Reprezentace 3D modelu

Rozměr: px
Začít zobrazení ze stránky:

Download "Reprezentace 3D modelu"

Transkript

1 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 1/25 Reprezentace 3D modelu Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010 Multimediální a grafické aplikace (BI-MGA), ZS 2010/11, Přednáška 8 MI-POA Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

2 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 2/25 Povrchová reprezentace zdaleka nejčastější reprezentace (podporovaná grafickým hardwarem) reprezentuje se povrch modelu (žádná informace o vnitřku) typicky pomocí trojúhelníkové sítě geometrie a topologie (rozdíl?)

3 Povrchová reprezentace Jak uložit trojúhelníkovou síť v paměti? pro každý trojúhelník seznam vrcholů neefektivní Lepší způsob: pole vrcholů V (bodů A 3 ) pole trojúhelníků T (pole hran ne vždy nutné) Trojúhelník dán trojicí indexů do V... nedochází k duplikaci vrcholů Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 3/25

4 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 4/25 Příklad V 2 V 3 T 2 T 3 T 1 V 1 V5 V 4 T[1] = {1,5,2} T[2] = {2,5,3} T[3] = {3,5,4}

5 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 5/25 Stěna trojúhelníku Objekt typicky uzavřený nikdy nevidíme dovnitř každý trojúhelník má dvě stěny: přední a zadní obvyklá optimalizace: uvažovat pouze jednu stěnu V 1 V 2 normála Jak se určí zdali je stěna přední nebo zadní? Podle zvolené konvence a normálového vektoru. V 3

6 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 6/25 Stěna trojúhelníku Jak spočteme normálu? Vektorový součin: (V 3 -V 1 )(V 2 -V 1 ) Poznámka: (V 2 -V 1 )(V 3 -V 1 ) je opačně orientovaný vektor V 2 (V 1, V 2, V 3 )... jedna stěna (V 1, V 3, V 2 )... druhá stěna V 1 normála Stěna trojúhelníku je dána pořadím vrcholů (resp. jejich permutací) V 3

7 CCW konvence CCW: obvykle používaná konvence Hledíme-li na stěnu ze směru normály, vidíme vrcholy uspořádány proti směru hodinových ručiček (Counter- ClockWise) Alternativou je CW (po směru, ne tak časté) Příklad: CCW (V 1, V 3, V 2 ) (V 3, V 2, V 1 ) (V 2, V 1, V 3 ) CW: (V 1, V 2, V 3 ) (V 2, V 3, V 1 ) (V 3, V 2, V 1 ) Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 7/25 V 1 V 2 V 3 normála

8 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 8/25 Projektivní transformace promítá 3D svět do 2D roviny (obrazovka) na podobném principu funguje lidský zrak C P V V - 3D vrchol P průmět V C střed projekce d vzdálenost průmětny d průmětna

9 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 9/25 Projektivní transformace Lze ji popsat následující maticí: P / d 0 Pozor: Nejedná se o afinní transformaci! Projekcí (x, y, z, 1) T je (x, y, z, z/d) T, což je vektor v homogenních souřadnicích. Převod na afinní souřadnice: skalárně vynásobíme d/z Výsledek: (xd/z, yd/z, d, 1) T (Cvičení: Odvoďte tentýž vztah z předchozího obr.)

10 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 10/25 Kreslení povrchové rep. Promítnout trojúhelníky do průmětny a vyplnit je Problém: viditelnost Možná řešení: Malířův algoritmus setřiď trojúhelníky odzadu dopředu a v tomto pořadí kresli ne vždy lze takto setřídit (příklad?) Z-buffer (paměť hloubky) kresli trojúhelníky v libovolném pořadí pomocné pole Z-buffer (stejné rozlišení jako průmětna) inicializace: +nekonečno ve všech pixelech Z-bufferu před nakreslením pixelu se porovná jeho hloubka (Z) s aktuální hodnotou v Z-bufferu je-li menší, přepíšeme barvu a hodnotu v Z-bufferu jinak neděláme nic (bod je zakrytý)

11 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 11/25 Z-Buffer (paměť hloubky) Omezená přesnost počet bitů dán grafickým HW rozlišení ovlivňují ořezávací roviny (blízká a vzdálená) Pixely se překreslují neefektivní Optimalizace: odstranění odvrácených stěn odstranění trojúhelníku mimo zorný jehlan early Z-culling blízká ořezávací rovina vzdálená ořezávací rovina

