Základní techniky zobrazování Josef Pelikán, MFF UK Praha
|
|
- Ivana Kubíčková
- před 6 lety
- Počet zobrazení:
Transkript
1 Základní techniky zobrazování 2005 Josef Pelikán, MFF UK Praha
2 Obsah výpočet viditelnosti ( depth-buffer ) obrazové buffery ( frame buffers ) double-buffering, triple-buffering jednoduché ořezávání ( scissor test ) šablona ( stencil buffer ) poloprůhlednost ( alpha blending ) anti-aliasing, akumulační buffer výpočet osvětlení na GPU (fixed pipeline)
3 Výpočet viditelnosti používá se buffer hloubky ( depth-buffer ) Z-buffer nebo W-buffer Z-buffer bitů, typicky 24 bitů na pixel pozor na neuniformní zobrazení hloubky do rozsahu hodnot z (záleží na poměru far / near ) vzdálenější partie zorného pole mají hloubku méně přesnou! W-buffer nemá problém s nelinearitou hloubky
4 Obrazové buffery podle grafického režimu 8- až 32-bitové (C, RGB[A]) dnes nejčastěji true-color bitů na pixel double-buffering do jednoho bufferu se kreslí ( front ), jiný se zobrazuje ( back ) výměna bufferů: flipping nebo blitting flipping: rychlé přepnutí v HW (preferované) blitting: bit-blt operace triple-buffering další buffer ( pending ) pro lepší balancování výkonu a plynulejší snímkovou frekvenci
5 Obrazové buffery, triple buffering zobrazuje se left front right front hotový, čeká VS left back right back kreslí se async left pending right pending
6 Práce s buffery všechny buffery lze používat selektivně povolení / zákaz zápisu (i do jednotlivých bitových rovin) povolení depth-testu (též nastavení porovnávací operace) pro kreslení jsou k dispozici i další buffery rendering targets OpenGL: GL_AUXi pixel buffer (pbuffer) kreslení přímo do texturové paměti (rychlejší než glcopyteximage*()) rozšíření WGL_ARB_pbuffer
7 Fragmentové operace závěrečná fáze Upotřebení fragmentu ( Per- Fragment Operations ), za fragmentovým procesorem pořadí fragmentových operací: 1. scissor test 2. alpha test 3. stencil test 4. depth test 5. blending 6. dithering 7. logická operace
8 Jednoduché testy scissor test : rychlý a jednoduchý test obdélníková oblast na obrazovce (HW implementace) alpha test : rychlý test porovnání α-složky daného fragmentu s referenční hodnotou mohu zadat porovnávací operaci (GL_NEVER, GL_LEQUAL,...)
9 Šablona = stencil buffer další buffer velikosti obrazovky typicky 1 až 8 bitů na pixel může omezovat kreslení do obrazového bufferu (ruší celé další zpracování fragmentu) uživatelské nastavení zápisu do stencil-bufferu uživatelské nastavení stencil-testu OpenGL: různé režimy zápisu pro tři možné stavy: 1. fragment neprošel stencil-testem 2. fragment prošel stencil-testem, ale ne depth-testem 3. fragment prošel oběma testy
10 Operace s šablonou modifikace šablony (pro každý z předchozích režimů): GL_KEEP, GL_ZERO, GL_REPLACE, GL_INVERT GL_INCR, GL_INCR_WRAP, GL_DECR, GL_DECR_WRAP nastavení stencil testu: porovnávání se zadanou referenční hodnotou GL_NEVER, GL_ALWAYS, GL_LESS, GL_LEQUAL, použití šablony: víceprůchodové algoritmy vrhání stínů, zobrazování CSG, odraz ve vodě, průhled skrz portál, výhled z kokpitu,...
