Pravděpodobnostní (Markovské) metody plánování, MDP - obsah

Rozměr: px
Začít zobrazení ze stránky:

Download "Pravděpodobnostní (Markovské) metody plánování, MDP - obsah"

Transkript

1 Pravděpodobnostní (Markovské) metody plánování, MDP - obsah Pravděpodobnostní plánování - motivace. Nejistota ve výběr akce Markovské rozhodovací procesy Strategie plán (control policy) Částečně pozorovatelné Markovské rozhodovací procesy Strategie plán - metoda iterace Cíl a cena za jeho dosažení (payoff/reward) Konstrkce fnkce ceny cesty a odměny Plánovací horizont Kmlativní fnkce odměny a exponenciální zapomínání Greedy sitace, konečný horizont, nekonečný horizont Optimální strategie pro plně pozorovatelný případ, Bellmanova rce. Výpočet ceny fnkce Užití v robotice Reference

2 Třídy problémů Deterministické vs. stochastické akce Plně vs. částečně pozorovatelné prostředí

3 Derministické, plně pozorovatelné Prostředí je téměř symetrické s úzkými a širokými průchody, robot se nachází ve střed (zelený bod) bez znalosti své orientace a míří do cíle (červený bod). Úkolem robot je dosáhnot (červeného) cíle.

4 Stochastické, plně pozorovatelné (Markov Decision Process, MDP) Cenová fnkce a strategie v MDP: (a) Deterministický důsledek akce (b) Nedeterministický důsledek aplikované akce možňje více cest V deterministickém model robot snadno navigje úzkými koridory a preferje delší cest v případě, že výstpy akce(akcí) jso nejisté za účelem snížení rizika kolize

5 Stochastické, částečně pozorovatelné (Partially Observable MDP, POMDP) Akce k získávání znalostí v POMDP: K dosažení cíle (červený bod) s jistoto větší než 50%, plánovač pracjící s věrohodností nejprve navigje do místa, kde může být stanovena globální orientace. (a) Sitace (nahoře) kazje odpovídající strategii a možné cesty, jenž může robot zvolit. (b) V závislosti na znalosti vlastní pozice, robot v prostředí (b) nebo (c) (střed a dole) může stanovit, odkd lze bezpečně dosáhnot cíle.

6 Markovský rozhodovací proces (Markov Decision Process - MDP) Příklad Markovského model (graf) se stavem s, pravděpodobností přecho <0,1> a odměno za dosažení stav r r=1 0.7 s r=0 s s 3 r= r=0 0.2 s 4 s r=-10 Který stav je cílový?

7 Markovský rozhodovací proces (MDP) Zadání: Stavy systém: x Přípstné akce: Pravděpodobnosti přechodů,x x : p(x, Fnkce odměny (reward) za dosažení stav: r() Úloha - hledáme: Strategii p(, jenž maximalizje bdocí očekávano odměn r()

8 Odměny a strategie I Strategie (obecný případ), z t značí pozorování stav dosaženého akcí t : : z 1 : t 1, 1: t 1 t Strategie (plně pozorovatelný případ): : xt t Cíl a odměna za jeho dosažení je kvantitativně hodnocena, skládá se ze dvo komplementárních komponent: 1. Ceny (Vale fnction) vyjadřjící náklady na realizaci dané cesty, měří cen za akci. 2. Odměny (Reward, Payoff) za dosažení stav/cíle, měří úspěšnost akce. Obě předchozí kritéria se integrjí do společné cenové fnkce (Payoff fnction) jenž postihje jednak cen dosd vykonané cesty a jednak odměn za dosažený stav, popř. cíl. Takové řešení možňje važovat i v sitacích, kdy robot má nejisto polozici a msí važovat způsobem: Stojí zvyšjící se pravděpodobnost dosažení požadovaného cíle za vynaložené úsilí?

