Úvod do úloh plánování rozvozu (Vehicle Routing Problems)

Rozměr: px
Začít zobrazení ze stránky:

Download "Úvod do úloh plánování rozvozu (Vehicle Routing Problems)"

Transkript

1 Úvod do úloh plánování rozvozu (Vehicle Routing Problems) RNDr. Martin Branda, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Výpočetní aspekty optimalizace 2015 Martin Branda (KPMS MFF UK) 1 / 15

2 Problém obchodního cestujícího Traveling salesman problem Je dáno n měst a v jednom z nich se nachází obchodní cestující. Potřebuje obejít všechna zbývající města a vrátit se zpět. Pro každou dvojici měst zná náklady na cestu oběma směry a hledá celkovou nejlevnejší trasu. = Hledání hamiltonovského cyklu v grafu s cenami hran. Martin Branda (KPMS MFF UK) 2 / 15

3 Přiřazovací problém Naprosté základy min i=1 j=1 c ij x ij (1) x ij = 1, j = 1,..., n, (2) i=1 x ij = 1, i = 1,..., n, (3) j=1 x ij {0, 1}. (4) do j přijedu z právě jednoho i, z i odjedu do právě jednoho j, minimalizuji náklady Martin Branda (KPMS MFF UK) 3 / 15

4 Příklad 5 měst cyklus a subcykly O. Kafka, Optimální plánování rozvozu pomocí dopravních prostředků, Diplomá práce MFF UK, Martin Branda (KPMS MFF UK) 4 / 15

5 Podmínky zamezující subcyklům I x ii = 0, c ii = x ij + x ji 1 x ij + x jk + x ki 2... i S j S x ij S 1, S {1,..., n}, 2 S n 1 Řádově 2 n nerovností, možno redukovat pro S n/2 Martin Branda (KPMS MFF UK) 5 / 15

6 Podmínky zamezující subcyklům II u i u j + nx ij n 1, i, j = 2,..., n Eliminují subcykly: Alespoň jeden cyklus neprochází vrcholem 1, označme C tento cyklus a E(C) počet jeho hran. Sečteme-li nerovnosti přes všechny hrany {i, j}, které jsou v C, tj. odpovídající x ij = 1, dostaneme což je spor. n E(C) (n 1) E(C), (5) Martin Branda (KPMS MFF UK) 6 / 15

7 Podmínky zamezující subcyklům III u i u j + nx ij n 1, i, j = 2,..., n Hamiltonovský cyklus je přípustný: nechť vrcholy tvoří cyklus v pořadí v 1 = 1, v 2,..., v n. Položíme u i = l, je-li v l = i, tj. u i odpovídají pořadí. Pro každou hranu cyklu {i, j} potom platí u i u j = 1, tedy u i u j + nx ij = 1 + n n 1. (6) Po hrany, které nejsou v cyklu, platí nerovnost také: Rozdíl u i u j n 1 a x ij = 0. Martin Branda (KPMS MFF UK) 7 / 15

8 Úloha plánování rozvozu s kapacitami Capacitated Vehicle Routing Problem Parametry n počet zákazníků 0 depo (počátek a konec každého dopr. prostředku) K počet (stejných) dopravních prostředků d j 0 poptávka zákazníka, pro depo d 0 = 0 Q > 0 kapacity vozidel ( KQ n j=1 d j) c ij cena přepravy z i do j (obvykle c ii = 0) Rozhodovací proměnné x ij 1, následuje-li j po i, 0 jinak u j horní odhad doposud převezeného nákladu po navštívení zákazníka j Martin Branda (KPMS MFF UK) 8 / 15

9 Úloha rozvozu s kapacitami min x ij,u i i=0 j=0 c ijx ij (7) x ij = 1, j = 1,..., n, (8) i=0 x ij = 1, i = 1,..., n, (9) j=0 x i0 = K, (10) i=1 x 0j = K, (11) j=1 u i u j + d j Q(1 x ij) i, j = 1,..., n, (12) d i u i Q, i = 1,..., n, (13) x ij {0, 1}. Martin Branda (KPMS MFF UK) 9 / 15