11 Poloprůhlednost alpha blending kombinace několika pixelů s různým stupněm pokrytí průhledností ( transparency ) poloprůhledné objekty (např. i billboards, imposters) vyhlazování anti-aliasing (okrajové pixely jsou pokryté jen částečně) buffer může držet neprůhlednost ( opacity ) α nebo A ( alpha ): velikost jako ostatní složky (formát pixelu RGBA) s průhledností se může pracovat i při bufferu RGB: kreslení odzadu dopředu se zapnutým depth-bufferem
12 Poloprůhlednost - skládání skládání (kompozice) poloprůhledných pixelů: v praxi se používají jen binární operace (sériové zprac.) lineární kombinace složek RGB[A] koeficienty této kombinace lze zadávat podle potřeby např. v OpenGL lze zadat zvláštní koeficienty pro zdroj i cíl, pro barvu i α-kanál viz α-operace (OVER, ATOP, HELD_OUT_BY,...) přednáška PGR007 (Pokročilá 2D grafika)
13 Kombinace s průhlednými objekty záleží na pořadí vykreslování! při neuspořádaném kreslení není možné správně spočítat výslednou barvu (ale průhlednost ano..) obyčejně se praktikuje kreslení odzadu dopředu univerzální postup pro kombinaci neprůhledných a poloprůhledných objektů ve 3D scéně: nepotřebuji obrazový buffer RGBA, stačí RGB: 1. nakreslím v libovolném pořadí neprůhledné objekty 2. vypnu zápis do depth-bufferu (zůstanou staré hodnoty) 3. kreslím poloprůhledné objekty odzadu dopředu, jako α-operaci nastavím OVER (viditelnost se testuje)
14 Anti-aliasing HW implementace anti-aliasingu základní primitiva (body, úsečky, trojúhelníky) mohou mít analytický výpočet měkkých okrajů někdy je pro anti-aliasing potřeba používat RGBA buffery uživatelský anti-aliasing: multisampling - kreslení několika obrázků přes sebe (s vzájemným malým subpixelovým posunutím) OpenGL: stavová proměnná GL_SAMPLE_BUFFERS okénko se schopností vícenásobného kreslení (přes akumulační buffer) někdy se musí zapnout korektní výpočet pokrytí poloprůhledných fragmentů v multisamplingu
15 Akumulační buffer musí být pro něj HW podpora (další buffer navíc) použití: anti-aliasing (přes multisampling viz výše) rozmazání pohybem ( motion blur ) simulace hloubky ostrosti objektivu měkké vržené stíny technika: nastavení akumulačního bufferu vícenásobné kreslení scény (celé/části, podle potřeby) po každém kreslení: přenos do akumulač. bufferu (příp. nastavení multiplikativního a aditivního faktoru)
16 Výpočet osvětlení na GPU jednoduchý světelný model (Phong) ambient okolní složka světla diffuse difusní odraz (dokonale matné těleso, Lambertův, cosinový zářič) specular lesklý odraz světla (Phong) ve vrcholech musí být zadány normálové vektory možnost počítat je automaticky na GPU? primární (difusní) a sekundární (lesklá) barvy a další materiálové konstanty zadání polohy a parametrů světelných zdrojů někdy jen omezený počet zdrojů světla (kvůli HW)
17 Světelné zdroje bodový zdroj všesměrový, v konečné vzdálenosti směrový zdroj rovnoběžné paprsky = v nekonečnu reflektor ( spotlight ) směrové světlo v konečné vzdálenosti intenzita ubývá při odklonu od osy mezní úhel GL_SPOT_CUTOFF SPOT_CUTOFF L
18 Útlum zdroje všechny zdroje jsou zeslabovány podle vzdálenosti kvadratický polynom 1 Att d = k C k L d k Q d 2 reflektor je navíc tlumen úhlem odklonu od osy: Spot L, V = cos LV SE L osa reflektoru V směrový vektor od zdroje k objektu SE GL_SPOT_EXPONENT