12 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 12/25 Odstranění odvrác. stěn Trojúhelník má maximálně dvě stěny typicky jen jednu (pro uzavřené objekty) Známe-li pohledový vektor v d R 3, můžeme odstranit odvrácené stěny: Stěna s normálou n je odvrácená právě když skalární součin <v d,n> je kladný v d n - normal triangle (projection)

13 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 13/25 Ořezávání zorným jehlanem Příklad: rozsáhlá scéna (např. virtuální město) vidíme vždy jen malou část Viditelná část je obsažená v tzv. zorném jehlanu (je dán středem projekce, zornými úhly a blízkou/vzdálenou rovinou) Cíl: rychle zahodit trojúhelníky mimo zorný jehlan Pro statickou scénu: vytvořit hierarchii obalových těles (např. koulí) spočítat průsečíky koulí se zorným jehlanem podobný algoritmus jako detekce kolizí více o detekci kolizí v dalších přednáškách

14 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 14/25 Osvětlovací modely klasický osvětlovací model: Phongův říká jak spočítat barvu nasvíceného materiálu ke světlu normála odražené světlo pozorovatel

15 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 15/25 Phongův osvětlovací model L s = C L s cos h () (odražená složka) L d = C C L d cos() (difúzní složka) L a = C a (ambientní osvětlení) L = L a + L d + L s (výsledek) kde C je barva materiálu C L je barva světelného zdroje C C L násobení po složkých (nikoliv skalární součin) s, d, a, h... materiálové konstanty s... odrazivost d... koeficient difúzního osvětlení a... okolní osvětlení (ambient) h... koeficient ostrosti odrazu (např. zrcadlo - vysoké h)

16 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 16/25 Hladké stínování Nevýhoda povrchové reprezentace: hrany někdy potřebujeme hladký objekt (např. koule) Trik: uvádět normály ve vrcholech nejde o normálu v pravém slova smyslu používá se místo normály trojúhelníka lze ji interpretovat jako normálu aproximované plochy (např. opět koule) Vyhlazovací skupiny: jen některé části hladké (např. válec)

17 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 17/25 Stínovací metody vyčíslování osvětlovacího modelu je časově náročné Typické otimalizace Konstantní stínování: osvětlovací model se spočítá jednou pro celý trojúhelník vyplní se konstantní barvou Gouraudovo stínování: osvětlovací model se vyhodnotí ve vrcholech interpoluje se barva Phongovo stínování: osvětlovací model se vyhodnocuje v každém pixelu interpolují se normály vrcholů nejpřesnější, dostatečně rychlý na moderním HW

18 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 18/25 Konstantní stínování viditelné plošky nehladké Stínovací metody Gouraudovo stínování hladké difúzní materiál Phongovo stínování hladké i lesklý materiál

19 Graf scény Skládá se z následujících prvků: 3D objekty uložené v hierarchické struktuře (DAG) terminologie: uzly, listy, otec, syn, kořen lze přirozeně skládat každý objekt ve svém lokálním souřadném systému dáne transformační matice z otce na syna udává relativní polohu objektů světový souřadný systém souř. systém kořene více kopií jednoho objektu je možné měnit atributy (např. materiál) relativně levná variace (objekt se neukládá znovu) Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 19/25

20 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 20/25 Transformace normál Problém: normálové vektory přestanou být kolmé tečná rovina zůstavá tečnou M změna měřítka v ose x M M t M matice

21 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 21/25 Transformace normál Normála je vektor, tj. n = (n 1, n 2, n 3, 0) T (transformuje se pouze M 1, žádné posunutí) Mn M 0 tn 10 M1 0 1 n Řešení: transformovat normály M 1 -T (transpozice inverzní matice) Platí: M 1 -T = M 1 (pouze pro rotaci či reflexi) (M 1-1 ) T = (M 1T ) -1 toto nás opravňuje psát M 1 -T

22 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 22/25 Textury významně vylepší vzhled modelu princip: modulace povrchových vlastností typicky barvy normály (bump mapping zdánlivá struktura povrchu) dále: neprůhlednost, odrazivost,... 3D (objemové) textury také možné, ale více paměti Mapování textur zobrazení z povrchu (v 3D) na 2D obrázek texturové souřadnice: U, V ( UV-mapping) (U, V) dány v každém vrcholu lineárně se interpolují uvnitř trojúhelníku lze kombinovat více textur (barva a normála)

