III. MKP vlastní kmitání
|
|
- Renáta Tesařová
- před 6 lety
- Počet zobrazení:
Transkript
1 Jiří Máca - katedra mechaniky - B325 - tel maca@fsv.cvut.cz III. MKP vlastní kmitání 1. Rovnice vlastního kmitání 2. Rayleighova Ritzova metoda 3. Jacobiho metoda 4. Metoda inverzních iterací 5. Metoda iterace podprostoru 6. Příklady
2 2 1. Rovnice vlastního kmitání určení základních dynamických charakteristik systému: - vlastní frekvence a tvary kmitání Mr( t) Kr( t) 0 r( t) ( A cos t B sin t) r n n n n n 2 ( t) nr( t) K M 0 2 n n soustava pohybových rovnic pro netlumené vlastní kmitání soustav s n - SV řešení pohybových rovnic harmonické kmitání rovnice vlastního kmitání problém vlastních čísel n - vlastní tvar kmitání ω n - vlastní (kruhová) frekvence 2 det K n M 0 podmínka netriviálního řešení frekvenční rovnice polynom stupně N pro pro řešení praktických úloh nevhodná metoda 2 n
3 3 2. Rayleighova Ritzova metoda redukce původního problému vl. čísel s N stupni volnosti na řešení problému vlastních čísel s J stupni volnosti K M 0 2 n n K M 0 K M K M Rayleighův kvocient libovolný vektor Vlastnosti 1. Je-li vlastní vektor n, potom Rayleighův kvocient je roven 2 odpovídajícímu vlastnímu číslu n 2. Rayleighův kvocient je ohraničen nejnižším a nejvyšším vlastním číslem n a dále platí: n n
4 4 2. Rayleighova Ritzova metoda nalezení minima Rayleighova kvocientu Ritzovou metodou Ψz vlastní tvary se vyjádří jako kombinace lineárně nezávislých vektorů ψ i, i = 1,2 J <N Ritzovy vektory ψ i tvoří sloupce matice Ψ typu N x J z vektor J zobecněných souřadnic substituce Ritzových vektorů (Ritzova transformace) do Rayleighova kvocientu K z Ψ KΨz ( ) ( z) M z Ψ MΨz M Ψ MΨ K Ψ KΨ transformace matic K, M typu N x N na matice typu J x J z Kz () z z Mz
5 5 2. Rayleighova Ritzova metoda podmínka minima Rayleighova kvocientu ( z) z i z Kz 0 i1,2,... J () z z Mz ( z) 2 Kz z Mz ( z)2mz z i Kz ( z) Mz = 0 K M z 0 redukovaný problém vlastních čísel i, z i i = 1,2 J <N K M 0 2 n n i 2 i i Ψz i aproximace vlastních čísel a vektorů
6 6 3. Jacobiho metoda určení všech vlastních čísel a vektorů využití např. redukovaný problém vl. čísel v Rayleighově-Ritzově metodě základní myšlenka transformace matic tuhosti a hmotnosti na matice diagonální pomocí transformačních matic (matice rotace) iterační proces vytváří se posloupnost transformovaných matic K resp.. M 1 K K M M k1 k k k k1 k k k na konci iteračního cyklu platí vlastní frekvence: vlastní tvary: (spektrální matice) k 2 ii i mii Φ k 1 1 řádek i řádek j 1 transformační matice pro nulování mimodiagonálního prvku (i,j)
7 7 4. Metoda inverzních iterací (Stodolova metoda postupných aproximací) Iterace vzad - inverzní iterace určení nejnižší vlastní frekvence Kx Mx x K Mx x x 1 k 1 k k 1 k k 1 k 1 1/ 2 ( xk 1Mxk1) k 1 1 x pro k Iterace vpřed určení nejvyšší vlastní frekvence Mx Kx x M Kx x x 1 k 1 k k 1 k x k 1 k 1 1/ 2 ( xk 1Mxk1) k1 n pro k 1 i 2 i n
8 8 4. Metoda inverzních iterací 1. Startovací vektor x 0 libovolný 2. R Mx 0 0 Kx R x K R x Kx x Mx ( k 1) k 1 k 1 k 1 k xk 1Mxk 1 xk 1Mxk 1 3. (Rayleighův kvocient) 4. Kx x k1 ( k1) ( k) ( k 1) Mx x tol 5. Není-li kritérium konvergence splněno: normování k 1 k 1 1/ 2 xk 1Mxk1 k x K Mx Mx 1 k1 k k a návrat do bodu 2 (k = k+1)