19 Celkový výpočet osvětlení primární barva (difusní světlo): Pri = Emiss mat Amb lightmodel Amb mat N i=1 Att i [ Amb light Amb mat cos Diff light Diff mat ] i sekundární barva (odlesk): nemusí být implementována aplikuje se až po texturování N Sec = Spec mat i=1 [ Att cos shininess Spec light ] i
20 Literatura Tomas Akenine-Möller, Eric Haines: Real-time rendering, 2 nd edition, A K Peters, 2002, ISBN: OpenGL ARB: OpenGL Programming Guide, 4 th edition, Addison-Wesley, 2004, ISBN: J. Žára, B. Beneš, J. Sochor, P. Felkel: Moderní počítačová grafika, 2. vydání, Computer Press, 2005, ISBN:
Textury v real-time grafice. 2004-2005 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz
Textury v real-time grafice 2004-2005 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz Textury vylepšují vzhled povrchu těles modifikace barvy ( bitmapa ) dojem hrbolatého
Výpočet vržených stínů
Výpočet vržených stínů 1996-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Shadows 2016 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 18 Metody vícenásobný
Osvětlování a stínování
Osvětlování a stínování Pavel Strachota FJFI ČVUT v Praze 21. dubna 2010 Obsah 1 Vlastnosti osvětlovacích modelů 2 Světelné zdroje a stíny 3 Phongův osvětlovací model 4 Stínování 5 Mlha Obsah 1 Vlastnosti
Distribuované sledování paprsku
Distribuované sledování paprsku 1996-2015 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz DistribRT 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 24 Distribuované
Rekurzivní sledování paprsku
Rekurzivní sledování paprsku 1996-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 21 Model dírkové kamery 2 / 21 Zpětné sledování paprsku L D A B C 3 / 21 Skládání
Pokročilé osvětlovací techniky. 2005 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz
Pokročilé osvětlovací techniky 2005 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz Obsah nefotorealistické techniky hrubé tónování kreslení obrysů ( siluety ) složitější
Pokročilé techniky Josef Pelikán, MFF UK Praha
Pokročilé techniky 2004-2005 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz Obsah vylepšení osvětlovacího modelu dynamické mapy okolí ( environment maps ) generování
Reprezentace 3D modelu
Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 1/25 Reprezentace 3D modelu Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké
Fyzikálně založené modely osvětlení
Fyzikálně založené modely osvětlení 1996-2015 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz Physical 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 31 Historie
Práce na počítači. Bc. Veronika Tomsová
Práce na počítači Bc. Veronika Tomsová Barvy Barvy v počítačové grafice I. nejčastější reprezentace barev: 1-bitová informace rozlišující černou a bílou barvu 0... bílá, 1... černá 8-bitové číslo určující
Zobrazování a osvětlování
Zobrazování a osvětlování Petr Felkel Katedra počítačové grafiky a interakce, ČVUT FEL místnost KN:E-413 na Karlově náměstí E-mail: felkel@fel.cvut.cz S použitím materiálů Bohuslava Hudce, Jaroslava Sloupa
Photon-Mapping Josef Pelikán CGG MFF UK Praha.