23 Příklad textury Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 23/25

24 Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 24/25 Alfa kanál a neprůhlednost barevné kanály R, G, B doplněné o typicky stejné počet bitů, ale záleží na HW znamená neprůhlednost = 0... zcela průhledný materiál (neviditelný) = 1... zcela neprůhledný Jak se používá spolu se Z-bufferem? nejdřív vykreslit neprůhledné trojúhelníky setřídit ostatní ( < 1) trojúhelníky ozdadu dopředu vykreslit trojúhelníky s < 1 Míchání barev: S=(R s,g s,b s, s ), D=(R d,g d,b d, d ) Výsledná barva (a alfa kanál) = F s S + F d D kde F s a F d jsou míchací koeficienty

25 Děkuji Dotazy Ing. Jan Buriánek (ČVUT FIT) Reprezentace 3D modelu BI-MGA, 2010, Přednáška 8 25/25

Osvětlování a stínování

Osvětlování a stínování Osvětlování a stínování Pavel Strachota FJFI ČVUT v Praze 21. dubna 2010 Obsah 1 Vlastnosti osvětlovacích modelů 2 Světelné zdroje a stíny 3 Phongův osvětlovací model 4 Stínování 5 Mlha Obsah 1 Vlastnosti

Více

Souřadnicové prostory

Souřadnicové prostory Prostor objektu Tr. objektu Tr. modelu Prostor scény Souřadnicové prostory V V x, y z x, y z z -z x, y Tr. objektu V =V T 1 T n M Tr. modelu Tr. scény x, y Tr. pohledu Tr. scény Tr. pohledu Prostor pozorovatele

Více

1. Vektorové algoritmy jejich výstupem je soubor geometrických prvků, např.

1. Vektorové algoritmy jejich výstupem je soubor geometrických prvků, např. Kapitola 5 Řešení viditelnosti Řešit viditelnost ve scéně umí většina grafických programů. Cílem je určit ty objekty, resp. jejich části, které jsou viditelné z určitého místa. Tyto algoritmy jsou vždy

Více

Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010

Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010 Ing. Jan Buriánek (ČVUT FIT) Reprezentace bodu a zobrazení BI-MGA, 2010, Přednáška 2 1/33 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické

Více

Výpočet vržených stínů

Výpočet vržených stínů Výpočet vržených stínů 1996-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Shadows 2016 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 18 Metody vícenásobný

Více

Zobrazování a osvětlování

Zobrazování a osvětlování Zobrazování a osvětlování Petr Felkel Katedra počítačové grafiky a interakce, ČVUT FEL místnost KN:E-413 na Karlově náměstí E-mail: felkel@fel.cvut.cz S použitím materiálů Bohuslava Hudce, Jaroslava Sloupa

Více

Základy 3D modelování a animace v CGI systémech Cinema 4D C4D

Základy 3D modelování a animace v CGI systémech Cinema 4D C4D EVROPSKÝ SOCIÁLNÍ FOND Základy 3D modelování a animace v CGI systémech Cinema 4D C4D PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Mgr. David Frýbert 2013 CGI systémy Computer - generated imagery - aplikace

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

Hierarchický model. 1995-2013 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16

Hierarchický model. 1995-2013 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16 Hierarchický model 1995-2013 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16 Hierarchie v 3D modelování kompozice zdola-nahoru složitější objekty se sestavují

Více

Úvod Typy promítání Matematický popis promítání Implementace promítání Literatura. Promítání. Pavel Strachota. FJFI ČVUT v Praze

Úvod Typy promítání Matematický popis promítání Implementace promítání Literatura. Promítání. Pavel Strachota. FJFI ČVUT v Praze Promítání Pavel Strachota FJFI ČVUT v Praze 30. března 2011 Obsah 1 Úvod 2 Typy promítání 3 Matematický popis promítání 4 Implementace promítání Obsah 1 Úvod 2 Typy promítání 3 Matematický popis promítání

Více

transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]

transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1] [1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do

Více

Geometrické transformace pomocí matic

Geometrické transformace pomocí matic Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Rekurzivní sledování paprsku