9 9 4. Metoda inverzních iterací 6. Je-li kritérium konvergence splněno: pro iteraci (k+1) 2 ( k 1) 1 x k 1 1 k 1 1/ 2 xk 1Mxk1 Grammova-Schmidtova ortogonalizace x (normování vl. tvaru) v této formulaci metoda konverguje k 1. vlastnímu tvaru vyšší tvary lze určit tak, že se do algoritmu zavedou podmínky ortogonality mezi hledaným (m+1) tvarem a všemi předcházejícími vlastními tvary (nutno určit všech m předcházejících vlastních tvarů) modifikace vektoru x k+1 provádí se v každém iteračním kroku před návratem do bodu 2 m k 1 k 1 cjj kde cj j k 1 j1 x x Mx
10 10 4. Metoda inverzních iterací Inverzní iterace s posunutím μ umožňuje výpočet libovolného vlastního čísla λ i K M K K M 1. vlastní vektory původního problém i problému s posunutím jsou stejné 2. inverzní iterace konverguje k vl. číslu, které je nejblíže k hodnotě posunutí μ tj. např. k v (c) 3
11 11 5. Metoda iterace podprostoru metoda vhodná pro řešení rozsáhlých úloh pro určení několika nejnižších vlastních tvarů a frekvencí spojení inverzních iterací a Rayleighovy-Ritzovy metody iterace se provádějí s několika vektory současně jejich počet je m m menší z čísel (2p) a (p+8), kde p je počet hledaných vlastních čísel (p je obvykle podstatně menší než počet stupňů volnosti N) 1. Startovací vektory X 0 R KX MX 0 0 R Iterace podprostoru a) inverzní iterace KX k1 MX k K X KX M X MX b) Ritzova transformace k1 k1 k1 k1 k1 k1
12 12 5. Metoda iterace podprostoru c) redukovaný problém vlastních čísel (m vlastních čísel) Ω spektrální matice, Q modální matice K Q Ω M Q 2 k1 k1 k1 k1 k1 řešení - např. Jacobiho metoda d) výpočet nových vektorů X X Q k1 k1 k1 e) návrat do bodu 2 a) 3. Sturmova kontrola ověření, zda byla vypočtena požadovaná vlastní čísla (vl. frekvence) a vlastní vektory (vl.tvary) t.j. právě prvních p vl. čísel
13 13 6. Příklady 6.1 Jednoduchý rám přesné řešení prvky prvků prvků f 1 [Hz] 7,270 7,282 7,270 7,270 f 2 [Hz] 28,693 34,285 28,845 28,711 EI = knm 2 μ = 252 kgm -1 f 3 [Hz] 46,799 74,084 47,084 46, vl. tvar 2. vl. tvar 3. vl. tvar
14 14 6. Příklady 6.1 Jednoduchý rám přesné 3 6 řešení prvky prvků f 1 [Hz] 28,662 34,285 28,845 f 2 [Hz] 41,863 65,623 42,393 EI = knm 2 μ = 252 kgm -1 f 3 [Hz] 50,653-51, vl. tvar Doporučení: při vytváření výpočetního modelu MKP vkládat alespoň 1 uzel mezi styčníky jednotlivých prutů vede k podstatnému zvýšení přesnosti výpočtu (zejména u jednoduchých konstrukcí)
15 6. Příklady 6.2 Rovinný rám budova tvar kmitání f 1 = 2.19 Hz 2. tvar kmitání f 2 = 6.91 Hz 3. tvar kmitání f 3 = Hz 4. tvar kmitání f 4 = Hz 5. tvar kmitání f 5 = Hz
16 6. Příklady Rovinný rám budova 6. tvar kmitání f 6 = Hz 7. tvar kmitání f 7 = Hz 8. tvar kmitání f 8 = Hz 9. tvar kmitání f 9 = Hz 10. tvar kmitání f 10 = Hz
17 6. Příklady 6.3 Prostorový rám základ turbosoustrojí 17
18 6. Příklady 6.3 Prostorový rám základ turbosoustrojí 18
19 6. Příklady 6.3 Prostorový rám základ turbosoustrojí 19
20 6. Příklady 6.4 Prostorový rám + pružné podloží 20
21 6. Příklady 6.5 Zavěšený most 21
22 22 6. Příklady 6.5 Zavěšený most
23 23 6. Příklady 6.5 Zavěšený most
24 6. Příklady 6.6 rojský most 24 f (1) = 0,841 Hz f (2) = 0,885 Hz
25 6. Příklady rojský most f (4) = 1,359 Hz f (3) = 1,129 Hz f (5) = 1,385 Hz
KMS cvičení 6. Ondřej Marek
KMS cvičení 6 Ondřej Marek NETLUMENÝ ODDAJNÝ SYSTÉM S DOF analytické řešení k k Systém se stupni volnosti popisují pohybové rovnice: x m m x m x + k + k x k x = m x k x + k x = k x m x k x x m k x x m
1. Řešená konstrukce Statické řešení Výpočet průhybové čáry Dynamika Vlastní netlumené kmitání...