10 Úloha rozvozu s kapacitami (7) minimalizace nákladů na rozvoz (8) k zákazníkovi j přijede právě jeden prostředek (9) od zákazníka i odjede právě jeden prostředek (10) do depa 0 se vrátí od zákazníků právě K prostředků (11) z depa 0 vyjede k zákazníkům právě K prostředků (12) balance převozu nákladu (zároveň eliminace subcyklů) (13) nepřekročíme kapacitu dopr. prostředku (Všechny prostředky musí být použity.) Martin Branda (KPMS MFF UK) 10 / 15

11 Norsko... Reálná aplikace Martin Branda (KPMS MFF UK) 11 / 15

12 Reálná aplikace Optimální plánování rozvozu Cíl maximalizovat filling rate lodí (operační plánování), optimalizace složení flotily, tj. kapacity a počtu lodí (strategický problém) Rich Vehicle Routing Problem časová okna heterogenní flotila více depotů a přejezdy mezi nimi více cest v plánovaném období ne-euklidovské vzdálenosti (fjordy) Celočíselná optimalizace :-(, konstrukční heuristiky a tabu search M. Branda, K. Haugen, J. Novotný, A. Olstad, Downstream logistics optimization at EWOS Norway. Research report, submitted. Martin Branda (KPMS MFF UK) 12 / 15

13 Reálná aplikace Optimální plánování rozvozu Náš postup Nalezení matematické formulace Řešení v GAMS na reálných (historických) datech Implementace heuristik Přenos do Decision Support System (DSS) Martin Branda (KPMS MFF UK) 13 / 15

14 Literatura Reálná aplikace O. Kafka: Optimální plánování rozvozu pomocí dopravních prostředků, Diplomá práce MFF UK, P. Toth, D. Vigo: The vehicle routing problem, SIAM, Philadelphia, L.A. Wolsey, G.L. Nemhauser: Integer and combinatorial optimization. Wiley, New York, Martin Branda (KPMS MFF UK) 14 / 15

15 Reálná aplikace Dotazy? web: branm1am Martin Branda (KPMS MFF UK) 15 / 15

1 Úvod do celočíselné lineární optimalizace

1 Úvod do celočíselné lineární optimalizace Úvod do celočíselné lineární optimalizace Martin Branda, verze 7.. 7. Motivace Reálné (smíšeně-)celočíselné úlohy Optimalizace portfolia celočíselné počty akcií, modelování fixních transakčních nákladů,

Více

Optimální plánování rozvozu pomocí dopravních prostředků

Optimální plánování rozvozu pomocí dopravních prostředků Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Ondřej Kafka Optimální plánování rozvozu pomocí dopravních prostředků Katedra pravděpodobnosti a matematické statistiky Vedoucí

Více

Úvod do celočíselné optimalizace

Úvod do celočíselné optimalizace Úvod do celočíselné optimalizace Martin Branda Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Výpočetní aspekty optimalizace Martin Branda (KPMS

Více

Optimalizace zimní údržby Plzeňský kraj. Petra Pelikánová

Optimalizace zimní údržby Plzeňský kraj. Petra Pelikánová Optimalizační seminář 17. 4. 2019, Praha Optimalizace zimní údržby Plzeňský kraj Petra Pelikánová O čem to bude? Úvod Arc Routing Problems Cíle optimalizace Model Podmínky Statistiky a čísla Příklady vstupních

Více

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém Obsah přednášky Mgr. Květuše Sýkorová Optimalizace Lineární programování Distribuční úlohy Okružní problém KI Př UJEP Ústí nad Labem Nederivační metody Metody 1D optimalizace Derivační metody Optimalizace

Více

Data Envelopment Analysis (Analýza obalu dat)

Data Envelopment Analysis (Analýza obalu dat) Data Envelopment Analysis (Analýza obalu dat) Martin Branda Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Optimalizace s aplikací ve financích