Rekurzivní sledování paprsku Rekurzivní sledování paprsku 1996-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 21 Model dírkové kamery 2 / 21 Zpětné sledování paprsku L D A B C 3 / 21 Skládání

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika 1. Definice oblasti souvisí: a) s definováním množiny všech bodů, které náleží do hranice a zároveň do jejího vnitřku b) s popisem její hranice c) s definováním množiny všech bodů, které

Více

11 Zobrazování objektů 3D grafiky

11 Zobrazování objektů 3D grafiky 11 Zobrazování objektů 3D grafiky Studijní cíl Tento blok je věnován základním algoritmům zobrazení 3D grafiky. Postupně budou probrány základní metody projekce kolmé promítání, rovnoběžné promítání a

Více

Matematika pro geometrickou morfometrii (2)

Matematika pro geometrickou morfometrii (2) Ján Dupej (jdupej@cgg.mff.cuni.cz) Laboratoř 3D zobrazovacích a analytických metod Katedra antropologie a genetiky člověka Přírodovědecká fakulta UK v Praze Opakování 2 Opakování 3 Opakování 4 Opakování

Více

Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování

Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování problematika geometrického modelování manifold, Eulerova rovnost základní typy modelů hranový model stěnový model objemový model datové reprezentace modelů základní metody geometrického modelování těleso

Více

Přehled vhodných metod georeferencování starých map

Přehled vhodných metod georeferencování starých map Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního

Více

Precomputed radiance transfer

Precomputed radiance transfer Precomputed radiance transfer Martin Bulant 11. dubna 2011 Reprezentace funkce na sféře Reálnou funkci na sféře G(x) aproximujeme pomocí lineární kombinace lineárně nezávislých bázových funkcí B i (x):

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

Algoritmy výpočetní geometrie

Algoritmy výpočetní geometrie Algoritmy výpočetní geometrie prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)

Více

Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech."

Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: Grafická data jsou u 2D vektorové grafiky uložena ve voxelech. Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech." Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Na

Více

Pokročilé osvětlovací techniky. 2005 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz

Pokročilé osvětlovací techniky. 2005 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz Pokročilé osvětlovací techniky 2005 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz Obsah nefotorealistické techniky hrubé tónování kreslení obrysů ( siluety ) složitější

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz http://robotika.cz/guide/umor07/cs 20. prosince 2007 1 2 3D model světa ProMIS Cvičení hledání domečku Model štěrbinové kamery Idealizovaný jednoduchý model kamery Paprsek světla vychází

Více

MRBT M8. VIDITELNOST OBJEKTŮ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Bc. MARTIN MAŠTERA

MRBT M8. VIDITELNOST OBJEKTŮ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Bc. MARTIN MAŠTERA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY MRBT M8. VIDITELNOST OBJEKTŮ AUTOŘI PRÁCE Bc. JAKUB BERÁNEK Bc. MARTIN MAŠTERA VEDOUCÍ

Více

Reprezentace 3D scény

Reprezentace 3D scény Reprezentace 3D scény 1995-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 36 Metody reprezentace 3D scén objemové reprezentace přímé informace o vnitřních

Více

Android OpenGL. Pokročilé shadery

Android OpenGL. Pokročilé shadery Android OpenGL Pokročilé shadery Struktura programu Reálná aplikace zpravidla obsahuje více než jeden shader Kód pro inicializaci shaderu je dobré mít ve třídě (méně opisování stejného kódu) Shadery není

Více

11 Vzdálenost podprostorů

11 Vzdálenost podprostorů 11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.

Více

Obsah a průběh zkoušky 1PG

Obsah a průběh zkoušky 1PG Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna

Více

Watkinsův algoritmus řádkového rozkladu

Watkinsův algoritmus řádkového rozkladu Watkinsův algoritmus řádkového rozkladu 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 15 Watkinsův algoritmus nepotřebuje výstupní buffer rastrový výstup

Více

Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010

Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010 Ing. Jan Buriánek (ČVUT FIT) GPU a GTC BI-MGA, 2010, Přednáška 10 1/38 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek,

Více

Reflections, refractions, interreflections

Reflections, refractions, interreflections :: gs Reflections, refractions, interreflections Odrazy a lomy světla Grafické systémy David Sedláček 2004 :: fyzika Zákon odrazu Lom světla Snellův zákon Fresnelova rovnice poměr prošlého a odraženého