. Řešená konstrukce.... Statické řešení.... Výpočet průhybové čáry... 5. Dynamika.... Vlastní netlumené kmitání..... Jacobiho metoda rovinné rotace... 4.. Popis algoritmu... 4. Vynucené kmitání... 5 4.
Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011
Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení
Globální matice konstrukce
Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{
Stavební fakulta Katedra mechaniky. Jaroslav Kruis, Petr Štemberk
České vysoké učení technické v Praze Stavební fakulta Katedra mechaniky Fuzzy množiny, fuzzy čísla a jejich aplikace v inženýrství Jaroslav Kruis, Petr Štemberk Obsah Nejistoty Teorie pravděpodobnosti
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY
VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................
Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0.
A 9 vzorové řešení Př. 1. Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice Počítejte v radiánech, ne ve stupních! sin x + x 2 2 = 0. Rovnici lze upravit na sin
I. část - úvod. Iva Petríková
Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,
a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.
Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační
stránkách přednášejícího.
Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce
Numerické metody lineární algebry
Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro 1 nebo více pravých stran Výpočet
Kvantová fyzika atomárních soustav letní semestr VIII. KOTLÁŘSKÁ 23. DUBNA 2014
F40 Kvantová fyzika atomárních soustav letní semestr 03-04 VIII. Vibrace víceatomových molekul cvičení KOTLÁŘSKÁ 3. DUBNA 04 Úvodem capsule o maticích a jejich diagonalisaci definice "vibračních módů"
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
0 0 a 2,n. JACOBIOVA ITERAČNÍ METODA. Ax = b (D + L + U)x = b Dx = (L + U)x + b x = D 1 (L + U)x + D 1 b. (i) + T J
6 Jacobiova a Gaussova-Seidelova iterační metoda pro řešení systémů lin rovnic Kateřina Konečná/ ITERAČNÍ METODY PRO ŘEŠENÍ SYSTÉMŮ LINEÁRNÍCH ROVNIC Budeme se zabývat řešením soustavy lineárních rovnic
Arnoldiho a Lanczosova metoda
Arnoldiho a Lanczosova metoda 1 Částečný problém vlastních čísel Ne vždy je potřeba (a někdy to není ani technicky možné) nalézt celé spektrum dané matice (velké řídké matice). Úloze, ve které chceme aproximovat
DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH
DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH VLASTNOSTÍ MECHANISMU TETRASPHERE Vypracoval: Jaroslav Štorkán Vedoucí práce: prof. Ing. Michael Valášek, DrSc. CÍLE PRÁCE Sestavit programy pro kinematické, dynamické
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
1 Projekce a projektory
Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor
Interpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda
Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových
A 9. Počítejte v radiánech, ne ve stupních!