9 Volba strategie I Očekávaná (E - expectation) kmlativní odměna se zapomínáním γ: Typy strategií: T=1: greedy strategie T>1: sitace s konečným horizontem, typicky bez exp. zapomínání, γ = 1 T : sitace s nekonečným horizontem, konečná odměna za podmínky exp. zapomínání je s koeficientem γ < 1 (řada konvergje, pro každé r r max ) R T T E r t 1 Očekávaná kmlativní odměna za strategii: Optimální strategie: argmax R T ( x ) t R T ( x ) E t T 1 r t t ( z 1 : t 11: t 1) Varianty strategií moho být: 1-kroková strategie: Optimální strategie: 1( argmax r( ) Fnkce ceny cesty pro 1-krokovo optimalní strategii: V1 ( max r( )

10 Volba strategie II 2 - kroková strategie: Optimální strategie: Fnkce ceny: r ) 2( argmax r( V1 ( x') p( x', dx ( max ( ) V1 V2 ( x') p( x', dx' ' T - kroková strategie a popř. nekonečný horizont: Optimální strategie: Fnkce ceny: T V T ) VT VT ( ( argmax r( 1( x') p( x', dx' ( max r( ) 1 x') p( x', dx' popř. : V ( max r( ) V ( x') p( x', dx' jenž pro T vede k stálené hodnotě V ( a je označována jako Bellmanova rce. Lemma: Každá hodnota V( splňjící Bellmanov rci je ntno i postačjící podmínko optimality odpovídající strategie.

11 Iterace ceny a strategie Algoritms k dosažení (iteraci) optimální ceny cesty v nekonečném stavovém prostor (pro prostory s konečným počtem stavů, lze integrál nahradit sočtem přes stavy): for all x do Vˆ ( r endfor min {inicializace hodnot V(} popř. v diskr. podobě: Vˆ ( x i ) r min repeat ntil convergence for all x do Vˆ ( max r ( ) endfor endrepeat Vˆ( x') p( x', dx' popř. v diskr. podobě pro konečné stavové prostory: N Vˆ ( xi ) max r( xi, ) Vˆ( x j ) p( x j, xi ) j1 Přičemž optimální strategii (iteraci strategie) ze vztah: popř. v diskr. podobě: ( argmax r( ) Vˆ( x') p( x', dx' ( arg max MDP( Vˆ) ( lze rčit prostým výpočtem r( ) N j1 Vˆ( x ) p( x j j, xi )

12 Příklad - plánování pohyb robot Překážky (černá), cenová fnkce V( je vyjádřena šedo oblastí (vyšší hodnota odpovídá světlejší šedi). Hladová strategie podle hodnot cenové fnkce vede k řešení (za předpoklad, že pozice robot je pozorovatelná) Důležito vlastností je, že cenová fnkce je definována pro celé prostředí, což možní nalézt strategii i v případě, kdy pozice robot není přesně známa (je nejistá)

13 Iterace ceny a/nebo strategie? Optimální strategie bývá často dosaženo dříve než dojde ke konvergenci ceny cesty. Iterace strategie vypočítává/rčje novo strategii, která je založena na sočasné cenové fnkci. Nově rčená strategie následně rčí nov cenovo fnkci. Předchozí proces zhsta konvergje k optimální strategii rychleji.

14 Reference: Thrn S., Brgard W., Fox D.: Probabilistic Robotics, The MIT Press, Cambridge, Massachsetts, London, England, 2005, 647 pp., ISBN (Chapter 14, p.487-p.511)

OPPA European Social Fund Prague & EU: We invest in your future.

OPPA European Social Fund Prague & EU: We invest in your future. OPPA European Social Fund Prague & EU: We invest in your future. Plánování s nejistotou Antonín Komenda 33PAH - 19.3.2012 Doménově nezávislé plánování plánovací problém plánovací doména instance plánovacího

Více

Teorie rozhodování (decision theory)

Teorie rozhodování (decision theory) Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Teorie pravděpodobnosti (probability theory) popisuje v co má agent věřit na základě pozorování. Teorie

Více

Zpětnovazební učení Michaela Walterová Jednoocí slepým,

Zpětnovazební učení Michaela Walterová Jednoocí slepým, Zpětnovazební učení Michaela Walterová Jednoocí slepým, 17. 4. 2019 V minulých dílech jste viděli Tři paradigmata strojového učení: 1) Učení s učitelem (supervised learning) Trénovací data: vstup a požadovaný

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Teorie užitku. Marta Vomlelová 14. prosince / 23

Teorie užitku. Marta Vomlelová 14. prosince / 23 Teorie užitku Většinou měříme výplatu, hodnotu atd. penězi. MEU (maximalizace očekávaného zisku) je většinou rozumná věc k volbě. Ale občas je lidská intuice jiná a je na nás, jestli věříme víc intuici