Více

Afinní transformace Stručnější verze

Afinní transformace Stručnější verze [1] Afinní transformace Stručnější verze je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím body a vektory: afinní prostor využití například v počítačové grafice a)

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu

Více

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u. Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,

Více

Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO

Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO 1 Základní dělení 3D grafika 2D grafika vektorová rastrová grafika 2/29 Vektorová grafika Jednotlivé objekty jsou tvořeny křivkami Využití: tvorba diagramů,

Více

Maticová optika. Lenka Přibylová. 24. října 2010

Maticová optika. Lenka Přibylová. 24. října 2010 Maticová optika Lenka Přibylová 24. října 2010 Maticová optika Při průchodu světla optickými přístroji dochází k transformaci světelného paprsku, vlnový vektor mění úhel, který svírá s optickou osou, paprsek

Více

7.5.3 Hledání kružnic II

7.5.3 Hledání kružnic II 753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou

Více

7. OSVĚTLENÍ. Cíl Po prostudování této kapitoly budete znát. Výklad. 7. Osvětlení

7. OSVĚTLENÍ. Cíl Po prostudování této kapitoly budete znát. Výklad. 7. Osvětlení 7. OSVĚTENÍ Cíl Po prostudování této kapitoly budete znát základní pojmy při práci se světlem charakteristické fyzikální vlastnosti světla důležité pro práci se světlem v počítačové grafice základní operace

Více

Katedra informatiky, Univerzita Palackého v Olomouci. 27. listopadu 2013

Katedra informatiky, Univerzita Palackého v Olomouci. 27. listopadu 2013 Katedra informatiky, Univerzita Palackého v Olomouci 27. listopadu 2013 Rekonstrukce 3D těles Reprezentace trojrozměrných dat. Hledání povrchu tělesa v těchto datech. Představení několika algoritmů. Reprezentace

Více

1 Připomenutí vybraných pojmů

1 Připomenutí vybraných pojmů 1 Připomenutí vybraných pojmů 1.1 Grupa Definice 1 ((Komutativní) grupa). Grupou (M, ) rozumíme množinu M spolu s operací na M, která má tyto vlastnosti: i) x, y M; x y M, Operace je neomezeně definovaná

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII SOUŘADNICOVÉ SOUSTAVY VE FTM hlavní souřadnicové soustavy systém snímkových souřadnic systém modelových

Více

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud

Více

Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010

Ing. Jan Buriánek. Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek, 2010 Ing. Jan Buriánek (ČVUT FIT) GPU a GTC BI-MGA, 2010, Přednáška 11 1/29 Ing. Jan Buriánek Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Jan Buriánek,

Více

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici

Více

Michal Zamboj. January 4, 2018

Michal Zamboj. January 4, 2018 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

Michal Zamboj. December 23, 2016

Michal Zamboj. December 23, 2016 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

Co je grafický akcelerátor

Co je grafický akcelerátor Co je grafický akcelerátor jednotka v osobním počítači či herní konzoli přebírá funkce hlavního procesoru pro grafické operace graphics renderer odlehčuje hlavnímu procesoru paralelní zpracování vybaven

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu

Více

Výpočet průsečíků paprsku se scénou

Výpočet průsečíků paprsku se scénou Výpočet průsečíků paprsku se scénou 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Intersection 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 26 Průsečík

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Metamorfóza obrázků Josef Pelikán CGG MFF UK Praha

Metamorfóza obrázků Josef Pelikán CGG MFF UK Praha Metamorfóza obrázků 1998-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Morphing 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 21 Metamorfóza obrázků -

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

Laserové skenování (1)

Laserové skenování (1) (1) Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským sociálním fondem astátním rozpočtem

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem

7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem 7 Transformace 2D Studijní cíl Tento blok je věnován základním principům transformací v rovinné grafice. V následujícím textu bude vysvětlen rozdíl v přístupu k transformacím u vektorového a rastrového

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ ÚVOD A DESKRIPTIVNÍ GEOMETRIE

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

AXONOMETRIE - 2. část

AXONOMETRIE - 2. část AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.