Photon-Mapping 2009-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Photon-mapping 2016 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 25 Základy Photon-mappingu
Úvod Typy promítání Matematický popis promítání Implementace promítání Literatura. Promítání. Pavel Strachota. FJFI ČVUT v Praze
Promítání Pavel Strachota FJFI ČVUT v Praze 30. března 2011 Obsah 1 Úvod 2 Typy promítání 3 Matematický popis promítání 4 Implementace promítání Obsah 1 Úvod 2 Typy promítání 3 Matematický popis promítání
Počítačová grafika 1 (POGR 1)
Počítačová grafika 1 (POGR 1) Pavel Strachota FJFI ČVUT v Praze 8. října 2015 Kontakt Ing. Pavel Strachota, Ph.D. Katedra matematiky Trojanova 13, místnost 033a E-mail: WWW: pavel.strachota@fjfi.cvut.cz
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2008 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz NPGR004, intersection.pdf 2008 Josef Pelikán, http://cgg.ms.mff.cuni.cz/~pepca
HDR obraz (High Dynamic Range)
HDR obraz (High Dynamic Range) 2010-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 24 Velká dynamika obrazu světlé partie (krátká expozice) tmavé partie (dlouhá
2D grafika. Jak pracuje grafik s 2D daty Fotografie Statické záběry Záběry s pohybem kamery PC animace. Počítačová grafika, 2D grafika 2
2D grafika Jak pracuje grafik s 2D daty Fotografie Statické záběry Záběry s pohybem kamery PC animace Počítačová grafika, 2D grafika 2 2D grafika PC pracuje s daným počtem pixelů s 3 (4) kanály barev (RGB
Programování shaderů GLSL
Programování shaderů GLSL Příklad vertex shader Tutor1-Flat Změna geometrie ve VS Nastavení z podle hodnoty získané z aplikace uniform App: loc=gl.glgetuniformlocation(sp,"ftime0_x"); gl.gluniform1f(loc,time);
Úvod do počítačové grafiky
Úvod do počítačové grafiky elmag. záření s určitou vlnovou délkou dopadající na sítnici našeho oka vnímáme jako barvu v rámci viditelné části spektra je člověk schopen rozlišit přibližně 10 milionů barev
7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem
7 Transformace 2D Studijní cíl Tento blok je věnován základním principům transformací v rovinné grafice. V následujícím textu bude vysvětlen rozdíl v přístupu k transformacím u vektorového a rastrového
Reflections, refractions, interreflections
:: gs Reflections, refractions, interreflections Odrazy a lomy světla Grafické systémy David Sedláček 2004 :: fyzika Zákon odrazu Lom světla Snellův zákon Fresnelova rovnice poměr prošlého a odraženého
B_PPG PRINCIPY POČÍTAČOVÉ GRAFIKY
B_PPG PRINCIPY POČÍTAČOVÉ GRAFIKY RNDr. Jana Štanclová, Ph.D. jana.stanclova@ruk.cuni.cz ZS 2/0 Z Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah seminářů 03.10.2011 [1]
11 Zobrazování objektů 3D grafiky
11 Zobrazování objektů 3D grafiky Studijní cíl Tento blok je věnován základním algoritmům zobrazení 3D grafiky. Postupně budou probrány základní metody projekce kolmé promítání, rovnoběžné promítání a
Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
3D počítačová grafika na PC. 2003 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/
3D počítačová grafika na PC 2003 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/ Pokroky v hardware 3D akcelerace běžná i v konzumním sektoru zaměření na hry, multimedia vzhled kvalita prezentace
Počítačová grafika 2 (POGR2)
Počítačová grafika 2 (POGR2) Pavel Strachota FJFI ČVUT v Praze 19. února 2015 Kontakt Ing. Pavel Strachota, Ph.D. Katedra matematiky Trojanova 13, místnost 033a E-mail: pavel.strachota@fjfi.cvut.cz WWW:
Jana Dannhoferová Ústav informatiky, PEF MZLU
Počítačová grafika 1. Definice oblasti souvisí: a) s definováním množiny všech bodů, které náleží do hranice a zároveň do jejího vnitřku b) s popisem její hranice c) s definováním množiny všech bodů, které
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Intersection 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 26 Průsečík
Fakulta informačních technologíı. IZG cvičení 6. - Zobrazování 3D scény a základy OpenGL 1 / 38
IZG cvičení 6. - Zobrazování 3D scény a základy OpenGL Tomáš Milet Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké učení technické Brno IZG cvičení 6. - Zobrazování 3D scény
Návod k použití softwaru Solar Viewer 3D
Návod k použití softwaru Solar Viewer 3D Software byl vyvinut v rámci grantového projektu Technologie a systém určující fyzikální a prostorové charakteristiky pro ochranu a tvorbu životního prostředí a
Realistický rendering
Realistický rendering 2010-2017 Josef Pelikán, CGG MFF UK http://cgg.mff.cuni.cz/ http://cgg.mff.cuni.cz/~pepca/ Festival fantazie, Chotěboř, 4. 7. 2017 1 / 47 Obsah přednášky co je realistický rendering?