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Hlavní specializace: Ekonometrie a operační výzkum Název diplomové práce Optimalizace trasy při revizích elektrospotřebičů Diplomant: Vedoucí

Více

Pokročilé matematické modely a metody

Pokročilé matematické modely a metody Pokročilé matematické modely a metody Jan Fábry ŠKODA AUTO Vysoká škola Katedra logistiky, kvality a automobilové techniky fabry@savs.cz http://nb.vse.cz/~fabry Leden 2017, Mladá Boleslav Jan Fábry Pokročilé

Více

OPTIMALIZACE DISTRIBUČNÍHO SYTÉMU NÁHRADNÍCH DÍLŮ AUTOMOBILŮ OPTIMIZATION OF DISTRIBUTING SYSTEM OF CAR SPARE PARTS

OPTIMALIZACE DISTRIBUČNÍHO SYTÉMU NÁHRADNÍCH DÍLŮ AUTOMOBILŮ OPTIMIZATION OF DISTRIBUTING SYSTEM OF CAR SPARE PARTS OPTIMALIZACE DISTRIBUČNÍHO SYTÉMU NÁHRADNÍCH DÍLŮ AUTOMOBILŮ OPTIMIZATION OF DISTRIBUTING SYSTEM OF CAR SPARE PARTS Denisa Mocková 1, Alena Rybičková 2 Anotace: Článek se zabývá problematikou optimalizace

Více

4EK311 Operační výzkum. 4. Distribuční úlohy LP část 1

4EK311 Operační výzkum. 4. Distribuční úlohy LP část 1 4EK311 Operační výzkum 4. Distribuční úlohy LP část 1 4. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování (plánování

Více

Kurz operačního výzkumu pro posluchače kombinovaného studia na FAST VUT v systému MOODLE

Kurz operačního výzkumu pro posluchače kombinovaného studia na FAST VUT v systému MOODLE Kurz operačního výzkumu pro posluchače kombinovaného studia na FAST VUT v systému MOODLE Jiří Novotný Ústav matematiky a deskriptivní geometrie Stavební fakulta VUT v Brně Veveří 95, 602 00 Brno e-mail:

Více

4EK311 Operační výzkum. 1. Úvod do operačního výzkumu

4EK311 Operační výzkum. 1. Úvod do operačního výzkumu 4EK311 Operační výzkum 1. Úvod do operačního výzkumu Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka Garant kurzu:

Více

VYUŽITÍ NĚKTERÝCH METOD TEORIE GRAFŮ PŘI ŘEŠENÍ DOPRAVNÍCH PROBLÉMŮ

VYUŽITÍ NĚKTERÝCH METOD TEORIE GRAFŮ PŘI ŘEŠENÍ DOPRAVNÍCH PROBLÉMŮ VYUŽITÍ NĚKTERÝCH METOD TEORIE GRAFŮ PŘI ŘEŠENÍ DOPRAVNÍCH PROBLÉMŮ Markéta Brázdová 1 Anotace: Metody operačního výzkumu mají při řešení praktických problémů široké využití. Článek se zabývá problematikou

Více

4EK201 Matematické modelování. 2. Lineární programování

4EK201 Matematické modelování. 2. Lineární programování 4EK201 Matematické modelování 2. Lineární programování 2.1 Podstata operačního výzkumu Operační výzkum (výzkum operací) Operational research, operations research, management science Soubor disciplín zaměřených

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento

Více

VUT Brno Fakulta informačních technologií Simulační nástroje a techniky (SNT) 2014/2015 Vehicle routing problem Ant colony

VUT Brno Fakulta informačních technologií Simulační nástroje a techniky (SNT) 2014/2015 Vehicle routing problem Ant colony VUT Brno Fakulta informačních technologií Simulační nástroje a techniky (SNT) 2014/2015 Vehicle routing problem Ant colony František Němec (xnemec61) xnemec61@stud.fit.vutbr.cz 19. července 2015 1 Úvod