Více

Užitek a rozhodování

Užitek a rozhodování Užitek a rozhodování 10. května 2018 1 Užitek 2 Rozhodovací sítě 3 Markovský rozhodovací proces Zdroje: Roman Barták, přednáška přednáška Umělá inteligence II, Matematicko-fyzikální fakulta, Karlova univerzita

Více

SLAM. Simultaneous localization and mapping. Ing. Aleš Jelínek 2015

SLAM. Simultaneous localization and mapping. Ing. Aleš Jelínek 2015 SLAM Simultaneous localization and mapping Ing. Aleš Jelínek 2015 Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193 Obsah Proč sebelokalizace,

Více

2. PŘESNOST MĚŘENÍ A1B38EMA P2 1

2. PŘESNOST MĚŘENÍ A1B38EMA P2 1 . ŘESNOST MĚŘENÍ přesnost měření nejistota měření, nejistota typ A a typ B, kombinovaná nejistota, nejistoty měření kazovacími (analogovými) a číslicovými měřicími přístroji, nejistota při nepřímých měřeních,

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 SLAM - souběžná lokalizace a mapování {md zw} at robotika.cz http://robotika.cz/guide/umor07/cs 10. ledna 2008 1 2 3 SLAM intro Obsah SLAM = Simultaneous Localization And Mapping problém typu slepice-vejce

Více

Třídy složitosti P a NP, NP-úplnost

Třídy složitosti P a NP, NP-úplnost Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není

Více

Nelineární model tepelné soustavy a GPC regulátor

Nelineární model tepelné soustavy a GPC regulátor Nelineární model tepelné sostavy a GP reglátor Ing Jan Mareš Školitel: oc Ing František šek, c Univerzita Pardbice Faklta chemicko-technologická Katedra řízení procesů Obsah 1 Popis tepelné sostavy 2 Požadavky

Více

Kalibrace scoringových modelů

Kalibrace scoringových modelů Kalibrace scoringových modelů Finanční matematika v praxi III Hotel Podlesí 3. 4. září 2013 Pavel Plát pavel.plat@rb.cz Raiffeisenbank a.s., Policy & Analysis 1. Scoringový model Business pohádka a trocha

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/ hlavac 1/31 PLÁN PŘEDNÁŠKY

Více

Stochastické modely Informace k závěrečné zkoušce

Stochastické modely Informace k závěrečné zkoušce Stochastické modely Informace k závěrečné zkoušce Jan Zouhar Katedra ekonometrie, FIS VŠE v Praze, zouharj@vse.cz 10. února 2015 Průběh zkoušky. Zkouška je ústní s přípravou na potítku. Každý si vylosuje

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou

Více

11. Tabu prohledávání

11. Tabu prohledávání Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování

Více

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho

Více

Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet.

Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet. Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Dnešní program Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu

Více

Apriorní rozdělení. Jan Kracík.

Apriorní rozdělení. Jan Kracík. Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.

Více

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT Bc. David Pietschmann.

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT Bc. David Pietschmann. VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projekt ázev projekt Číslo a název šablony Ator Tematická oblast Číslo a název materiál Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková

Více

jednoduchá heuristika asymetrické okolí stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy Pokročilé heuristiky

jednoduchá heuristika asymetrické okolí stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy Pokročilé heuristiky Pokročilé heuristiky jednoduchá heuristika asymetrické stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy pokročilá heuristika symetrické stavový prostor, který vyžaduje řízení 1 2 Paměť pouze

Více

Zada ní 1. Semina rní pra ce z pr edme tu Matematický software (KI/MSW)

Zada ní 1. Semina rní pra ce z pr edme tu Matematický software (KI/MSW) Zada ní. Semina rní pra ce z pr edme tu Matematický software (KI/MSW) Datum zadání: 5.. 06 Podmínky vypracování: - Seminární práce se skládá z programové části (kódy v Matlabu) a textové části (protokol

Více

Bilance nejistot v oblasti průtoku vody. Mgr. Jindřich Bílek

Bilance nejistot v oblasti průtoku vody. Mgr. Jindřich Bílek Bilance nejistot v oblasti průtok vody Mgr. Jindřich Bílek Nejistota měření Parametr přiřazený k výsledk měření ymezje interval, o němž se s rčito úrovní pravděpodobnosti předpokládá, že v něm leží sktečná

Více

Markov Chain Monte Carlo. Jan Kracík.

Markov Chain Monte Carlo. Jan Kracík. Markov Chain Monte Carlo Jan Kracík jan.kracik@vsb.cz Princip Monte Carlo integrace Cílem je (přibližný) výpočet integrálu I(g) = E f [g(x)] = g(x)f (x)dx. (1) Umíme-li generovat nezávislé vzorky x (1),

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D. Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen

Více

Vysoká škola finanční a správní, o.p.s. Katedra řízení podniku a podnikové ekonomiky. Metodické listy pro předmět ŘÍZENÍ PODNIKU I

Vysoká škola finanční a správní, o.p.s. Katedra řízení podniku a podnikové ekonomiky. Metodické listy pro předmět ŘÍZENÍ PODNIKU I Vysoká škola finanční a správní, o.p.s. Katedra řízení podniku a podnikové ekonomiky Metodické listy pro předmět ŘÍZENÍ PODNIKU I Studium předmětu umožní studentům základní orientaci v moderních přístupech,

Více

Monte Carlo Lokalizace. Martin Skalský

Monte Carlo Lokalizace. Martin Skalský Monte Carlo Lokalizace Martin Skalský Proč Lokalizace? Problém určení pozice robota a věcí kolem něj. (filtrování dat, state estimation) Je důležitá Knowledge about where things are is at the core of any

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního

Více

Náhodné (statistické) chyby přímých měření

Náhodné (statistické) chyby přímých měření Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně

Více

Simulace pohybu chodců pomocí celulárních modelů

Simulace pohybu chodců pomocí celulárních modelů Simulace pohybu chodců pomocí celulárních modelů Marek Bukáček výzkumná skupina GAMS při KM KIPL FJFI ČVUT v Praze 8. červen 2011 Obsah Úvod Celulární modely úprava Floor field modelu Proč modelovat Akademický

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1 Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.

Více

Analýza spolehlivosti tlakové nádoby metodou Monte Carlo

Analýza spolehlivosti tlakové nádoby metodou Monte Carlo Analýza spolehlivosti tlakové nádoby metodou Monte Carlo Jakub Nedbálek Abstrakt: Cílem práce je ukázat možnost využití Monte Carlo simulace pro studium úloh z oblasti spolehlivosti. V našem případě máme

Více

DODATEK. D0. Nejistoty měření

DODATEK. D0. Nejistoty měření DODATEK D4. Příklad výpočt nejistoty přímého měření D0. Nejistoty měření Výklad základů charakterizování přesnosti měření podaný v kap..3 je založen na pojmech chyba měření a správná hodnota měřené veličiny

Více

SENZORY PRO ROBOTIKU

SENZORY PRO ROBOTIKU 1/13 SENZORY PRO ROBOTIKU Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac ROBOTICKÉ SENZORY - PŘEHLED

Více

Bayesovské rozhodování - kritétium minimální střední ztráty

Bayesovské rozhodování - kritétium minimální střední ztráty Bayesovské rozhodování - kritétium imální střední ztráty Lukáš Slánský, Ivana Čapková 6. června 2001 1 Formulace úlohy JE DÁNO: X množina možných pozorování (příznaků) x K množina hodnot skrytého parametru

Více

Teorie informace: řešené příklady 2014 Tomáš Kroupa

Teorie informace: řešené příklady 2014 Tomáš Kroupa Teorie informace: řešené příklady 04 Tomáš Kroupa Kolik otázek je třeba v průměru položit, abychom se dozvěděli datum narození člověka (den v roce), pokud odpovědi jsou pouze ano/ne a tázaný odpovídá pravdivě?

Více

Rozhodování, markovské rozhodovací procesy

Rozhodování, markovské rozhodovací procesy Rozhodování, markovské rozhodovací procesy Řešené úlohy Shromáždil: Jiří Kléma, klema@fel.cvut.cz LS 2013/2014 Cíle materiálu: Text poskytuje řešené úlohy jako podpůrný výukový materiál ke cvičením v předmětu

Více

Vícerozměrná rozdělení

Vícerozměrná rozdělení Vícerozměrná rozdělení 7. září 0 Učivo: Práce s vícerozměrnými rozděleními. Sdružené, marginální, podmíněné rozdělení pravděpodobnosti. Vektorová střední hodnota. Kovariance, korelace, kovarianční matice.

Více

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika

Více

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?] Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů

Více

IV117: Úvod do systémové biologie

IV117: Úvod do systémové biologie IV117: Úvod do systémové biologie David Šafránek 8.10.2008 Obsah Metody dynamické analýzy Obsah Metody dynamické analýzy Shrnutí biologický systém definován interakcemi mezi jeho komponentami interakce

Více

Value at Risk. Karolína Maňáková

Value at Risk. Karolína Maňáková Value at Risk Karolína Maňáková Value at risk Historická metoda Model-Building přístup Lineární model variance a kovariance Metoda Monte Carlo Stress testing a Back testing Potenciální ztráta s danou pravděpodobností

Více

Upozornění: Dne: 12.10.2015

Upozornění: Dne: 12.10.2015 Objekt : Pod Haltýřem 5 Dne: 12.10.2015 Byty č. : 183,182,169,168 od 8:00 hod. do 9:00 hod. Byty č. : 167,149,148,147 od 9:00 hod. do 10:00 hod. Byty č. : 123,122,121,94 od 10:00 hod. do 11:00 hod. Byty

Více

Předvídání lidské volby:

Předvídání lidské volby: Předvídání lidské volby: preference versus informace Dle: Jakub Steiner, Colin Stewart, Filip Matějka, Rational Inattention Dynamics: inertia and delay in decision making, v tisku v časopise Econometrica

Více

NÁSTROJE A TECHNIKY PROJEKTOVÉHO MANAGEMENTU. Projektová dekompozice

NÁSTROJE A TECHNIKY PROJEKTOVÉHO MANAGEMENTU. Projektová dekompozice NÁSTROJE A TECHNIKY PROJEKTOVÉHO MANAGEMENTU Projektová dekompozice Úvod do vybraných nástrojů projektového managementu METODY A TECHNIKY PROJEKTOVÉHO MANAGEMENTU Tvoří jádro projektového managementu.

Více

Umělá inteligence II

Umělá inteligence II Umělá inteligence II 11 http://ktiml.mff.cuni.cz/~bartak Roman Barták, KTIML roman.bartak@mff.cuni.cz Dnešní program! V reálném prostředí převládá neurčitost.! Neurčitost umíme zpracovávat pravděpodobnostními

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

Náhodné chyby přímých měření

Náhodné chyby přímých měření Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.

Více

Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce a

Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce a Autor Mgr. Bronislava Salajová Tematický celek Funkce Cílová skupina 3. ročník SŠ s maturitní zkouškou Anotace Materiál má podobu pracovního listu s úlohami, pomocí nichž si žáci procvičí zobrazení, funkce

Více

Management projektu III. Fakulta sportovních studií přednáška do předmětu Projektový management ve sportu

Management projektu III. Fakulta sportovních studií přednáška do předmětu Projektový management ve sportu Management projektu III. Fakulta sportovních studií 2016 5. přednáška do předmětu Projektový management ve sportu doc. Ing. Petr Pirožek,Ph.D. Ekonomicko-správní fakulta Lipova 41a 602 00 Brno Email: pirozek@econ.muni.cz

Více

Multirobotická kooperativní inspekce

Multirobotická kooperativní inspekce Multirobotická kooperativní inspekce prostředí Diplomová práce Multirobotická kooperativní inspekce prostředí Diplomová práce Intelligent and Mobile Robotics Group Laboratory for Intelligent Decision Making

Více

Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Úvodem Pokud agent ví, kde je (plně pozorovatelný svět), potom pro každý stav umíme doporučit akci maximalizující

Více

Diskrétní náhodná veličina. November 12, 2008

Diskrétní náhodná veličina. November 12, 2008 Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.

Více

NAUKA O PODNIKU I. Plánování a rozhodování v podniku

NAUKA O PODNIKU I. Plánování a rozhodování v podniku NAUKA O PODNIKU I Plánování a rozhodování v podniku Plánování a rozhodování v podniku Úkoly a struktura plánování Strategické plánování Nástroje pro určování strategických oblastí a výběr strategií Takticko-operativní

Více

Složitost Filip Hlásek

Složitost Filip Hlásek Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Kalibrační proces ve 3D

Kalibrační proces ve 3D Kalibrační proces ve 3D FCC průmyslové systémy společnost byla založena v roce 1995 jako součást holdingu FCC dodávky komponent pro průmyslovou automatizaci integrace systémů kontroly výroby, strojového

Více

rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =

rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y = Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení

Více

TRANSFORMACE BLOKOVÉHO SCHÉMATU NA CELKOVÝ PŘENOS

TRANSFORMACE BLOKOVÉHO SCHÉMATU NA CELKOVÝ PŘENOS TRANSFORMACE BLOKOVÉHO SCHÉMATU NA CELKOVÝ PŘENOS Vladimír Hanta Vsoká škola chemicko technologická v Praze, Ústav počítačové a řídicí technik Abstrakt Algebra blokových schémat a požití Masonova pravidla

Více

Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I

Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla

Více

Laboratorní úloha Seřízení PI regulátoru

Laboratorní úloha Seřízení PI regulátoru Laboratorní úloha Seřízení PI reglátor 1. Stanovení optimálních parametrů (r 0 (zesílení), I (časová integrační konstanta)) reglátor PI pro reglaci sostavy tří nádrží vyžitím přechodové odezvy reglované

Více

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi

Více

Úvod... VII. 1. Podstata marketingu Shrnutí... 8 Klíčová slova... 9 Otázky... 9 Literatura Strategické marketingové řízení...

Úvod... VII. 1. Podstata marketingu Shrnutí... 8 Klíčová slova... 9 Otázky... 9 Literatura Strategické marketingové řízení... BOUČKOVÁ Jana MARKETING Obsah Úvod... VII Oddíl A Pojetí marketingu a marketingového řízení 1. Podstata marketingu... 3 Shrnutí... 8 Klíčová slova... 9 Otázky... 9 Literatura... 9 2. Strategické marketingové

Více

Řízení projektů. Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT

Řízení projektů. Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT Řízení projektů Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT 1 Úvod základní pojmy Projekt souhrn činností, které musí být všechny realizovány, aby byl projekt dokončen Činnost

Více

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka

Více

Ing. Alena Šafrová Drášilová, Ph.D.

Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování??? video Obsah typy rozhodování principy rozhodování rozhodovací fáze základní pojmy hodnotícího procesu rozhodovací podmínky rozhodování v podmínkách

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

a způsoby jejího popisu Ing. Michael Rost, Ph.D.

a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost, náhodná veličina a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost Pokud je jev A vázán na uskutečnění jevu B, pak tento jev nazýváme jevem podmíněným

Více

Stochastické procesy - pokračování

Stochastické procesy - pokračování Stochastické procesy - pokračování Úvodní pojmy: Stochastické procesy jsou to procesy (funkce) jejichž hodnoty jsou náhodné veličiny závislé na parametru t stav systému souhrn vlastností a charakteristik,

Více

Metody a nástroje modelování Generation Adequacy. David Hrycej, CIIRC ČVUT

Metody a nástroje modelování Generation Adequacy. David Hrycej, CIIRC ČVUT Metody a nástroje modelování Generation Adequacy David Hrycej, CIIRC ČVUT david.hrycej@cvut.cz Modelování panevropské sítě? Změny energetiky s vlivem na řízení soustavy: nárůst OZE, decentralizace, Demand

Více

FINANČNÍ A INVESTIČNÍ MATEMATIKA 2

FINANČNÍ A INVESTIČNÍ MATEMATIKA 2 FINANČNÍ A INVESTIČNÍ MATEMATIKA 2 Metodický list č. 1 Název tématického celku: Dluhopisy a dluhopisové portfolio I. Cíl: Základním cílem tohoto tematického celku je popsat dluhopisy jako investiční instrumenty,

Více

Dijkstrův algoritmus

Dijkstrův algoritmus Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Asociační i jiná. Pravidla. (Ch )

Asociační i jiná. Pravidla. (Ch ) Asociační i jiná Pravidla (Ch. 14 +...) Učení bez učitele Nemáme cílovou třídu Y, G; máme N pozorování což jsou p-dimenzionální vektory se sdruženou pravděpodobností chceme odvozovat vlastnosti. Pro málo

Více

Chyby a nejistoty měření

Chyby a nejistoty měření Moderní technologie ve stdi aplikované fyziky CZ..07/..00/07.008 Chyby a nejistoty měření (doplňjící tet k laboratorním cvičení) Připravili: Petr Schovánek, Vítězslav Havránek Obsah Obsah... Seznam ilstrací...

Více

Martin Chudoba. Seminář - Stochastické modelování v ekonomii a financích KPMS MFF UK. dluhopisů pomocí. Black-Scholesova modelu. M.Chudoba.

Martin Chudoba. Seminář - Stochastické modelování v ekonomii a financích KPMS MFF UK. dluhopisů pomocí. Black-Scholesova modelu. M.Chudoba. Martin Chudoba s Seminář - Stochastické modelování v ekonomii a financích KPMS MFF UK 18.10.2010 Uvažujeme bezkupónový dluhopis vyplácející jednotku v čase T Za předpokladu konstantní úrokové míry r pro

Více

Rozhodovací procesy 2

Rozhodovací procesy 2 Rozhodovací procesy 2 Základní pojmy a struktura rozhodování Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 II rozhodování 1 Rozhodovací procesy Cíl přednášky 1-3: Význam rozhodování

Více

LBC 3011/x1 Panelové reproduktory

LBC 3011/x1 Panelové reproduktory Konferenční systémy LBC 11/x1 Panelové reprodktory LBC 11/x1 Panelové reprodktory www.boschsecrity.cz Vysoce kvalitní reprodkce řeči a hdby Dvocestný systém Jednodché nastavení výkon Zápstná montáž do

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko pro podporu jakosti 1 METODA KUMULOVANÝCH SOUČTŮ C U S U M metoda: tabulkový (lineární) CUSUM RNDr. Jiří Michálek, CSc., Ing. Antonie Poskočilová 2 Základem SPC jsou Shewhartovy

Více

MANAŽERSKÉ ROZHODOVÁNÍ

MANAŽERSKÉ ROZHODOVÁNÍ MANAŽERSKÉ ROZHODOVÁNÍ Téma 21 - PRAVIDLA ROZHODOVÁNÍ ZA RIZIKA A NEJISTOTY doc. Ing. Monika MOTYČKOVÁ (Grasseová), Ph.D. Univerzita obrany Fakulta ekonomika a managementu Katedra vojenského managementu

Více

oddělení Inteligentní Datové Analýzy (IDA)

oddělení Inteligentní Datové Analýzy (IDA) Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/ E PENÍZE ŠKOLÁM NÁZEV PROJEKT : MÁME RÁDI TECHNIK REGISTRAČNÍ ČÍSLO PROJEKT :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiál: E 5 12

Více

Příklady ke čtvrtému testu - Pravděpodobnost

Příklady ke čtvrtému testu - Pravděpodobnost Příklady ke čtvrtému testu - Pravděpodobnost 6. dubna 0 Instrukce: Projděte si všechny příklady. Každý příklad se snažte pochopit. Pak vymyslete a vyřešte příklad podobný. Tím se ujistíte, že příkladu

Více

Ing. Alena Šafrová Drášilová

Ing. Alena Šafrová Drášilová Rozhodování II Ing. Alena Šafrová Drášilová Obsah vztah jedince k riziku rozhodování v podmínkách rizika rozhodování v podmínkách nejistoty pravidlo maximin pravidlo maximax Hurwitzovo pravidlo Laplaceovo

Více

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru.

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. Varianta I 1. Definujte pravděpodobnostní funkci. 2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. 3. Definujte Fisher-Snedecorovo rozdělení.

Více

Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.

Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D. Ing. Michal Dorda, Ph.D. Př. : Ve vjezdové skupině kolejí byly sledovány počty přijíždějících vlaků za hodinu. Za 5 dní (tedy 360 hodin) přijelo celkem 87 vlaků. Výsledky sledování jsou uvedeny v tabulce.

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

Složitost 1.1 Opera ní a pam ová složitost 1.2 Opera ní složitost v pr rném, nejhorším a nejlepším p ípad 1.3 Asymptotická složitost

Složitost 1.1 Opera ní a pam ová složitost 1.2 Opera ní složitost v pr rném, nejhorším a nejlepším p ípad 1.3 Asymptotická složitost 1 Složitost 1.1 Operační a paměťová složitost Nezávislé určení na konkrétní implementaci Několik typů operací = sčítání T+, logické T L, přiřazení T A(assign), porovnání T C(compare), výpočet adresy pole

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

Optimální řízení pro geometrický Brownův pohyb

Optimální řízení pro geometrický Brownův pohyb 1/39 Optimální řízení pro geometrický Brownův pohyb Lenka Slámová Katedra pravděpodobnosti a matematické statistiky Matematicko fyzikální fakulta Univerzity Karlovy Stochastické modelování v ekonomii a

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více