A 9 Př.. Je dána rovnice sin + 2 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce
Numerické metody a programování. Lekce 4
Numerické metody a programování Lekce 4 Linarní algebra soustava lineárních algebraických rovnic a 11 a 12 x 2 a 1, N x N = b 1 a 21 a 22 x 2 a 2, N x N = b 2 a M,1 a M,2 x 2 a M,N x N = b M zkráceně A
Úvod do kvantového počítání
2. přednáška Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 17. března 2005 Opakování Část I Přehled z minulé hodiny Opakování Alternativní výpočetní modely Kvantové počítače
Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w
Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,
KMS cvičení 9. Ondřej Marek
KMS cvičení 9 Ondřej Marek SYSTÉM S n DOF ŘEŠENÍ V MODÁLNÍCH SOUŘADNICÍCH Pohybové rovnice lineárního systému: U je modální matice, vlastní vektory u 1, u 2,..., u n jsou sloupce v matici U x - vektor
1 Stabilita prutových konstrukcí
1 STABLTA PRUTOVÝCH KONSTRUKCÍ 1 1 Stabilita prutových konstrukcí Pod účinky tlakových sil dochází u štíhlých prutů k vybočení stabilitní problém Posuny ve směru střednice u a rotace ϕ y zůstávají malé,
Numerické řešení soustav lineárních rovnic
Numerické řešení soustav lineárních rovnic irko Navara Centrum strojového vnímání, katedra kybernetiky elektrotechnická fakulta ČVUT, Praha http://cmpfelkcvutcz/~navara 30 11 2016 Úloha: Hledáme řešení
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
Téma: Modální analýza a volné kmitání slabě tlumených lineárních kmitavých soustav
Téma: Modální analýza a volné kmitání slabě tlumených lineárních kmitavých soustav Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Volné kmitání konzervativních(netlumených) soustav je popsáno maticovou pohybovou
l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení
Lineární stabilita a teorie II. řádu
Lineární stabilita a teorie II. řádu Sestavení podmínek rovnováhy na deformované konstrukci Konstrukce s a bez počáteční imperfekce Výpočet s malými vs. s velkými deformacemi ANKC-C 1 Zatěžovacídráhy [Šejnoha,
Soustavy lineárních rovnic-numerické řešení. October 2, 2008
Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a
Numerická matematika Banka řešených příkladů
Numerická matematika Banka řešených příkladů Radek Kučera, Pavel Ludvík, Zuzana Morávková Katedra matematiky a deskriptivní geometrie Vysoká škola báňská Technická Univerzita Ostrava K D M G ISBN 978-80-48-894-6
Soustavy lineárních rovnic-numerické řešení
Soustavy lineárních rovnic-numerické řešení November 9, 2008 Soustavy lineárních rovnic-numerické řešení 1 / 52 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22
1. CO JE TO PŘÍMÁ/NEPŘÍMÁ ÚLOHA DYNAMIKY? CO VYJADŘUJÍ POHYBOVÉ ROVNICE? JAKÝ JE ROZDÍL MEZI DYNAMICKOU ANALÝZOU/SYNTÉZOU?
Zkouška Dynamika výrobních strojů 10/11 ZKOUŠKA DYNAMIKA VÝROBNÍCH STROJŮ -10/11 TEST 10 OTÁZEK Z NÁSLEDUJÍCÍCH OKRUHŮ 1. CO JE TO PŘÍMÁ/NEPŘÍMÁ ÚLOHA DYNAMIKY? CO VYJADŘUJÍ POHYBOVÉ ROVNICE? JAKÝ JE ROZDÍL
DRN: Soustavy linárních rovnic numericky, norma
DRN: Soustavy linárních rovnic numericky, norma Algoritmus (GEM: Gaussova eliminace s částečným pivotováním pro převod rozšířené regulární matice na horní trojúhelníkový tvar). Zadána matice C = (c i,j
Numerické metody lineární algebry
Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro jednu nebo více pravých stran
Princip řešení soustavy rovnic
Princip řešení soustavy rovnic Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Formulace úlohy Metody řešení
Připomenutí co je to soustava lineárních rovnic
Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a
Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,
PRUŽNOST A PEVNOST II
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ PRUŽNOST A PEVNOST II Navazující magisterské studium, 1. ročník Alois Materna (přednášky) Jiří Brožovský (cvičení) Kancelář: LP C 303/1
Vlastní čísla a vlastní vektory
5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi
Martin NESLÁDEK. 14. listopadu 2017
Martin NESLÁDEK Faculty of mechanical engineering, CTU in Prague 14. listopadu 2017 1 / 22 Poznámky k úlohám řešeným MKP Na přesnost simulace pomocí MKP a prostorové rozlišení výsledků má vliv především:
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ
ÚVOD DO MODELOVÁNÍ V MECHANICE Přednáška č. 3 DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ Prof. Ing. Vladimír Zeman, DrSc. OBSAH 1. Úvod. Základní výpočtový model v rotujícím prostoru 3. Základní výpočtový model rotoru
Numerické řešení nelineárních rovnic
Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html
Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová
1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,
2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2
Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací
Numerické řešení soustav lineárních rovnic
Numerické řešení soustav lineárních rovnic Mirko Navara http://cmpfelkcvutcz/~navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 04a http://mathfeldcvutcz/nemecek/nummethtml
VĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
Aplikovaná numerická matematika - ANM
Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových
Numerické metody a programování. Lekce 7
Numerické metody a programování Lekce 7 Řešení nelineárních rovnic hledáme řešení x problému f x = 0 strategie: odhad řešení iterační proces postupného zpřesňování řešení výpočet skončen pokud je splněno
Čebyševovy aproximace
Čebyševovy aproximace Čebyševova aproximace je tzv hledání nejlepší stejnoměrné aproximace funkce v daném intervalu Hledáme funkci h x, která v intervalu a,b minimalizuje maximální absolutní hodnotu rozdílu
Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83
Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice
Shodnostní Helmertova transformace
Shodnostní Helmertova transformace Toto pojednání ukazuje, jak lze určit transformační koeficienty Helmertovy transformace za požadavku, aby představovaly shodnostní transformaci. Pro jednoduchost budeme
3. Přednáška: Line search
Úloha: 3. Přednáška: Line search min f(x), x R n kde x R n, n 1 a f : R n R je dvakrát spojitě diferencovatelná. Iterační algoritmy: Začínám v x 0 a vytvářím posloupnost iterací {x k } k=0, tak, aby minimum
Co je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
Moderní numerické metody
Moderní numerické metody Sbírka příkladů doc. RNDr. Jaromír Baštinec, CSc. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY Moderní numerické metody 1 Obsah 1 Soustavy lineárních rovnic 7 2 Řešení jedné nelineární
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 9. přednáška: Ortogonalita Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
Zpracování digitalizovaného obrazu (ZDO) - Popisy III
Zpracování digitalizovaného obrazu (ZDO) - Popisy III Statistické popisy tvaru a vzhledu Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování
Návod k použití programu pro výpočet dynamické odezvy spojitého nosníku
Návod k použití programu pro výpočet dynamické odezvy spojitého nosníku Obsah. Úvod.... Popis řešené problematiky..... Konstrukce... 3. Výpočet... 3.. Prohlížení výsledků... 4 4. Dodatky... 6 4.. Newmarkova
Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace
Stabilizace Galerkin Least Squares pro
Fakulta strojní ČVUT Ústav technické matematiky Stabilizace Galerkin Least Squares pro MKP na řešení proudění o vyšších Reynoldsových číslech Ing. Jakub Šístek Doc. RNDr. Pavel Burda, CSc. RNDr. Jaroslav
Numerické metody a programování
Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským
Princip gradientních optimalizačních metod
Princip gradientních optimalizačních metod Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Úkol a základní
Nelineární optimalizace a numerické metody (MI NON)
Nelineární optimalizace a numerické metody (MI NON) Magisterský program: Informatika Obor: Teoretická informatika Katedra: 18101 Katedra teoretické informatiky Jaroslav Kruis Evropský sociální fond Praha
Vlastní čísla a vlastní vektory
Kapitola 15 Vlastní čísla a vlastní vektory V této a následujících kapitolách budeme zkoumat jeden z nejdůležitějších pojmů tohoto kurzu. Definice15.1 Buď A:V Vlineárnízobrazení,Vvektorovýprostornad tělesem
a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
Michael Valášek Vedoucí práce: doc. Ing. Václav Bauma, CSc.
Michael Valášek Vedoucí práce: doc. Ing. Václav Bauma, CSc. Zadání bakalářské práce Mechanismus vztlakové klapky křídla 1. Proveďte rešerši možných konstrukčních řešení vztlakové klapky křídla 2. Seznamte
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Základy fyzikální geodézie 3/19 Legendreovy přidružené funkce
2. Určte hromadné body, limitu superior a limitu inferior posloupností: 2, b n = n. n n n.
Písemka matematika 3 s řešením 1. Vypočtěte lim n( 1 + n 2 n), n lim n (( 1 + 1 n e ) n ) n. 1/2, 1/ e 2. Určte hromadné body, limitu superior a limitu inferior posloupností: a n = sin nπ ( 2, b n = n
Úvod do přesnosti MKP, generace sítí a metod řešení soustav lineárních rovnic
ENumerická analýza transportních procesů - NTP2 Přednáška č. 8 Úvod do přesnosti MKP, generace sítí a metod řešení soustav lineárních rovnic Úvod do přesnosti metody konečných prvků Úvod do přesnosti metody
Typy příkladů na písemnou část zkoušky 2NU a vzorová řešení (doc. Martišek 2017)
Typy příkladů na písemnou část zkoušky NU a vzorová řešení (doc. Martišek 07). Vhodnou iterační metodou (tj. metodou se zaručenou konvergencí) řešte soustavu: x +x +4x 3 = 3.5 x 3x +x 3 =.5 x +x +x 3 =.5
Numerická matematika 1
Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................