Více

Use of ant colony optimization for vehicle routing problem. Použití metody mravenčích kolonií pro úlohy okružních jízd

Use of ant colony optimization for vehicle routing problem. Použití metody mravenčích kolonií pro úlohy okružních jízd Use of ant colony optimization for vehicle routing problem Použití metody mravenčích kolonií pro úlohy okružních jízd Adéla Burketová i Abstract: Ant colony optimization is a metaheuristic method used

Více

4EK201 Matematické modelování 5. Speciální úlohy lineárního programování

4EK201 Matematické modelování 5. Speciální úlohy lineárního programování 4EK201 Matematické modelování 5. Speciální úlohy lineárního programování 4. Typické úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Směšovací problémy

Více

Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest

Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem

Více

4EK314 Diskrétní modely

4EK314 Diskrétní modely 4EK314 Diskrétní modely Jan Fábry Fakulta informatiky a statistiky Katedra ekonometrie fabry@vse.cz http://nb.vse.cz/~fabry Únor 2016, Praha Jan Fábry Diskrétní modely 1 / 153 Sylabus kurzu 1 Úloha celočíselného

Více

CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP

CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP 1. Definice úlohy Úloha VRP (Vehicle Routing Problem problém okružních jízd) je definována na obecné dopravní síti S = (V,H), kde V je množina uzlů sítě a H

Více

11. Tabu prohledávání

11. Tabu prohledávání Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY

FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS MATEMATICKÉ MODELY DOPRAVNÍCH ÚLOH

Více

4EK212 Kvantitativní management. 1. Úvod do kvantitativního managementu a LP

4EK212 Kvantitativní management. 1. Úvod do kvantitativního managementu a LP 4EK212 Kvantitativní management 1. Úvod do kvantitativního managementu a LP Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka

Více

jednoduchá heuristika asymetrické okolí stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy Pokročilé heuristiky

jednoduchá heuristika asymetrické okolí stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy Pokročilé heuristiky Pokročilé heuristiky jednoduchá heuristika asymetrické stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy pokročilá heuristika symetrické stavový prostor, který vyžaduje řízení 1 2 Paměť pouze

Více

4EK311 Operační výzkum. 5. Teorie grafů

4EK311 Operační výzkum. 5. Teorie grafů 4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.

Více

13. Lineární programování

13. Lineární programování Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Metody síťové analýzy

Metody síťové analýzy Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický

Více

Karta předmětu prezenční studium

Karta předmětu prezenční studium Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 545-0259 Garantující institut: Garant předmětu: Exaktní metody rozhodování Institut ekonomiky a systémů řízení RNDr. Radmila Sousedíková,

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

4EK213 Lineární modely. 5. Dualita v úlohách LP

4EK213 Lineární modely. 5. Dualita v úlohách LP 4EK213 Lineární modely 5. Dualita v úlohách LP 5. Dualita v úlohách LP Obecné vyjádření simplexové tabulky Formulace duálního problému Formulace symetrického duálního problému Formulace nesymetrického

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

ORGANIZACE ZIMNÍ ÚDRŽBY POZEMNÍCH KOMUNIKACÍ ORGANIZATION OF WINTER ROAD MAINTENANCE

ORGANIZACE ZIMNÍ ÚDRŽBY POZEMNÍCH KOMUNIKACÍ ORGANIZATION OF WINTER ROAD MAINTENANCE ORGANIZACE ZIMNÍ ÚDRŽBY POZEMNÍCH KOMUNIKACÍ ORGANIZATION OF WINTER ROAD MAINTENANCE Jaroslav Kleprlík 1 Anotace: Příspěvek je zaměřen na zimní údržbu pozemních komunikací. Uvádí základní právní předpisy

Více

Optimalizační algoritmy inspirované chováním mravenců

Optimalizační algoritmy inspirované chováním mravenců Optimalizační algoritmy inspirované chováním mravenců Biologická analogie ACO metaheuristic Ant system a jeho modifikace Specifikace problémů Aplikace Motivace NP-hard problémy časová náročnost nalezení

