP systémů

Počítačová simulace tepelných procesů s využitím výpočetních MKP systémů Počítačová simulace tepelných procesů s využitím výpočetních MKP systémů Obsah cvičení Přednáška Výpočetní metody identifikace termomechanických procesů - stručný přehled Příklady použití výpočetních metod

Více

Přednáška č. 5: Jednorozměrné ustálené vedení tepla

Přednáška č. 5: Jednorozměrné ustálené vedení tepla Přednáška č. 5: Jednorozměrné ustálené vedení tepla Motivace Diferenciální rovnice problému Gradient teploty Energetická bilance Fourierův zákon Diferenciální rovnice vedení tepla Slabé řešení Diskretizace

Více

Numerická integrace a derivace

Numerická integrace a derivace co byste měli umět po dnešní lekci: integrovat funkce různými metodami (lichoběžníkové pravidlo, Simpson,..) počítat vícenásobné integrály počítat integrály podél křivky a integrály komplexních funkcí

Více

1 Vedení tepla stacionární úloha

1 Vedení tepla stacionární úloha 1 VEDENÍ TEPLA STACIONÁRNÍ ÚLOHA 1 1 Vedení tepla stacionární úloha Typický představitel transportních jevů Obdobným způsobem možno řešit například Fyzikální jev Neznámá Difuze koncentrace [3] Deformace

Více

SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM)

SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM) SIMULACE V KONFEKČNÍ VÝROBĚ S VYUŽITÍM METODY KONEČNÝCH PRVKŮ (MKP, FEM) D POČÍTAČOVÁ SIMULACE KONFEKČNÍ DÍLNY VIRTUÁLNÍ REALITA - WITNESS VR COMPUTER INTEGRATED MANUFACTURING CIM výroba integrovaná pomocí

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Jan Slovák Masarykova univerzita Fakulta informatiky 23. 10. 2006 Obsah

Více

Západočeská univerzita v Plzni

Západočeská univerzita v Plzni Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Numerické modelování reálných úloh založené na metodě nespojitých konečných prvků DIPLOMOVÁ PRÁCE Vedoucí práce Ing. Hana Kopincová,

Více

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III

Více

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace Ondřej Burian Pavel Zácha Václav Železný ČVUT v Praze, Fakulta strojní, Ústav energetiky NUSIM 2013 Co je to CFD?

Více

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

MFT - Matamatika a fyzika pro techniky

MFT - Matamatika a fyzika pro techniky MFT - Matamatika a fyzika pro techniky Pro každou přednášku by zde měl být seznam klíčových témat, odkaz na literaturu, zápočtový příklad k řešení a další příklady k procvičování převážně ze sbírky příkladů

Více

Vliv podzemní těsnicí stěny na havarijní únik kontaminantu

Vliv podzemní těsnicí stěny na havarijní únik kontaminantu Vliv podzemní těsnicí stěny na havarijní únik kontaminantu Ing. Petr Trávníček, Ph.D., Ing. Petr Junga, Ph.D. Mendelova univerzita v Brně, Ústav zemědělské, potravinářské a environmentální techniky, Zemědělská

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více