Ortogonální transformace a QR rozklady
Ortogonální transformace a QR rozklady Petr Tichý 9. října 2013 1 Úvod Unitární (ortogonální) transformace, Gram-Schmidtova ortogonalizace Příklad Schurovy věty unitární transformace nezvětšují chyby ve
Numerická matematika Písemky
Numerická matematika Písemky Bodování Každá písemka je bodována maximálně 20 body. Celkem student může získat za písemky až 40 bodů, pro udělení zápočtu musí získat minimálně 20 bodů. Písemka č. 1 Dva
Požadavky ke zkoušce
Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 2 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM
OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
spektra e Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 70 spektra e 1 2 3 spektra e Hessenbergovy 4 2 / 70 - aplikace (eigenvalues and eigenvectors)
Ortogonální transformace a QR rozklady
Ortogonální transformace a QR rozklady 1 Úvod Unitární (ortogonální) transformace, Gram-Schmidtova ortogonalizace Příklad Schurovy věty unitární transformace nezvětšují chyby ve vstupních datech. Tato
Mechanika
Mechanika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Mechanika Kinematika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Přednáška 1 Obecná deformační metoda, podstata DM
Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí
Téma: Dynamiky - Základní vztahy kmitání
Počítačová podpora statických výpočtů Téma: Dynamiky - Základní vztahy kmitání 1) Vlastnosti materiálů při dynamickém namáháni ) Základní vztahy teorie kmitání s jedním stupněm volnosti Katedra konstrukcí
Definice 28 (Ortogonální doplněk vektorového podprostoru). V k V n ; V k V. (Pech:AGLÚ/str D.5.1)
14.3 Kolmost podprostorů 14.3.1 Ortogonální doplněk vektorového prostou Ve vektorovém prostoru dimenze 3 je ortogonálním doplňkem roviny (přesněji vektorového prostoru dimenze ) přímka na ní kolmá (vektorový
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
1 0 0 u 22 u 23 l 31. l u11
LU dekompozice Jedná se o rozklad matice A na dvě trojúhelníkové matice L a U, A=LU. Matice L je dolní trojúhelníková s jedničkami na diagonále a matice U je horní trojúhelníková. a a2 a3 a 2 a 22 a 23
Téma 13, Úvod do dynamiky stavebních konstrukcí dynamiky
Statika staveních konstrukcí II., 3.ročník akalářského studia Téma 3, Úvod do dynamiky staveních konstrukcí dynamiky Úvod Vlastní kmitání Vynucené kmitání Tlumené kmitání Podmínky dynamické rovnováhy konstrukcí
Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )
Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem
Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29
Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 65 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 2 3 4 5 6 7 8 Super-relaxační 9 2 / 65 2 / 65 Budeme se zabývat mi pro řešení úlohy A x = b s regulární
AVDAT Vektory a matice
AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x
Linearní algebra příklady
Linearní algebra příklady 6. listopadu 008 9:56 Značení: E jednotková matice, E ij matice mající v pozici (i, j jedničku a jinak nuly. [...]... lineární obal dané soustavy vektorů. Popište pomocí maticového
Geometrické transformace
1/15 Předzpracování v prostoru obrazů Geometrické transformace Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/
7 Analytické vyjádření shodnosti
7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +
Modelování a simulace
Modelování a simulace Modelování mechanických systémů Doc. Ing. Pavel Václavek, Ph.D. Modelování a simulace Mechanické systémy - str. 1/14 přednášky Modelování a simulace Mechanické systémy - str. 2/14
Pozn. 1. Při návrhu aproximace bychom měli aproximační funkci vybírat tak, aby vektory ϕ (i) byly lineárně
9. Řešení typických úloh diskrétní metodou nejmenších čtverců. DISKRÉTNÍ METODA NEJMENŠÍCH ČTVERCŮ použití: v případech, kdy je nevhodná interpolace využití: prokládání dat křivkami, řešení přeurčených
Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012
Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012 Opakování rovnice přímky Úloha: Určete rovnici přímky procházející body A[a, f(a)] a B[b, f(b)], kde f je funkce spojitá