Více

4EK314 Diskrétní modely Příklady

4EK314 Diskrétní modely Příklady 4EK314 Diskrétní modely Příklady Jan Fábry Fakulta informatiky a statistiky Katedra ekonometrie fabry@vse.cz http://nb.vse.cz/~fabry Únor 2016, Praha Jan Fábry Diskrétní modely - příklady 1 / 28 Cvičení

Více

Návrh Designu: Radek Mařík

Návrh Designu: Radek Mařík 1. 7. Najděte nejdelší rostoucí podposloupnost dané posloupnosti. Použijte metodu dynamického programování, napište tabulku průběžných délek částečných výsledků a tabulku předchůdců. a) 5 8 11 13 9 4 1

Více

Univerzita Pardubice Fakulta elektrotechniky a informatiky Programový nástroj pro plánování svozných a rozvozových tras v regionu

Univerzita Pardubice Fakulta elektrotechniky a informatiky Programový nástroj pro plánování svozných a rozvozových tras v regionu Univerzita Pardubice Fakulta elektrotechniky a informatiky Programový nástroj pro plánování svozných a rozvozových tras v regionu Bc. Zuzana Karlíková Diplomová práce 2009 University od Pardubice Faculty

Více

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě,

Více

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti

Více

4EK311 Operační výzkum. 3. Optimalizační software a stabilita řešení úloh LP

4EK311 Operační výzkum. 3. Optimalizační software a stabilita řešení úloh LP 4EK311 Operační výzkum 3. Optimalizační software a stabilita řešení úloh LP 3.1 Příklad matematický model Lis: 1 x 1 + 2 x 2 120 [min] Balení: 1 x 1 + 4 x 2 180 [min] Poptávka: 1 x 1 1 x 2 90 [krabiček]

Více

12. Lineární programování

12. Lineární programování . Lineární programování. Lineární programování Úloha lineárního programování (lineární optimalizace) je jedním ze základních problémů teorie optimalizace. Našim cílem je nalézt maximum (resp. minimum)

Více

TGH06 - Hledání nejkratší cesty

TGH06 - Hledání nejkratší cesty TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa

Více

Hledání optimální cesty v dopravní síti

Hledání optimální cesty v dopravní síti Hledání optimální cesty v dopravní síti prezentace k diplomové práci autor DP: Bc. Rudolf Koraba vedoucí DP: doc. Ing. Rudolf Kampf, Ph.D. oponent DP: Ing. Juraj Čamaj, Ph.D. Vysoká škola technická a ekonomická

Více

Příklady modelů lineárního programování

Příklady modelů lineárního programování Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených

Více

Plánování úloh na jednom stroji

Plánování úloh na jednom stroji Plánování úloh na jednom stroji 15. dubna 2015 1 Úvod 2 Řídící pravidla 3 Metoda větví a mezí 4 Paprskové prohledávání Jeden stroj a paralelní stroj Dekompoziční problémy pro složité (flexible) job shop

Více

Numerické metody optimalizace - úvod

Numerické metody optimalizace - úvod Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu

Více

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO Heuristické algoritmy jsou speciálními algoritmy, které byly vyvinuty pro obtížné úlohy, jejichž řešení je obtížné získat v rozumném čase. Mezi

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

4EK213 LINEÁRNÍ MODELY

4EK213 LINEÁRNÍ MODELY 4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE. Teze diplomové práce

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE. Teze diplomové práce ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA PROVOZNĚ EKONOMICKÁ KATEDRA SYSTÉMOVÉ A OPERAČNÍ ANALÝZY Obor: Veřejná správa a regionální rozvoj Teze diplomové práce Optimalizace tras pro cestovní kanceláře

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 SLAM - souběžná lokalizace a mapování {md zw} at robotika.cz http://robotika.cz/guide/umor07/cs 10. ledna 2008 1 2 3 SLAM intro Obsah SLAM = Simultaneous Localization And Mapping problém typu slepice-vejce