Visualizace objemových dat
Visualizace objemových dat 1996-2009 Josef Pelikán CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz Visualizace 2009 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 28 průmyslové
Zobrazovací řetězec a obrazová paměť, operace s fragmenty
Zobrazovací řetězec a obrazová paměť, operace s fragmenty Petr Felkel Katedra počítačové grafiky a interakce, ČVUT FEL místnost KN:E-413 na Karlově náměstí E-mail: felkel@fel.cvut.cz S použitím materiálů
PB001: Úvod do informačních technologíı
PB001: Úvod do informačních technologíı Luděk Matyska Fakulta informatiky Masarykovy univerzity podzim 2013 Luděk Matyska (FI MU) PB001: Úvod do informačních technologíı podzim 2013 1 / 29 Obsah přednášky
Multimediální systémy. 11 3d grafika
Multimediální systémy 11 3d grafika Michal Kačmařík Institut geoinformatiky, VŠB-TUO Osnova přednášky Princip 3d objekty a jejich reprezentace Scéna a její osvětlení Promítání Renderování Oblasti využití
Základy OpenGL Josef Pelikán CGG MFF UK Praha. OpenGL / 34
Základy OpenGL 2003-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 34 Pokroky v hardware 3D akcelerace běžná i v konzumním sektoru hry, multimedia, i mobilní
Základy 3D modelování a animace v CGI systémech Cinema 4D C4D
EVROPSKÝ SOCIÁLNÍ FOND Základy 3D modelování a animace v CGI systémech Cinema 4D C4D PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Mgr. David Frýbert 2013 CGI systémy Computer - generated imagery - aplikace
Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010
Ing. Jan Buriánek (ČVUT FIT) Reprezentace bodu a zobrazení BI-MGA, 2010, Přednáška 2 1/33 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické
Reprezentace bodu, zobrazení
Reprezentace bodu, zobrazení Ing. Jan Buriánek VOŠ a SŠSE P9 Jan.Burianek@gmail.com Obsah Témata Základní dělení grafických elementů Rastrový vs. vektorový obraz Rozlišení Interpolace Aliasing, moiré Zdroje
Přednáška kurzu MPOV. Barevné modely
Přednáška kurzu MPOV Barevné modely Ing. P. Petyovský (email: petyovsky@feec.vutbr.cz), kancelář E512, tel. 1194, Integrovaný objekt - 1/11 - Barvy v počítačové grafice Barevné modely Aditivní modely RGB,
Geometrické transformace pomocí matic
Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace
9 Prostorová grafika a modelování těles
9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.
Fotorealistická syntéza obrazu Josef Pelikán, MFF UK Praha
Fotorealistická sntéza obrazu 2006 Josef Pelikán MFF UK Praha Josef.Pelikan@mff.cuni.cz 10.4.2006 Obsah přednášk cíle a aplikace realistického zobrazování historie přehled používaných přístupů teoretické
Visualizace objemových dat
Visualizace objemových dat 1996-2015 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz 1 / 37 Průmyslové aplikace medicína počítačová tomografie (CT) rentgen nukleární
13 Barvy a úpravy rastrového
13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody
Fotonové mapy. Leonid Buneev
Fotonové mapy Leonid Buneev 21. 01. 2012 Popis algoritmu Photon mapping algoritmus, který, stejně jako path tracing a bidirectional path tracing, vyřeší zobrazovací rovnice, ale podstatně jiným způsobem.