Více

Počítačová grafika 2 (POGR2)

Počítačová grafika 2 (POGR2) Počítačová grafika 2 (POGR2) Pavel Strachota FJFI ČVUT v Praze 19. února 2015 Kontakt Ing. Pavel Strachota, Ph.D. Katedra matematiky Trojanova 13, místnost 033a E-mail: pavel.strachota@fjfi.cvut.cz WWW:

Více

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném

Více

Analýza napjatosti PLASTICITA

Analýza napjatosti PLASTICITA Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném

Více

Globální matice konstrukce

Globální matice konstrukce Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{

Více

Návod k použití softwaru Solar Viewer 3D

Návod k použití softwaru Solar Viewer 3D Návod k použití softwaru Solar Viewer 3D Software byl vyvinut v rámci grantového projektu Technologie a systém určující fyzikální a prostorové charakteristiky pro ochranu a tvorbu životního prostředí a

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné

Více

Textury v real-time grafice. 2004-2005 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz

Textury v real-time grafice. 2004-2005 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz Textury v real-time grafice 2004-2005 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz Textury vylepšují vzhled povrchu těles modifikace barvy ( bitmapa ) dojem hrbolatého

Více

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r, P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor

Více

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A VEKTORY Vektorem se rozumí množina všech orientovaných úseček, které mají stejnou velikost, směr a orientaci, což vidíme na obr. 1. Jedna konkrétní orientovaná úsečka se nazývá umístění vektoru na obr.

Více

Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.

Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d. Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

Lineární transformace

Lineární transformace Lineární transformace 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.c http://cgg.mff.cuni.c/~pepca/ 1 / 28 Požadavk běžně používané transformace posunutí, otočení, většení/menšení, kosení,..

Více

Výpočet průsečíků paprsku se scénou

Výpočet průsečíků paprsku se scénou Výpočet průsečíků paprsku se scénou 1996-2008 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz NPGR004, intersection.pdf 2008 Josef Pelikán, http://cgg.ms.mff.cuni.cz/~pepca

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

1. Přímka a její části

1. Přímka a její části . Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v

Více

2.4 Výslednice rovinné soustavy sil

2.4 Výslednice rovinné soustavy sil Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.4 Výslednice rovinné soustavy sil Při skládání sil v rovinné soustavě zpravidla definované rovinou X-0-Y

Více

Multimediální systémy. 11 3d grafika

Multimediální systémy. 11 3d grafika Multimediální systémy 11 3d grafika Michal Kačmařík Institut geoinformatiky, VŠB-TUO Osnova přednášky Princip 3d objekty a jejich reprezentace Scéna a její osvětlení Promítání Renderování Oblasti využití

Více

Přednáška. Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012

Přednáška. Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Přednáška Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. 1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením

Více

Deskriptivní geometrie I zimní semestr 2017/18

Deskriptivní geometrie I zimní semestr 2017/18 Deskriptivní geometrie I zimní semestr 2017/18 Rys č. 2 Lineární perspektiva, zrcadlení Pokyny pro vypracování platné pro všechny příklady Pokud není v zadání příkladu uvedeno jinak, zobrazujte pouze viditelné

Více

Obsah. Základy práce s rastry. GIS1-5. cvičení. ČVUT v Praze, Fakulta stavební, katedra mapování a kartografie

Obsah. Základy práce s rastry. GIS1-5. cvičení. ČVUT v Praze, Fakulta stavební, katedra mapování a kartografie ČVUT v Praze, Fakulta stavební, katedra mapování a kartografie říjen 2010 Obsah prezentace 1 2 3 4 Měli bychom umět ovládat prostorové analýzy překryvné (overlay) a bĺızkostní (buffer) funkce umět kombinovat

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více

Matematika I 12a Euklidovská geometrie

Matematika I 12a Euklidovská geometrie Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

Počítačová grafika Radiozita

Počítačová grafika Radiozita Počítačová grafika Radiozita V. Chalupecký chalupec@kmlinux.fjfi.cvut.cz Obsah 1 Literatura 1 2 Úvod 5 3 Radiometrie a fotometrie 6 3.1 Prostorový úhel.......................... 6 3.2 Zářivý tok.............................

Více

ak. rok 2013/2014 Michal Španěl, spanel@fit.vutbr.cz 24.2.2014

ak. rok 2013/2014 Michal Španěl, spanel@fit.vutbr.cz 24.2.2014 Zadání projektu Texturování Základy počítačové grafiky (IZG) ak. rok 2013/2014 Michal Španěl, spanel@fit.vutbr.cz 24.2.2014 1 První seznámení Cílem projektu je pochopení praktických souvislostí témat přednášek

Více