Více

Implementace heuristik pro rozvozní problém s časovými okny

Implementace heuristik pro rozvozní problém s časovými okny Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Katedra informačních technologií Studijní program: Aplikovaná informatika Obor: Kognitivní informatika Implementace heuristik pro rozvozní

Více

4EK212 Kvantitativní management. 2. Lineární programování

4EK212 Kvantitativní management. 2. Lineární programování 4EK212 Kvantitativní management 2. Lineární programování 1.7 Přídatné proměnné Přídatné proměnné jsou nezáporné Mají svoji ekonomickou interpretaci, která je odvozena od ekonomické interpretace omezení

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010 SÍŤOVÁ ANALÝZA Kristýna Slabá, kslaba@students.zcu.cz 1. července 2010 Obsah 1 Úvod do síťové analýzy Hlavní metody síťové analýzy a jejich charakteristika Metoda CPM Metoda PERT Nákladová analýza Metoda

Více

4EK213 Lineární modely. 12. Dopravní problém výchozí řešení

4EK213 Lineární modely. 12. Dopravní problém výchozí řešení 4EK213 Lineární modely 12. Dopravní problém výchozí řešení 12. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování

Více

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy

Více

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry. Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít

Více

é ů Č ů ť ť Í é ů Í Í é ů ťí é š Í ý ů š ý ý Í ý ů é ů ť ý é š ý ý ý ů š é ý ý ď ů š é š Č é ý ý ů Í é Č ť ó ý ý ý ý ů ť ť ť ď ť Í Í š é ý ů š ů é ť é ý ý é ů ů ý ý é š ů Ť š š ý ý ý ů š é ý ů ý ů ů š

Více

Matematické modelování 4EK201

Matematické modelování 4EK201 Matematické modelování 4EK0 Ukázkový test Maimum 00 bodů. Pokud má úloha lineárního programování více optimálních řešení, pak (a) jich může být nekonečně mnoho, (b) jich musí být nekonečně mnoho.. Doplňte

Více

Ant Colony Optimization 1 / 26

Ant Colony Optimization 1 / 26 GoBack Ant Colony Optimization 1 / 26 Vznik Chování mraveců Double Bridge Experiment Řešení via ACO Metaheuristika 2 / 26 Vznik Vznik Chování mraveců Double Bridge Experiment Řešení via ACO Metaheuristika

Více

ů č Ž č é é č ř é č ř ř č é č é ř Č ř ř é ř ř Ž é é é ř ř é é ř č Ž é é é č ř é é Č č é ř ů é Ž ř ř é č ř ř ů č é é é é č č é ů ů č č é éč ů č ů ř č ň ř ř ů ú é ř ň é ř ů č ř Č ř é ř ř é ř ř ř ř ř č éř

Více

Lineární programování

Lineární programování 24.9.205 Lineární programování Radim Farana Podklady pro výuku pro akademický rok 203/204 Obsah Úloha lineárního programování. Formulace úlohy lineárního programování. Typické úlohy lineárního programování.

Více

OPTIMÁLNÍ SEGMENTACE DAT

OPTIMÁLNÍ SEGMENTACE DAT ROBUST 2004 c JČMF 2004 OPTIMÁLNÍ SEGMENTACE DAT Petr Novotný Klíčová slova: Výpočetní statistika, po částech spojitá regrese. Abstrakt: Snížení paměťové náročnosti při výpočtu po částech spojitého regresního

Více

TGH06 - Hledání nejkratší cesty

TGH06 - Hledání nejkratší cesty TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší

Více

ÚVOD DO ROZHODOVÁNÍ PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ Přednáška 1. Zuzana Bělinová

ÚVOD DO ROZHODOVÁNÍ PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ Přednáška 1. Zuzana Bělinová PŘEDNÁŠKA 1 ÚVOD DO ROZHODOVÁNÍ Organizační Vyučující Ing., Ph.D. email: belinova@k620.fd.cvut.cz Doporučená literatura Dudorkin J. Operační výzkum. Požadavky zápočtu docházka zápočtový test (21.5.2015)

Více

3. ANTAGONISTICKÉ HRY

3. ANTAGONISTICKÉ HRY 3. ANTAGONISTICKÉ HRY ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,

Více

Celočíselné lineární programování(ilp)

Celočíselné lineární programování(ilp) Celočíselné lineární programování(ilp) Zdeněk Hanzálek, Přemysl Šůcha {hanzalek}@fel.cvut.cz ČVUT FEL Katedra řídicí techniky 2. března 2010 Z. Hanzálek (ČVUT FEL) Celočíselné lineární programování(ilp)

Více

Lineární a logistická regrese

Lineární a logistická regrese Lineární a logistická regrese Martin Branda Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Výpočetní prostředky finanční a pojistné matematiky

Více

Numerické metody a programování. Lekce 8

Numerické metody a programování. Lekce 8 Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:

Více

SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE. MATEMATICKÝ MODEL ÚLOHY STANOVENí TRASY VOZIDEL PRO VíCE DEP, VíCE VOZIDEL A VíCE TYPÚ POŽADAVKŮ

SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE. MATEMATICKÝ MODEL ÚLOHY STANOVENí TRASY VOZIDEL PRO VíCE DEP, VíCE VOZIDEL A VíCE TYPÚ POŽADAVKŮ SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE Series B The Jan Perner Transport Faculty 3 (1997) MATEMATICKÝ MODEL ÚLOHY STANOVENí TRASY VOZIDEL PRO VíCE DEP, VíCE VOZIDEL A VíCE TYPÚ POŽADAVKŮ Markéta

Více

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D.

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D. 2. část: Základy matematického programování, dopravní úloha. 1 Úvodní pojmy Metody na podporu rozhodování lze obecně dělit na: Eaktní metody metody zaručující nalezení optimální řešení, např. Littlův algortimus,

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_145_IVT Autor: Ing. Pavel Bezděk Tematický okruh:

Více

UNIVERZITA PARDUBICE DOPRAVNÍ FAKULTA JANA PERNERA BAKALÁŘSKÁ PRÁCE Lukáš Macoun

UNIVERZITA PARDUBICE DOPRAVNÍ FAKULTA JANA PERNERA BAKALÁŘSKÁ PRÁCE Lukáš Macoun UNIVERZITA PARDUBICE DOPRAVNÍ FAKULTA JANA PERNERA BAKALÁŘSKÁ PRÁCE 2013 Lukáš Macoun Univerzita Pardubice Dopravní fakulta Jana Pernera Racionalizace rozvozního systému pro vybranou společnost Lukáš Macoun

Více

Jan Březina. Technical University of Liberec. 30. dubna 2013

Jan Březina. Technical University of Liberec. 30. dubna 2013 TGH11 - Maximální párování a související problémy Jan Březina Technical University of Liberec 30. dubna 2013 Bipartitní grafy Bipartitní graf - je obarvitelný dvěma barvami. Tj. V lze rozělit na disjunktní

Více

Moderní aplikace statistické fyziky II - TMF050

Moderní aplikace statistické fyziky II - TMF050 Moderní aplikace statistické fyziky II - TMF050 Body 2, E-Kredity 3, 2/0 Zk - LS Miroslav Kotrla a František Slanina kotrla@fzu.cz slanina@fzu fzu.cz kmenově: externě: ÚTF UK FZÚ AV ČR, v.v.i. oddělení

Více

Ě Ě Á ž č ž č č é š é Š Č š Č Ž é č é č ž č Š é Č č é č Á é Ú Ř Ě ž ť č é š č é č é č úč ů č é ů É Ž ů š ž Ů é É č č ó Ž č č š š č ň Ž é úč ť č č ů č č š éč š š ů š š ů ť č ó ů ů é š éč č ů č ó ů é č é

Více

Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D.

Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. OPTIMALIZACE BRAMOVÉHO PLYNULÉHO ODLÉVÁNÍ OCELI ZA POMOCI NUMERICKÉHO MODELU TEPLOTNÍHO POLE Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. Fakulta strojního inženýrství

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

4EK201 Matematické modelování. 11. Ekonometrie

4EK201 Matematické modelování. 11. Ekonometrie 4EK201 Matematické modelování 11. Ekonometrie 11. Ekonometrie Ekonometrie Interdisciplinární vědní disciplína Zkoumá vztahy mezi ekonomickými veličinami Mikroekonomickými i makroekonomickými Ekonomie ekonomické

Více

4EK213 Lineární modely. 10. Celočíselné programování

4EK213 Lineární modely. 10. Celočíselné programování 4EK213 Lineární modely 10. Celočíselné programování 10.1 Matematický model úlohy ILP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a

Více

Problém obchodního cestujícího

Problém obchodního cestujícího Problém obchodního cestujícího Zdeněk Hanzálek hanzalek@fel.cvut.cz ČVUT FEL Katedra řídicí techniky 9. května 2011 Z. Hanzálek (ČVUT FEL) Problém obchodního cestujícího 9. května 2011 1/ 21 1 Obsah přednášky

Více

Dijkstrův algoritmus

Dijkstrův algoritmus Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované

Více

K velkým datům přes matice a grafy

K velkým datům přes matice a grafy K velkým datům přes matice a grafy Miroslav Tůma Katedra numerické matematiky, MFF UK mirektuma@karlin.mff.cuni.cz MFF UK, 10.4.2019 1 / 70 Outline 1 Motivace 2 Šíření infekční choroby 3 Jiné motivace

Více

OPTIMALIZAČNÍ MODELY V LOGISTICE

OPTIMALIZAČNÍ MODELY V LOGISTICE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS OPTIMALIZAČNÍ MODELY V LOGISTICE OPTIMIZATION

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, 1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo

Více

Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů

Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému

Více

č é ž Ý č é ž é é ž é é č Ú ž č é ž é Ž é é ť č ť ž ť ž é č é é ž é é é č é ž ť č ž é ž ž ž é č č č č ž é é č é é ž č é ž é ž é ž é č é č č č é é é ž ž é č č č č ž ž é ž é é é é é č č é ž Ž č Ž ž č ž ž

Více

Obecná úloha lineárního programování

Obecná úloha lineárního programování Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné

Více

Á Ě Í Ě Á Á ó č ž č ž č Í š úč é úč š ž č é ů č é č é é ů č ů č č ů é Ž š ů ů š č é Ž č é Ž č Í ž Ž Ž é é Ů é Ř ů ť š é é č é é é š č č é č č č č š č š é č é č ů č č š ú é č é š é Ž Ž é é ú č č é ů č š

Více

úč úč ž ů ž Č Č č č ů ž úč č úč ť Ň č ú Ý č č Ú Ú ť ú č ď ů ž š úč ž úč úč ž ť ď ť ď ž ú č č úč š ž Ů č č ú úč ž ů ť úč ž ž ž Ů č ž ú č Š úč č Úč Č Č š ď š Š š Ó Ó ž ůč ú Ď ť ž ů ů č ů Č ů ž úč Ý č ž úč

Více

č ů š ň č č Ú č č č Ú ů Ú č ž ú š š ý č ú ó ó ž č ý ý ý č ž č ý ž ý č ý ž ž č ý ý ý ž ý ý ý ý š ý š ů ů č č ý ž č ý ů š ž ý Ú Ú úč š ů ž ů ů Úč ž č ý č š ý ů č š ý ý ý ů č č ž ů š ů ů š ý ý ů ů č č ž ú

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

Jan Březina. Technical University of Liberec. 21. dubna 2015

Jan Březina. Technical University of Liberec. 21. dubna 2015 TGH11 - Maximální párování a související problémy Jan Březina Technical University of Liberec 21. dubna 2015 Bipartitní grafy Bipartitní graf - je obarvitelný dvěma barvami. Tj. V lze rozělit na disjunktní

Více