DATOVÉ FORMÁTY GRAFIKY, JEJICH SPECIFIKA A MOŽNOSTI VYUŽITÍ
DATOVÉ FORMÁTY GRAFIKY, JEJICH SPECIFIKA A MOŽNOSTI VYUŽITÍ UMT Tomáš Zajíc, David Svoboda Typy počítačové grafiky Rastrová Vektorová Rastrová grafika Pixely Rozlišení Barevná hloubka Monitor 72 PPI Tiskárna
Vývoj počítačové grafiky
Vývoj počítačové grafiky Počítačová grafika Základní pojmy Historie ASCII Art 2D grafika Rastrová Vektorová 3D grafika Programy Obsah Počítačová grafika obor informatiky, který používá počítače k tvorbě
Zobrazování barev. 1995-2015 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/
Zobrazování barev 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ ColorRep 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 18 Barevné schopnosti HW True-color
3D grafika. Proces tvorby sekvence s 3D modely Sbírání údajů na natáčecím place Motion capture Matchmoving Compositing
3D grafika Proces tvorby sekvence s 3D modely Sbírání údajů na natáčecím place Motion capture Matchmoving Compositing Počítačová grafika, 3D grafika 2 3D grafika CGI = computer graphic imagery Simulace
Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.
Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu
Programovatelné shadery a jazyk Cg. Petr Kmoch
Programovatelné shadery a jazyk Cg Petr Kmoch Historie Softwarové výpoèty Pevná pipeline Volitelné moduly Programovatelné shadery 11.12.2002 Petr Kmoch, MFF UK 2 Grafická pipeline Triangulace scény Vrcholy
Přímé zobrazování objemových dat DVR
Přímé zobrazování objemových dat DVR 2009-2016 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz DVR 2016 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 26 Metody přímého
1.8. Úprava uživatelského prostředí AutoCADu 25 Přednostní klávesy 25 Pracovní prostory 25
Obsah 1 Novinky v AutoCADu 2006 11 1.1. Kreslení 11 Dynamické zadávání 11 Zvýraznění objektu po najetí kurzorem 12 Zvýraznění výběrové oblasti 13 Nový příkaz Spoj 14 Zkosení a zaoblení 15 Vytvoření kopie
Malířův algoritmus. 1995-2015 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 15
Malířův algoritmus 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 15 Malířův algoritmus kreslení do bufferu video-ram, rastrová tiskárna s bufferem vyplňování
Watkinsův algoritmus řádkového rozkladu
Watkinsův algoritmus řádkového rozkladu 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 15 Watkinsův algoritmus nepotřebuje výstupní buffer rastrový výstup
Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU
Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
ak. rok 2013/2014 Michal Španěl, spanel@fit.vutbr.cz 24.2.2014
Zadání projektu Texturování Základy počítačové grafiky (IZG) ak. rok 2013/2014 Michal Španěl, spanel@fit.vutbr.cz 24.2.2014 1 První seznámení Cílem projektu je pochopení praktických souvislostí témat přednášek
Připravil: David Procházka. Projekce
15. října 2013, Brno Připravil: David Procházka Projekce Počítačová grafika 2 Projekce Strana 2 / 38 Obsah přednášky 1 Projekce 2 Ortografická projekce 3 Perspektivní projekce 4 Nastavení pohledové matice
1. Vektorové algoritmy jejich výstupem je soubor geometrických prvků, např.
Kapitola 5 Řešení viditelnosti Řešit viditelnost ve scéně umí většina grafických programů. Cílem je určit ty objekty, resp. jejich části, které jsou viditelné z určitého místa. Tyto algoritmy jsou vždy
AXONOMETRIE - 2. část
AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.
Hardware pro počítačovou grafiku NPGR019
Hardware pro počítačovou grafiku NPGR019 Matematika pro real-time grafiku Josef Pelikán Jan Horáček http://cgg.mff.cuni.cz/ MFF UK Praha 2012 Obsah 1 Homogenní souřadnice, maticové transformace Převod
Transformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých
Surfels: Surface Elements as Rendering Primitives
Surfels: Surface Elements as Rendering Primitives Výzkum v počítačové grafice Martin Herodes Nevýhody plošných primitiv Reprezentace složitých objektů pomocí plošných primitiv (trojúhelníků, čtyřúhelníků
Anti Aliasing. Ondřej Burkert. atrey.karlin.mff.cuni.cz/~ondra/ ~ondra/stranka
Anti Aliasing Ondřej Burkert atrey.karlin.mff.cuni.cz/~ondra/ ~ondra/stranka Úvod Co je to anti - aliasing? Aliasing = vznik artefaktů v důsledku podvzorkování při vzorkování (sampling) obrazu podvzorkování
Kde se používá počítačová grafika
POČÍTAČOVÁ GRAFIKA Kde se používá počítačová grafika Tiskoviny Reklama Média, televize, film Multimédia Internetové stránky 3D grafika Virtuální realita CAD / CAM projektování Hry Základní pojmy Rastrová
Jasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
PRINCIPY POČÍTAČOVÉ GRAFIKY metodický list č. 1
metodický list č. 1 Barvy v počítačové grafice Základním cílem tohoto tematického celku je seznámení se základními reprezentacemi barev a barevnými modely. 1. Reprezentace barev v počítačové grafice 2.
Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech."
Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech." Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Na
7. OSVĚTLENÍ. Cíl Po prostudování této kapitoly budete znát. Výklad. 7. Osvětlení
7. OSVĚTENÍ Cíl Po prostudování této kapitoly budete znát základní pojmy při práci se světlem charakteristické fyzikální vlastnosti světla důležité pro práci se světlem v počítačové grafice základní operace
12 Metody snižování barevného prostoru
12 Metody snižování barevného prostoru Studijní cíl Tento blok je věnován základním metodám pro snižování barevného rozsahu pro rastrové obrázky. Postupně zde jsou vysvětleny důvody k použití těchto algoritmů
Deformace rastrových obrázků
Deformace rastrových obrázků 1997-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Warping 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 22 Deformace obrázků
Reprezentace 3D scény
Reprezentace 3D scény 1995-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 36 Metody reprezentace 3D scén objemové reprezentace přímé informace o vnitřních
Satori. Uživatelský manuál
Satori Uživatelský manuál Obsah Satori...1 1. Program... 3 1.1 Cíle hry... 3 1.2 Požadavky...3 1.3 Instalace... 4 1.4 Ovládání... 4 1.5 Grafika...4 1.6 Zvuky...4 1.7 Soubory...4 1.8 Menu...5 1.9 Nastavení...
Fergusnova kubika, která je definována pomocí bodu P1, vektoru P1P2, bodu P3 a vektoru P3P4
Která barva nepatří do základních barev prostoru RGB? a. Černá b. Zelená c. Modrá d. Červená Úloha 2 Jakým minimálním počtem bodů je jednoznačně určena interpolační křivka 5. řádu? a. 6 b. 3 c. 5 d. 7
Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN
Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940
Barvy a barevné modely. Počítačová grafika
Barvy a barevné modely Počítačová grafika Barvy Barva základní atribut pro definici obrazu u každého bodu, křivky či výplně se definuje barva v rastrové i vektorové grafice všechny barvy, se kterými počítač
Vektorové grafické formáty
Vektorové grafické formáty Semestrální práce na předmět KAPR Fakulta stavební ČVUT 28.5.2009 Vypracovali: Petr Vejvoda, Ivan Pleskač Obsah Co je to vektorová grafika Typy vektorových formátů Souborový
Realtime zobrazování vodní hladiny na dnešních GPU. Jan Horáček
Realtime zobrazování vodní hladiny na dnešních GPU Jan Horáček Obsah Simulace přírodních efektů Statické techniky Dynamické techniky Implementace Otázky a ukázky demoprogramů Simulace přírodních efektů
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND
Webové stránky. 16. Obrázky na webových stránkách, optimalizace GIF. Datum vytvoření: 12. 1. 2013. str ánk y. Vytvořil: Petr Lerch. www.isspolygr.
Webové stránky 16. Vytvořil: Petr Lerch www.isspolygr.cz Datum vytvoření: 12. 1. 2013 Webové Strana: 1/6 Škola Ročník Název projektu Číslo projektu Číslo a název šablony Autor Tématická oblast Název DUM
Geekovo Minimum. Počítačové Grafiky. Nadpis 1 Nadpis 2 Nadpis 3. Božetěchova 2, Brno
Geekovo Minimum Nadpis 1 Nadpis 2 Nadpis 3 Počítačové Grafiky Jméno Adam Příjmení Herout Vysoké Vysoké učení technické učení technické v Brně, v Fakulta Brně, Fakulta informačních informačních technologií
Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA
Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic
Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy
1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné
Novinky verze 5. Od verze 5.0 je v programu PRO100 implementován nový vizualizační modul založený na technologii Open GL.
Novinky verze 5 Od verze 5.0 je v programu PRO100 implementován nový vizualizační modul založený na technologii Open GL. Podporované grafické 3D karty: - NVIDIA GeForce 9600 a novější ATI Radeon X1900
Circular Harmonics. Tomáš Zámečník
Circular Harmonics Tomáš Zámečník Úvod Circular Harmonics Reprezentace křivky, která je: podmonožinou RxR uzavřená funkcí úhlu na intervalu Dále budeme hovořit pouze o takovýchto křivkách/funkcích
Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
Co je grafický akcelerátor
Co je grafický akcelerátor jednotka v osobním počítači či herní konzoli přebírá funkce hlavního procesoru pro grafické operace graphics renderer odlehčuje hlavnímu procesoru paralelní zpracování vybaven
Pokročilé metody fotorealistického zobrazování
Pokročilé metody fotorealistického zobrazování 14.5.2013 Úvod Motivace Základní informace Shrnutí metod Představení programu RayTracer Reference Motivace Základní informace Motivace snaha o vytvoření realistických
Optika. Zápisy do sešitu
Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá
Hierarchický model. 1995-2013 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16
Hierarchický model 1995-2013 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16 Hierarchie v 3D modelování kompozice zdola-nahoru složitější objekty se sestavují
Základy renderování. 11.1 Úvod. 11.2 Nastavení materiálů
přednáška 10 11 Základy renderování 11.1 Úvod Proces renderování se využívá pro tvorbu vizualizací, viz. 1. přednáška. Rhinoceros je shopné pouze základního, ne příliš realistického renderování. Z tohoto
Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování
problematika geometrického modelování manifold, Eulerova rovnost základní typy modelů hranový model stěnový model objemový model datové reprezentace modelů základní metody geometrického modelování těleso
Osvědčené postupy pro zpracování tiskových dat s vynikající kvalitou tisku
Osvědčené postupy pro zpracování tiskových dat s vynikající kvalitou tisku Arnošt Nečas Marketing manager GRAFIE CZ Jan Štor Odborný konzultant GRAFIE CZ Agenda Základy digitálních obrazů Kvalita obrazu
Datové struktury pro prostorové vyhledávání
Datové struktury pro prostorové vyhledávání 1998-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ SpatialData 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1
Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.
1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením
Metamorfóza obrázků Josef Pelikán CGG MFF UK Praha
Metamorfóza obrázků 1998-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Morphing 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 21 Metamorfóza obrázků -
scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel
Změna velikosti obrázku Převzorkování pomocí filtrů Ačkoliv jsou výše uvedené metody mnohdy dostačující pro běžné aplikace, občas je zapotřebí dosáhnout lepších výsledků. Pokud chceme obrázky zvětšovat
Počítačová grafika letem světem
1 Počítačová grafika letem světem 2002 Jiří Sochor FI MU Brno sochor@fi.muni.cz http://www.fi.muni.cz/usr/sochor/ 2 Analýza a syntéza obrazu (obrazová) data modelová ní modely analýza (obrazu) syntéza
6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje