MATLB: p edná²ka 2. Datové typy a struktury. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií.

Rozměr: px
Začít zobrazení ze stránky:

Download "MATLB: p edná²ka 2. Datové typy a struktury. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií."

Transkript

1 TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií MATLB: p edná²ka 2 Datové typy a struktury Zbyn k Koldovský Projekt ESF CZ.1.07/2.2.00/ Modernizace didaktických metod a inovace výuky technických p edm t.

2 ƒást I Datové typy a struktury

3 Datové typy a struktury P ehled typ : Product Help MATLAB Programming Fundamentals Classes (Data Types)

4 Numerické, logické a textové datové typy Numerické: p etypování pomocí int8, uint8, int16, single, double... Logické Textové: char, et zce jako pole typ char, pracujeme s ním tedy podobn jako s maticemi (spojování, indexování, atd.) >> s='ahoj' s = Ahoj >> whos s Name Size Bytes Class Attributes s 1x4 8 char >> s(2) ans = h

5 Numerické, logické a textové datové typy Numerické: p etypování pomocí int8, uint8, int16, single, double... Logické Textové: char, et zce jako pole typ char, pracujeme s ním tedy podobn jako s maticemi (spojování, indexování, atd.) >> s='ahoj' s = Ahoj >> whos s Name Size Bytes Class Attributes s 1x4 8 char >> s(2) ans = h

6 Numerické, logické a textové datové typy Numerické: p etypování pomocí int8, uint8, int16, single, double... Logické Textové: char, et zce jako pole typ char, pracujeme s ním tedy podobn jako s maticemi (spojování, indexování, atd.) >> s='ahoj' s = Ahoj >> whos s Name Size Bytes Class Attributes s 1x4 8 char >> s(2) ans = h

7 et zce >> s=[s ' Honzo'] % spojování s = Ahoj Honzo >> a=['ahoj';'honzo'] % chyba - ádky matice nejsou stejn velké??? Error using ==> vertcat CAT arguments dimensions are not consistent. >> a=['ahoj ';'Honzo'] a = Ahoj Honzo >> strcmp(a(1,:),'ahoj ') % porovnání et zc ans = 1

8 Standardní p íkazy pro práci s et zci strcmp, strfind, regexp - porovnávání, vyhledávání, regulární výrazy, parsování fprintf, sprintf - formátované výrazy upper, lower - velká/malá písmena eval - vyhodnovení výrazu

9 Standardní p íkazy pro práci s et zci strcmp, strfind, regexp - porovnávání, vyhledávání, regulární výrazy, parsování fprintf, sprintf - formátované výrazy upper, lower - velká/malá písmena eval - vyhodnovení výrazu

10 Standardní p íkazy pro práci s et zci strcmp, strfind, regexp - porovnávání, vyhledávání, regulární výrazy, parsování fprintf, sprintf - formátované výrazy upper, lower - velká/malá písmena eval - vyhodnovení výrazu

11 Standardní p íkazy pro práci s et zci strcmp, strfind, regexp - porovnávání, vyhledávání, regulární výrazy, parsování fprintf, sprintf - formátované výrazy upper, lower - velká/malá písmena eval - vyhodnovení výrazu

12 Záznamy Datový typ struct Automatická denice poloºek >> s.jmeno='tomas'; >> s.adresa='praha'; % nebo >> s=struct('jmeno','tomas','adresa','praha') s = jmeno: 'Tomas' adresa: 'Praha' Kaºdý prvek je zárove pole >> whos s Name Size Bytes Class Attributes s 1x1 268 struct

13 Záznamy Datový typ struct Automatická denice poloºek >> s.jmeno='tomas'; >> s.adresa='praha'; % nebo >> s=struct('jmeno','tomas','adresa','praha') s = jmeno: 'Tomas' adresa: 'Praha' Kaºdý prvek je zárove pole >> whos s Name Size Bytes Class Attributes s 1x1 268 struct

14 Záznamy Datový typ struct Automatická denice poloºek >> s.jmeno='tomas'; >> s.adresa='praha'; % nebo >> s=struct('jmeno','tomas','adresa','praha') s = jmeno: 'Tomas' adresa: 'Praha' Kaºdý prvek je zárove pole >> whos s Name Size Bytes Class Attributes s 1x1 268 struct

15 Záznamy (2) Pole záznam (databáze) >> s(2).jmeno='ales' s = 1x2 struct array with fields: jmeno adresa >> s(2) ans = jmeno: 'Ales' adresa: []

16 Záznamy (3) P íklad >> files=dir('*.m') files = 6x1 struct array with fields: name date bytes isdir datenum >> files(1) ans = name: 'dft.m' date: '05-XI :59:17' bytes: 143 isdir: 0 datenum: e+005

17 Záznamy (4) P íklad >> files(1:3).name ans = dft.m ans = funkcef.m ans = pokus.m >> [files(1:3).name] ans = dft.mfunkcef.mpokus.m >> strvcat(files(1:3).name) ans = dft.m funkcef.m pokus.m

18 Záznamy (5) P íklad >> files=dir files = 131x1 struct array with fields: name date bytes isdir datenum >> directory=files([files.isdir]) % pouze adresá e directory = 7x1 struct array with fields: name date bytes isdir datenum

19 Vícerozm zná pole Vícerozm rné pole typu double >> A=zeros(3,4,5,2); >> A(:,1,2,2) % indexování jako u matic P íkazy sum, mean, prod >> sum(v) % sou et 1D pole = vektoru >> sum(a) % sou et sloupc >> sum(a,n) % sou et p es n-tý rozm r % n-tý rozm r výsledku je 1 Dal²í p íkazy: squeeze, reshape, permute >> squeeze(sum(sum(a,3),2)) % odstraní 1-dimenzionální % rozm ry >> reshape(a,12,10) % zm na rozm r % po et prvk nového pole musí být stejný >> permute(a,[ ]) % vým na po adí rozm r

20 Vícerozm zná pole Vícerozm rné pole typu double >> A=zeros(3,4,5,2); >> A(:,1,2,2) % indexování jako u matic P íkazy sum, mean, prod >> sum(v) % sou et 1D pole = vektoru >> sum(a) % sou et sloupc >> sum(a,n) % sou et p es n-tý rozm r % n-tý rozm r výsledku je 1 Dal²í p íkazy: squeeze, reshape, permute >> squeeze(sum(sum(a,3),2)) % odstraní 1-dimenzionální % rozm ry >> reshape(a,12,10) % zm na rozm r % po et prvk nového pole musí být stejný >> permute(a,[ ]) % vým na po adí rozm r

21 Vícerozm zná pole Vícerozm rné pole typu double >> A=zeros(3,4,5,2); >> A(:,1,2,2) % indexování jako u matic P íkazy sum, mean, prod >> sum(v) % sou et 1D pole = vektoru >> sum(a) % sou et sloupc >> sum(a,n) % sou et p es n-tý rozm r % n-tý rozm r výsledku je 1 Dal²í p íkazy: squeeze, reshape, permute >> squeeze(sum(sum(a,3),2)) % odstraní 1-dimenzionální % rozm ry >> reshape(a,12,10) % zm na rozm r % po et prvk nového pole musí být stejný >> permute(a,[ ]) % vým na po adí rozm r

22 Pam ová pole Pam ová pole: Cell Arrays Nejobecn j²í moºné: indexovaná pole jejichº prvky jsou libovolného typu a struktury Automatická alokace, indexování pomocí {, } >> c{1,1}=randn(3,4); >> c{1,2}=struct('jmeno','ales'); >> c{1,3}=c c = [3x4 double] [1x1 struct] {1x2 cell} Indexování: >> c(2) % vrací pam ové pole 1x1 na 2. pozici v c >> c{2} % vrací obsah 2. prvku v c >> c{1}(2,3) % (2,3)-prvek v 1. prvku c >> c{3}{1,2}.jmeno(3) % no comment ans = e Spojování: pozor na rozdíl významu {, } a [, ]

23 Pam ová pole Pam ová pole: Cell Arrays Nejobecn j²í moºné: indexovaná pole jejichº prvky jsou libovolného typu a struktury Automatická alokace, indexování pomocí {, } >> c{1,1}=randn(3,4); >> c{1,2}=struct('jmeno','ales'); >> c{1,3}=c c = [3x4 double] [1x1 struct] {1x2 cell} Indexování: >> c(2) % vrací pam ové pole 1x1 na 2. pozici v c >> c{2} % vrací obsah 2. prvku v c >> c{1}(2,3) % (2,3)-prvek v 1. prvku c >> c{3}{1,2}.jmeno(3) % no comment ans = e Spojování: pozor na rozdíl významu {, } a [, ]

24 Pam ová pole Pam ová pole: Cell Arrays Nejobecn j²í moºné: indexovaná pole jejichº prvky jsou libovolného typu a struktury Automatická alokace, indexování pomocí {, } >> c{1,1}=randn(3,4); >> c{1,2}=struct('jmeno','ales'); >> c{1,3}=c c = [3x4 double] [1x1 struct] {1x2 cell} Indexování: >> c(2) % vrací pam ové pole 1x1 na 2. pozici v c >> c{2} % vrací obsah 2. prvku v c >> c{1}(2,3) % (2,3)-prvek v 1. prvku c >> c{3}{1,2}.jmeno(3) % no comment ans = e Spojování: pozor na rozdíl významu {, } a [, ]

25 Pam ová pole Pam ová pole: Cell Arrays Nejobecn j²í moºné: indexovaná pole jejichº prvky jsou libovolného typu a struktury Automatická alokace, indexování pomocí {, } >> c{1,1}=randn(3,4); >> c{1,2}=struct('jmeno','ales'); >> c{1,3}=c c = [3x4 double] [1x1 struct] {1x2 cell} Indexování: >> c(2) % vrací pam ové pole 1x1 na 2. pozici v c >> c{2} % vrací obsah 2. prvku v c >> c{1}(2,3) % (2,3)-prvek v 1. prvku c >> c{3}{1,2}.jmeno(3) % no comment ans = e Spojování: pozor na rozdíl významu {, } a [, ]

26 Pam ová pole Pam ová pole: Cell Arrays Nejobecn j²í moºné: indexovaná pole jejichº prvky jsou libovolného typu a struktury Automatická alokace, indexování pomocí {, } >> c{1,1}=randn(3,4); >> c{1,2}=struct('jmeno','ales'); >> c{1,3}=c c = [3x4 double] [1x1 struct] {1x2 cell} Indexování: >> c(2) % vrací pam ové pole 1x1 na 2. pozici v c >> c{2} % vrací obsah 2. prvku v c >> c{1}(2,3) % (2,3)-prvek v 1. prvku c >> c{3}{1,2}.jmeno(3) % no comment ans = e Spojování: pozor na rozdíl významu {, } a [, ]

27 ƒást II Programování skript a funkcí

28 Skript ASCII soubory s koncovkou *.m Skript nemá vlastní datový segment Workspace, pracujeme v základním Base Globální prom nné: deklarace pomocí p íkazu global

29 Skript ASCII soubory s koncovkou *.m Skript nemá vlastní datový segment Workspace, pracujeme v základním Base Globální prom nné: deklarace pomocí p íkazu global

30 Skript ASCII soubory s koncovkou *.m Skript nemá vlastní datový segment Workspace, pracujeme v základním Base Globální prom nné: deklarace pomocí p íkazu global

31 Funkce ASCII soubory s koncovkou *.m za ínající klí ovým slovem function Vlastní datový segment Workspace (prom nné jsou lokální) Deklarace funkce, vstupních a výstupních prom nných function [a,b,c]=mojefunkce(x,y) % tady je nápov da Net eba denovat datové typy, po et vstup a výstup (deklarací si vstupy a výstupy pouze pojmenováváme, nemusí existovat, m ºe jich být víc) Po et vstupních a výstupních prom nných: prom nné nargin a nargout, pro vstup a výstup lze pouºít pam ové pole varargin, varargout Vloºené funkce: dal²ím klí ovým slovem function denujeme lokální funkci, která ale není vid t navenek

32 Funkce ASCII soubory s koncovkou *.m za ínající klí ovým slovem function Vlastní datový segment Workspace (prom nné jsou lokální) Deklarace funkce, vstupních a výstupních prom nných function [a,b,c]=mojefunkce(x,y) % tady je nápov da Net eba denovat datové typy, po et vstup a výstup (deklarací si vstupy a výstupy pouze pojmenováváme, nemusí existovat, m ºe jich být víc) Po et vstupních a výstupních prom nných: prom nné nargin a nargout, pro vstup a výstup lze pouºít pam ové pole varargin, varargout Vloºené funkce: dal²ím klí ovým slovem function denujeme lokální funkci, která ale není vid t navenek

33 Funkce ASCII soubory s koncovkou *.m za ínající klí ovým slovem function Vlastní datový segment Workspace (prom nné jsou lokální) Deklarace funkce, vstupních a výstupních prom nných function [a,b,c]=mojefunkce(x,y) % tady je nápov da Net eba denovat datové typy, po et vstup a výstup (deklarací si vstupy a výstupy pouze pojmenováváme, nemusí existovat, m ºe jich být víc) Po et vstupních a výstupních prom nných: prom nné nargin a nargout, pro vstup a výstup lze pouºít pam ové pole varargin, varargout Vloºené funkce: dal²ím klí ovým slovem function denujeme lokální funkci, která ale není vid t navenek

34 Funkce ASCII soubory s koncovkou *.m za ínající klí ovým slovem function Vlastní datový segment Workspace (prom nné jsou lokální) Deklarace funkce, vstupních a výstupních prom nných function [a,b,c]=mojefunkce(x,y) % tady je nápov da Net eba denovat datové typy, po et vstup a výstup (deklarací si vstupy a výstupy pouze pojmenováváme, nemusí existovat, m ºe jich být víc) Po et vstupních a výstupních prom nných: prom nné nargin a nargout, pro vstup a výstup lze pouºít pam ové pole varargin, varargout Vloºené funkce: dal²ím klí ovým slovem function denujeme lokální funkci, která ale není vid t navenek

35 Funkce ASCII soubory s koncovkou *.m za ínající klí ovým slovem function Vlastní datový segment Workspace (prom nné jsou lokální) Deklarace funkce, vstupních a výstupních prom nných function [a,b,c]=mojefunkce(x,y) % tady je nápov da Net eba denovat datové typy, po et vstup a výstup (deklarací si vstupy a výstupy pouze pojmenováváme, nemusí existovat, m ºe jich být víc) Po et vstupních a výstupních prom nných: prom nné nargin a nargout, pro vstup a výstup lze pouºít pam ové pole varargin, varargout Vloºené funkce: dal²ím klí ovým slovem function denujeme lokální funkci, která ale není vid t navenek

36 Funkce ASCII soubory s koncovkou *.m za ínající klí ovým slovem function Vlastní datový segment Workspace (prom nné jsou lokální) Deklarace funkce, vstupních a výstupních prom nných function [a,b,c]=mojefunkce(x,y) % tady je nápov da Net eba denovat datové typy, po et vstup a výstup (deklarací si vstupy a výstupy pouze pojmenováváme, nemusí existovat, m ºe jich být víc) Po et vstupních a výstupních prom nných: prom nné nargin a nargout, pro vstup a výstup lze pouºít pam ové pole varargin, varargout Vloºené funkce: dal²ím klí ovým slovem function denujeme lokální funkci, která ale není vid t navenek

37 Debugging a Proling Breakpointy vkládáme v programovacím editoru, z p íkazové ádky je to téº moºné (p íkaz dbstop) av²ak... Lze vkládat i podmín né breakpointy Pomáháme si p íkazy echo, disp, keyboard, return, warning,... B hem debuggingu m ºeme d lat prakticky cokoliv: sledovat a m nit prom nné, vytvá et nové, volat p íkazy... zde je zásadní výhoda toho, ºe Matlab je interpret nikoliv p eklada Proler slouºí k m ení asové náro nosti profile clear profile on mujskript mojefunkce(x,y) profile off profile report

38 Debugging a Proling Breakpointy vkládáme v programovacím editoru, z p íkazové ádky je to téº moºné (p íkaz dbstop) av²ak... Lze vkládat i podmín né breakpointy Pomáháme si p íkazy echo, disp, keyboard, return, warning,... B hem debuggingu m ºeme d lat prakticky cokoliv: sledovat a m nit prom nné, vytvá et nové, volat p íkazy... zde je zásadní výhoda toho, ºe Matlab je interpret nikoliv p eklada Proler slouºí k m ení asové náro nosti profile clear profile on mujskript mojefunkce(x,y) profile off profile report

39 Debugging a Proling Breakpointy vkládáme v programovacím editoru, z p íkazové ádky je to téº moºné (p íkaz dbstop) av²ak... Lze vkládat i podmín né breakpointy Pomáháme si p íkazy echo, disp, keyboard, return, warning,... B hem debuggingu m ºeme d lat prakticky cokoliv: sledovat a m nit prom nné, vytvá et nové, volat p íkazy... zde je zásadní výhoda toho, ºe Matlab je interpret nikoliv p eklada Proler slouºí k m ení asové náro nosti profile clear profile on mujskript mojefunkce(x,y) profile off profile report

40 Debugging a Proling Breakpointy vkládáme v programovacím editoru, z p íkazové ádky je to téº moºné (p íkaz dbstop) av²ak... Lze vkládat i podmín né breakpointy Pomáháme si p íkazy echo, disp, keyboard, return, warning,... B hem debuggingu m ºeme d lat prakticky cokoliv: sledovat a m nit prom nné, vytvá et nové, volat p íkazy... zde je zásadní výhoda toho, ºe Matlab je interpret nikoliv p eklada Proler slouºí k m ení asové náro nosti profile clear profile on mujskript mojefunkce(x,y) profile off profile report

41 Debugging a Proling Breakpointy vkládáme v programovacím editoru, z p íkazové ádky je to téº moºné (p íkaz dbstop) av²ak... Lze vkládat i podmín né breakpointy Pomáháme si p íkazy echo, disp, keyboard, return, warning,... B hem debuggingu m ºeme d lat prakticky cokoliv: sledovat a m nit prom nné, vytvá et nové, volat p íkazy... zde je zásadní výhoda toho, ºe Matlab je interpret nikoliv p eklada Proler slouºí k m ení asové náro nosti profile clear profile on mujskript mojefunkce(x,y) profile off profile report

42 Cykly Cyklus for for i=ind % ind obsahuje hodnoty, které i nabývá % asto nap 1:50 % t lo cyklu end Lze m nit ídící prom nnou v pr b hu, av²ak v dal²ím pr b hu bude mít dal²í hodnotu z pole ind Cyklus while while podminka % podminka je logická hodnota % nap. a>1 % t lo cyklu end

43 Cykly Cyklus for for i=ind % ind obsahuje hodnoty, které i nabývá % asto nap 1:50 % t lo cyklu end Lze m nit ídící prom nnou v pr b hu, av²ak v dal²ím pr b hu bude mít dal²í hodnotu z pole ind Cyklus while while podminka % podminka je logická hodnota % nap. a>1 % t lo cyklu end

44 Podmínky Podmínka if podminka % t lo podmínky elseif podminka2 % t lo druhé podmínky elseif podminka3 % t lo t etí podmínky else % jinak end

45 Podmínka switch Podmínka switch switch vyraz case 1 % t lo p íkazu case {2, 3, 4} % t lo p íkazu otherwise % jinak % t lo p íkazu end Provádí se pouze pravdivé p ípady, není t eba ukon ovat p ípady pomocí break jako je tomu nap. v C++

46 Standardní matematické funkce v Matlabu Standardní názvy: sin, cos, tan, log, exp, abs, sign... Funkce fungují obecn v komplexním oboru Funkce se standardn aplikují po prvcích, výstup má stejný rozm r jako vstup Zaokrouhlování: round, ceil, fix, floor Maximální a minimální prvek a medián: max, mix, median. V p ípad vektoru je jedno je-li sloupcový nebo ádkový, u matic fungují po sloupcích, dále viz help. Neslouºí k hledání minim a maxim funkcí (Optimization Toolbox)! T íd ní: sort

47 Standardní matematické funkce v Matlabu Standardní názvy: sin, cos, tan, log, exp, abs, sign... Funkce fungují obecn v komplexním oboru Funkce se standardn aplikují po prvcích, výstup má stejný rozm r jako vstup Zaokrouhlování: round, ceil, fix, floor Maximální a minimální prvek a medián: max, mix, median. V p ípad vektoru je jedno je-li sloupcový nebo ádkový, u matic fungují po sloupcích, dále viz help. Neslouºí k hledání minim a maxim funkcí (Optimization Toolbox)! T íd ní: sort

48 Standardní matematické funkce v Matlabu Standardní názvy: sin, cos, tan, log, exp, abs, sign... Funkce fungují obecn v komplexním oboru Funkce se standardn aplikují po prvcích, výstup má stejný rozm r jako vstup Zaokrouhlování: round, ceil, fix, floor Maximální a minimální prvek a medián: max, mix, median. V p ípad vektoru je jedno je-li sloupcový nebo ádkový, u matic fungují po sloupcích, dále viz help. Neslouºí k hledání minim a maxim funkcí (Optimization Toolbox)! T íd ní: sort

49 Standardní matematické funkce v Matlabu Standardní názvy: sin, cos, tan, log, exp, abs, sign... Funkce fungují obecn v komplexním oboru Funkce se standardn aplikují po prvcích, výstup má stejný rozm r jako vstup Zaokrouhlování: round, ceil, fix, floor Maximální a minimální prvek a medián: max, mix, median. V p ípad vektoru je jedno je-li sloupcový nebo ádkový, u matic fungují po sloupcích, dále viz help. Neslouºí k hledání minim a maxim funkcí (Optimization Toolbox)! T íd ní: sort

50 Standardní matematické funkce v Matlabu Standardní názvy: sin, cos, tan, log, exp, abs, sign... Funkce fungují obecn v komplexním oboru Funkce se standardn aplikují po prvcích, výstup má stejný rozm r jako vstup Zaokrouhlování: round, ceil, fix, floor Maximální a minimální prvek a medián: max, mix, median. V p ípad vektoru je jedno je-li sloupcový nebo ádkový, u matic fungují po sloupcích, dále viz help. Neslouºí k hledání minim a maxim funkcí (Optimization Toolbox)! T íd ní: sort

51 Standardní matematické funkce v Matlabu Standardní názvy: sin, cos, tan, log, exp, abs, sign... Funkce fungují obecn v komplexním oboru Funkce se standardn aplikují po prvcích, výstup má stejný rozm r jako vstup Zaokrouhlování: round, ceil, fix, floor Maximální a minimální prvek a medián: max, mix, median. V p ípad vektoru je jedno je-li sloupcový nebo ádkový, u matic fungují po sloupcích, dále viz help. Neslouºí k hledání minim a maxim funkcí (Optimization Toolbox)! T íd ní: sort

52 ƒást III Vektorizace a skládání výraz a p íkaz

53 Vektorizace a skládání výraz a p íkaz V Matlabu se obecn snaºíme vyhnout cykl m. Jsou pomalé, vytvá í zbyt n dlouhý kód, m ºe nastat problém s doalokováváním. Nap. y=[]; % prázdné pole for x=1:10000 y=[y x]; % na konec pole y p idáme prvek x end V cyklu for asto zpracováváme postupn v²echny prvky pole, tzv. po prvcích. To lze asto e²it vektorizovaným výrazem. Jiº známý p íklad z minulé p edná²ky: vyhledávání prvk pomocí logického indexování.

54 Vektorizace a skládání výraz a p íkaz V Matlabu se obecn snaºíme vyhnout cykl m. Jsou pomalé, vytvá í zbyt n dlouhý kód, m ºe nastat problém s doalokováváním. Nap. y=[]; % prázdné pole for x=1:10000 y=[y x]; % na konec pole y p idáme prvek x end V cyklu for asto zpracováváme postupn v²echny prvky pole, tzv. po prvcích. To lze asto e²it vektorizovaným výrazem. Jiº známý p íklad z minulé p edná²ky: vyhledávání prvk pomocí logického indexování.

55 Vektorizace a skládání výraz a p íkaz V Matlabu se obecn snaºíme vyhnout cykl m. Jsou pomalé, vytvá í zbyt n dlouhý kód, m ºe nastat problém s doalokováváním. Nap. y=[]; % prázdné pole for x=1:10000 y=[y x]; % na konec pole y p idáme prvek x end V cyklu for asto zpracováváme postupn v²echny prvky pole, tzv. po prvcích. To lze asto e²it vektorizovaným výrazem. Jiº známý p íklad z minulé p edná²ky: vyhledávání prvk pomocí logického indexování.

56 Vektorizace a skládání výraz a p íkaz P íklad: Výpo et log 10 (x) na intervalu [0.01,10] s krokem 0.01 index=0; for x=0.01:0.01:10 index=index+1; y(index)=log10(x); end versus x=0.01:0.01:10; y=log10(x); versus y=log10(0.01:0.01:10);

57 Vektorizace a skládání výraz a p íkaz P íklad: Výpo et sin 2 (x) cos(x) na intervalu [1,20] s krokem 0.1 index=0; for x=1:0.1:20 index=index+1; y(index)=sin(x)^2*cos(x); end versus x=1:0.1:20; y=sin(x)^2*cos(x); % toto je ²patn! y=sin(x).^2.*cos(x);

58 Vektorizace a skládání výraz a p íkaz P íklad: Ode tení ádkových pr m r z ádk matice A for i=1:size(a,1) for j=1:size(a,2) prumer=0; for k=1:size(a,2) prumer=prumer+a(i,k); end prumer=prumer/size(a,2); A(i,j)=A(i,j)-prumer; end end % tohle je katastrofa: zápo et nikdy! versus for k=1:size(a,1) A(k,:)=A(k,:)-mean(A(k,:)); end

59 Vektorizace a skládání výraz a p íkaz P íklad: Ode tení ádkových pr m r z ádk matice A A = A - repmat(mean(a,2),1,size(a,2)); % repmat vytvá í pole "dlaºdicováním" první prom nné versus A = A - mean(a,2)*ones(1,size(a,2)); % astý trik s vyuºitím maticového násobení versus A = bsxfun(@minus,a,mean(a,2)); % pouºití speciální funkce bsxfun Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/ Modernizace didaktických metod a inovace výuky technických p edm t, který je spolunancován Evropským sociálním fondem a státním rozpo tem ƒr.

MATLB: p edná²ka 1. Prom nné, indexování a operátory. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

MATLB: p edná²ka 1. Prom nné, indexování a operátory. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií MATLB: p edná²ka 1 Prom nné, indexování a operátory Zbyn k Koldovský Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace

Více

C++ Akademie SH. 2. Prom nné, podmínky, cykly, funkce, rekurze, operátory. Michal Kvasni ka. 20. b ezna Za áte níci C++

C++ Akademie SH. 2. Prom nné, podmínky, cykly, funkce, rekurze, operátory. Michal Kvasni ka. 20. b ezna Za áte níci C++ C++ Akademie SH 2. Prom nné, podmínky, cykly, funkce, rekurze, operátory Za áte níci C++ 20. b ezna 2011 Obsah 1 Prom nné - primitivní typy Celá ísla ƒísla s pohyblivou desetinnou árkou, typ bool 2 Podmínka

Více

Cvi ení 1. Modelování systém a proces. Mgr. Lucie Kárná, PhD. March 2, Organizace cvi ení 2 Matlab Za ínáme Základní operace Základní funkce

Cvi ení 1. Modelování systém a proces. Mgr. Lucie Kárná, PhD. March 2, Organizace cvi ení 2 Matlab Za ínáme Základní operace Základní funkce Modelování systém a proces Mgr. Lucie Kárná, PhD karna@fd.cvut.cz March 2, 2018 1 Organizace cvi ení 2 Za ínáme Základní funkce 3 Princip práce v u Jednoduché modely v u Souhrn Organizace cvi ení webová

Více

Cvi ení 1. Cvi ení 1. Modelování systém a proces. Mgr. Lucie Kárná, PhD. March 2, 2018

Cvi ení 1. Cvi ení 1. Modelování systém a proces. Mgr. Lucie Kárná, PhD. March 2, 2018 Cvi ení 1 Modelování systém a proces Mgr. Lucie Kárná, PhD karna@fd.cvut.cz March 2, 2018 1 Organizace cvi ení 2 Za ínáme Základní operace Základní funkce 3 Simulink Princip práce v Simulinku Jednoduché

Více

P íklady k prvnímu testu - Scilab

P íklady k prvnímu testu - Scilab P íklady k prvnímu testu - Scilab 24. b ezna 2014 Instrukce: Projd te si v²echny p íklady. Kaºdý p íklad se snaºte pochopit. Pak vymyslete a naprogramujte p íklad podobný. Tím se ujistíte, ºe p íkladu

Více

Skalární sou in. Úvod. Denice skalárního sou inu

Skalární sou in. Úvod. Denice skalárního sou inu Skalární sou in Jedním ze zp sob, jak m ºeme dva vektory kombinovat, je skalární sou in. Výsledkem skalárního sou inu dvou vektor, jak jiº název napovídá, je skalár. V tomto letáku se nau íte, jak vypo

Více

Modelování v elektrotechnice

Modelování v elektrotechnice Katedra teoretické elektrotechniky Elektrotechnická fakulta ZÁPADOƒESKÁ UNIVERZITA V PLZNI Modelování v elektrotechnice Pánek David, K s Pavel, Korous Luká², Karban Pavel 28. listopadu 2012 Obsah 1 Úvod

Více

Vektor náhodných veli in - práce s více prom nnými

Vektor náhodných veli in - práce s více prom nnými Vektor náhodných veli in - práce s více prom nnými 12. kv tna 2015 N kdy k popisu n jaké situace pot ebujeme více neº jednu náhodnou veli inu. Nap. v k, hmotnost, vý²ku. Mezi t mito veli inami mohou být

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Příklady v MATLABu Přednáška 10 30. listopadu 2009 Řídící instrukce if else C Matlab if ( podmínka ) { } else { } Podmíněný příkaz if podmínka elseif podmínka2... else

Více

e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody

e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody V praxi se asto setkávame s p ípady, kdy je pot eba e²it více rovnic, takzvaný systém rovnic, obvykle s více jak jednou neznámou.

Více

Systém je citlivý na velikost písmen CASE SENSITIVE rozeznává malá velká písmena, např. PROM=1; PROm=1; PRom=1; Prom=1; prom=1; - 5 různých proměnných

Systém je citlivý na velikost písmen CASE SENSITIVE rozeznává malá velká písmena, např. PROM=1; PROm=1; PRom=1; Prom=1; prom=1; - 5 různých proměnných Systém je citlivý na velikost písmen CASE SENSITIVE rozeznává malá velká písmena, např. PROM=1; PROm=1; PRom=1; Prom=1; prom=1; - 5 různých proměnných jakési nádoby na hodnoty jsou různých typů při běžné

Více

Předzpracování dat. Cvičení 2: Import a příprava dat v Matlabu MI-PDD, 09/2011. Pavel Kordík MI-POA

Předzpracování dat. Cvičení 2: Import a příprava dat v Matlabu MI-PDD, 09/2011. Pavel Kordík MI-POA Pavel Kordík(ČVUT FIT) Předzpracování dat MI-PDD, 2012, Cvičení 2 1/29 Předzpracování dat Pavel Kordík Department of Computer Systems Faculty of Information Technology Czech Technical University in Prague

Více

Úvod do Matlabu. Praha & EU: Investujeme do vaší budoucnosti. 1 / 24 Úvod do Matlabu

Úvod do Matlabu. Praha & EU: Investujeme do vaší budoucnosti. 1 / 24 Úvod do Matlabu Vytěžování dat, cvičení 1: Úvod do Matlabu Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fakulta elektrotechnická, ČVUT 1 / 24 Úvod do Matlabu Proč proboha Matlab? Matlab je SW pro

Více

pi Ludolfovo číslo π = 3,14159 e Eulerovo číslo e = 2,71828 (lze spočítat jako exp(1)), např. je v Octave, v MATLABu tato konstanta e není

pi Ludolfovo číslo π = 3,14159 e Eulerovo číslo e = 2,71828 (lze spočítat jako exp(1)), např. je v Octave, v MATLABu tato konstanta e není realmax maximální použitelné reálné kladné číslo realmin minimální použitelné reálné kladné číslo (v absolutní hodnotě, tj. číslo nejblíž k nule které lze použít) 0 pi Ludolfovo číslo π = 3,14159 e Eulerovo

Více

- transpozice (odlišuje se od překlopení pro komplexní čísla) - překlopení matice pole podle hlavní diagonály, např.: A.' ans =

- transpozice (odlišuje se od překlopení pro komplexní čísla) - překlopení matice pole podle hlavní diagonály, např.: A.' ans = '.' - transpozice (odlišuje se od překlopení pro komplexní čísla) - překlopení matice pole podle hlavní diagonály, např.: A.' 1 4 2 5 3-6 {} - uzavírají (obklopují) struktury (složené proměnné) - v případě

Více

Skriptování co se do minula nevešlo, práce s řetězci a řešení rovnic

Skriptování co se do minula nevešlo, práce s řetězci a řešení rovnic co byste měli umět po dnešní lekci: používat proměnnou nargin používat globální proměnné pracovat s řetězci, převést řetězec na číslo a naopak načíst, zpracovat a uložit textový soubor (funkce pro práci

Více

Stručný návod k programu Octave

Stručný návod k programu Octave Stručný návod k programu Octave Octave je interaktivní program vhodný pro technické výpočty. Je nápadně podobný programu MATLAB, na rozdíl od něho je zcela zadarmo. Jeho domovská vebová stránka je http://www.octave.org/,

Více

Limity funkcí v nevlastních bodech. Obsah

Limity funkcí v nevlastních bodech. Obsah Limity funkcí v nevlastních bodech V tomto letáku si vysv tlíme, co znamená, kdyº funkce mí í do nekone na, mínus nekone na nebo se blíºí ke konkrétnímu reálnému íslu, zatímco x jde do nekone na nebo mínus

Více

P íklad 1 (Náhodná veli ina)

P íklad 1 (Náhodná veli ina) P íklad 1 (Náhodná veli ina) Uvaºujeme experiment: házení mincí. Výsledkem pokusu je rub nebo líc, ºe padne hrana neuvaºujeme. Pokud hovo íme o náhodné veli in, musíme p epsat výsledky pokusu do mnoºiny

Více

Ergodické Markovské et zce

Ergodické Markovské et zce 1. b ezen 2013 Denice 1.1 Markovský et zec nazveme ergodickým, jestliºe z libovolného stavu m ºeme p ejít do jakéhokoliv libovolného stavu (ne nutn v jednom kroku). Denice 1.2 Markovský et zec nazveme

Více

ROZ1 - Cv. 1 - Zobrazenэ snэmku a zсklady Matlabu

ROZ1 - Cv. 1 - Zobrazenэ snэmku a zсklady Matlabu ROZ1 - Cv. 1 - Zobrazenэ snэmku a zсklady Matlabu кstav teorie informace a automatizace AV R, v.v.i. - http://www.utia.cas.cz Zpracovсnэ obrazovщ informace - http://zoi.utia.cas.cz кstav teorie informace

Více

Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web:

Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web: Pravd podobnost a statistika - cvi ení Simona Domesová simona.domesova@vsb.cz místnost: RA310 (budova CPIT) web: http://homel.vsb.cz/~dom0015 Cíle p edm tu vyhodnocování dat pomocí statistických metod

Více

TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií MATLB: přednáška 6 Tvorba grafických uživatelských rozhraní Zbyněk Koldovský Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace

Více

Pr b h funkce I. Obsah. Maxima a minima funkce

Pr b h funkce I. Obsah. Maxima a minima funkce Pr b h funkce I Maxima a minima funkce V této jednotce ukáºeme jak derivování m ºe být uºite né pro hledání minimálních a maximálních hodnot funkce. Po p e tení tohoto letáku nebo shlédnutí instruktáºního

Více

Algoritmizace a programování

Algoritmizace a programování Pátek 14. října Algoritmizace a programování V algoritmizaci a programování je důležitá schopnost analyzovat a myslet. Všeobecně jsou odrazovým můstkem pro řešení neobvyklých, ale i každodenních problémů.

Více

MATLAB základy. Roman Stanec 27.9.2007 PEF MZLU

MATLAB základy. Roman Stanec 27.9.2007 PEF MZLU MATLAB základy Roman Stanec 27.9.2007 PEF MZLU Náplň cvičení Matlab představení a motivace Seznámení s prostředím Proměnné a výrazy Řídící struktury Funkce Základní úpravy matic Import dat z tabulkového

Více

MATrixLABoratory letný semester 2004/2005

MATrixLABoratory letný semester 2004/2005 1Prostedie, stručný popis okien Command Window příkazové okno pro zadávání příkazů v jazyku Matlabu. Workspace zde se zobrazuje obsah paměti; je možné jednotlivé proměnné editovat. Command History dříve

Více

PARADIGMATA PROGRAMOVÁNÍ 2A MAKRA III

PARADIGMATA PROGRAMOVÁNÍ 2A MAKRA III KATEDRA INFORMATIKY, P ÍRODOV DECKÁ FAKULTA UNIVERZITA PALACKÉHO, OLOMOUC PARADIGMATA PROGRAMOVÁNÍ 2A MAKRA III Slajdy vytvo ili Vilém Vychodil a Jan Kone ný (KI, UP Olomouc) PP 2A, Lekce 5 Makra III 1

Více

Domácí úkol 2. Obecné pokyny. Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab.

Domácí úkol 2. Obecné pokyny. Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab. Domácí úkol 2 Obecné pokyny Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab. Návod pro výpo et v Matlabu Jestliºe X Bi(n, p), pak

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování V algoritmizaci a programování je důležitá schopnost analyzovat a myslet. Všeobecně jsou odrazovým můstkem pro řešení neobvyklých, ale i každodenních problémů. Naučí nás rozdělit

Více

Základní stavební prvky algoritmu

Základní stavební prvky algoritmu Základní stavební prvky algoritmu Podmínka. Cyklus for, while, do-while. Funkce, metody. Přetěžování. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká

Více

EVROPSKÝ SOCIÁLNÍ FOND. Úvod do PHP PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI

EVROPSKÝ SOCIÁLNÍ FOND. Úvod do PHP PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI EVROPSKÝ SOCIÁLNÍ FOND Úvod do PHP PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Úvod do PHP PHP Personal Home Page Hypertext Preprocessor jazyk na tvorbu dokumentů přípona: *.php skript je součást HTML stránky!

Více

Uložené procedury Úvod ulehčit správu zabezpečení rychleji

Uložené procedury Úvod ulehčit správu zabezpečení rychleji Uložené procedury Úvod Uložená procedura (rutina) je sada příkazů SQL, které jsou uložené na databázovém serveru a vykonává se tak, že je zavolána prostřednictvím dotazu názvem, který jim byl přiřazen

Více

Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace

Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace Střední škola pedagogická, hotelnictví a služeb, Litoměříce, příspěvková organizace Předmět: Vývoj aplikací Téma: Řetězce Vyučující: Ing. Milan Káža Třída: EK3 Hodina: 17 Číslo: V/5 Programování v jazyce

Více

Specifikace systému ESHOP

Specifikace systému ESHOP Nabídka: Specifikace systému ESHOP březen 2009 Obsah 1 Strana zákazníka 1 1.1 Nabídka produkt, strom kategorií..................... 1 1.2 Objednávka a ko²ík.............................. 1 1.3 Registrace

Více

P íklady k druhému testu - Matlab

P íklady k druhému testu - Matlab P íklady k druhému testu - Matlab 1. dubna 2014 Instrukce: Projd te si v²echny p íklady. Kaºdý p íklad se snaºte pochopit. Pak vymyslete a naprogramujte p íklad podobný. Tím se ujistíte, ºe p íkladu rozumíte.

Více

awk programovatelný filtr

awk programovatelný filtr awk programovatelný filtr Spouštění: Awk vzor {akce} nebo awk f prg_soubor [ soubory ] čte řádky ze zadaných souborů, nebo ze standardního vstupu výstup směřuje na standardní výstup Struktura programu:

Více

% vyhledání prvku s max. velikostí v jednotlivých sloupcích matice X

% vyhledání prvku s max. velikostí v jednotlivých sloupcích matice X %------------------------------------- % 4. cvičení z předmětu PPEL - MATLAB %------------------------------------- % Lenka Šroubová, ZČU, FEL, KTE % e-mail: lsroubov@kte.zcu.cz %-------------------------------------

Více

Binární operace. Úvod. Pomocný text

Binární operace. Úvod. Pomocný text Pomocný text Binární operace Úvod Milí e²itelé, binární operace je pom rn abstraktní téma, a tak bude ob as pot eba odprostit se od konkrétních p íklad a podívat se na v c s ur itým nadhledem. Nicmén e²ení

Více

E+034 = ; = e E+034

E+034 = ; = e E+034 Formátovaný textový výstup fprintf Příklad: m = 123.3456; fprintf('%f\n', m); 123.345600 fprintf('%e\n', m); 1.233456e+002 fprintf('%e\n', m); 1.23456E+002 fprintf('%g\n', m); 123.346 fprintf('%g\n', m);

Více

Pôvodne: Interaktívny program na operácie s maticami Teraz: Vysoko úrovňový jazyk na technické výpočty a interaktívne prostredie na:

Pôvodne: Interaktívny program na operácie s maticami Teraz: Vysoko úrovňový jazyk na technické výpočty a interaktívne prostredie na: Úvod do MATLAB-u MATLAB Pôvodne: Interaktívny program na operácie s maticami Teraz: Vysoko úrovňový jazyk na technické výpočty a interaktívne prostredie na: tvorbu algoritmov, vizualizáciu a analýzu dát

Více

Programování 1. hodina. RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015

Programování 1. hodina. RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Programování 1. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Vstupní znalosti Podmínky, cykly Funkce, Pole, třídění Retězce

Více

PARADIGMATA PROGRAMOVÁNÍ 2 KORUTINY, NEDETERMINISMUS

PARADIGMATA PROGRAMOVÁNÍ 2 KORUTINY, NEDETERMINISMUS KATEDRA INFORMATIKY, P ÍRODOV DECKÁ FAKULTA UNIVERZITA PALACKÉHO, OLOMOUC PARADIGMATA PROGRAMOVÁNÍ 2 KORUTINY, NEDETERMINISMUS Slajdy vytvo ili Vilém Vychodil a Jan Kone ný (KI, UP Olomouc) PP 2, Lekce

Více

1. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) x cotg x 1. c) lim. g) lim e x 1. cos(x) =

1. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) x cotg x 1. c) lim. g) lim e x 1. cos(x) = I. L'HOSPITALOVO PRAVIDLO A TAYLOR V POLYNOM. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) a) lim tg sin ( + ) / e e) lim a a i) lim a a, a > P ipome me si: 3 tg 4 2 tg b) lim 3 sin 4 2 sin

Více

Cvi ení 7. Docházka a testík - 15 min. Distfun 10 min. Úloha 1

Cvi ení 7. Docházka a testík - 15 min. Distfun 10 min. Úloha 1 Cvi ení 7 Úkol: generování dat dle rozd lení, vykreslení rozd lení psti, odhad rozd lení dle dat, bodový odhad parametr, centrální limitní v ta, balí ek Distfun, normalizace Docházka a testík - 15 min.

Více

Derivování sloºené funkce

Derivování sloºené funkce Derivování sloºené funkce V tomto letáku si p edstavíme speciální pravidlo pro derivování sloºené funkce (te funkci obsahující dal²í funkci). Po p e tení tohoto tetu byste m li být schopni: vysv tlit pojem

Více

Obsah. Pouºité zna ení 1

Obsah. Pouºité zna ení 1 Obsah Pouºité zna ení 1 1 Úvod 3 1.1 Opera ní výzkum a jeho disciplíny.......................... 3 1.2 Úlohy matematického programování......................... 3 1.3 Standardní maximaliza ní úloha lineárního

Více

Reálná ísla a posloupnosti Jan Malý

Reálná ísla a posloupnosti Jan Malý Reálná ísla a posloupnosti Jan Malý Obsah 1. Reálná ísla 1 2. Posloupnosti 2 3. Hlub²í v ty o itách 4 1. Reálná ísla 1.1. Úmluva (T leso). Pod pojmem t leso budeme v tomto textu rozum t pouze komutativní

Více

SQL - úvod. Ing. Michal Valenta PhD. Databázové systémy BI-DBS ZS 2010/11, P edn. 6

SQL - úvod. Ing. Michal Valenta PhD. Databázové systémy BI-DBS ZS 2010/11, P edn. 6 SQL - úvod Ing. Michal Valenta PhD. Katedra softwarového inºenýrství Fakulta informa ních technologií ƒeské vysoké u ení technické v Praze c Michal Valenta, 2010 Databázové systémy BI-DBS ZS 2010/11, P

Více

MATLAB Úvod. Úvod do Matlabu. Miloslav Čapek

MATLAB Úvod. Úvod do Matlabu. Miloslav Čapek MATLAB Úvod Úvod do Matlabu Miloslav Čapek Proč se na FELu učit Matlab? Matlab je světový standard pro výuku v technických oborech využívá ho více než 3500 univerzit licence vlastní tisíce velkých firem

Více

Integrování jako opak derivování

Integrování jako opak derivování Integrování jako opak derivování V tomto dokumentu budete seznámeni s derivováním b ºných funkcí a budete mít moºnost vyzkou²et mnoho zp sob derivace. Jedním z nich je proces derivování v opa ném po adí.

Více

T i hlavní v ty pravd podobnosti

T i hlavní v ty pravd podobnosti T i hlavní v ty pravd podobnosti 15. kv tna 2015 První p íklad P edstavme si, ºe máme atomy typu A, které se samovolným radioaktivním rozpadem rozpadají na atomy typu B. Pr m rná doba rozpadu je 3 hodiny.

Více

ZPRO v "C" Ing. Vít Hanousek. verze 0.3

ZPRO v C Ing. Vít Hanousek. verze 0.3 verze 0.3 Hello World Nejjednoduší program ukazující vypsání textu. #include using namespace std; int main(void) { cout

Více

Objektov orientované programování. C++ Akademie SH. 7. Objektov orientované programování. Michal Kvasni ka. Za áte níci C++ 2.

Objektov orientované programování. C++ Akademie SH. 7. Objektov orientované programování. Michal Kvasni ka. Za áte níci C++ 2. C++ Akademie SH Za áte níci C++ 2. kv tna 2011 Obsah 1 Objektov orientované programování Obsah Objektov orientované programování 1 Objektov orientované programování P et ºování Jev, díky kterému m ºeme

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Řídicí struktury, standardní metody Problematika načítání pomocí Scanner Některé poznámky k příkazům Psaní kódu programu Metody třídy Math Obalové třídy primitivních datových

Více

Záludnosti velkých dimenzí

Záludnosti velkých dimenzí Jan Vybíral KM/FJFI/ƒVUT 6. listopadu 2017 1/28 Warm-up Dva problémy na zah átí Geometrie R d Kolik bod je t eba rozmístit v jednotkové krychli [0, 1] d v dimenzi d, aby v kaºdém kvádru o objemu 1/10 leºel

Více

Seminá e. Ing. Michal Valenta PhD. Databázové systémy BI-DBS ZS 2010/11, sem. 1-13

Seminá e. Ing. Michal Valenta PhD. Databázové systémy BI-DBS ZS 2010/11, sem. 1-13 Seminá e Ing. Michal Valenta PhD. Katedra softwarového inºenýrství Fakulta informa ních technologií ƒeské vysoké u ení technické v Praze c Michal Valenta, 2010 Databázové systémy BI-DBS ZS 2010/11, sem.

Více

na za átku se denuje náhodná veli ina

na za átku se denuje náhodná veli ina P íklad 1 Generujeme data z náhodné veli iny s normálním rozd lením se st ední hodnotou µ = 1 a rozptylem =. Rozptyl povaºujeme za známý, ale z dat chceme odhadnout st ední hodnotu. P íklad se e²í v následujícím

Více

Opakování programování

Opakování programování Opakování programování HW návaznost - procesor sběrnice, instrukční sada, optimalizace rychlosti, datové typy, operace (matematické, logické, podmínky, skoky, podprogram ) - paměti a periferie - adresování

Více

Příklad: Řešte soustavu lineárních algebraických rovnic 10x 1 + 5x 2 +70x 3 + 5x 4 + 5x 5 = 275 2x 1 + 7x 2 + 6x 3 + 9x 4 + 6x 5 = 100 8x 1 + 9x 2 +

Příklad: Řešte soustavu lineárních algebraických rovnic 10x 1 + 5x 2 +70x 3 + 5x 4 + 5x 5 = 275 2x 1 + 7x 2 + 6x 3 + 9x 4 + 6x 5 = 100 8x 1 + 9x 2 + Příklad: Řešte soustavu lineárních algebraických rovnic 1x 1 + 5x 2 +7x 3 + 5x 4 + 5x 5 = 275 2x 1 + 7x 2 + 6x 3 + 9x 4 + 6x 5 = 1 A * x = b 8x 1 + 9x 2 + x 3 +45x 4 +22x 5 = 319 3x 1 +12x 2 + 6x 3 + 8x

Více

Sazba zdrojových kód. Jakub Kadl ík 20. 03. 2014

Sazba zdrojových kód. Jakub Kadl ík 20. 03. 2014 Sazba zdrojových kód Jakub Kadl ík 20. 03. 2014 1 Obsah 1 Základní prost edí verbatim 3 2 Balí ek listings 3 3 Sazba kódu z externího souboru 5 4 Téma Solarized 5 4.1 Solarized light.............................

Více

Skriptování aneb funkce a procedury, cykly a vstupy a výstupy

Skriptování aneb funkce a procedury, cykly a vstupy a výstupy co byste měli umět po dnešní lekci: napsat skript a spustit jej napsat externí funkci a zpracovat její návratovou hodnotu/y využívat cykly a podmínky používat formátovaný výstup používat help skript posloupnost

Více

Dotazování nad stromem abstraktní syntaxe

Dotazování nad stromem abstraktní syntaxe Fakulta jaderná a fyzikáln inºenýrská ƒeské vysoké u ení technické v Praze 3.6.2010 Osnova while 1 Reprezentace programu 2 AST a Java 3 Vyhledávání v AST 4 Aplikace body if expr Jak reprezentovat program

Více

Návrh a tvorba WWW stránek 1/38 PHP

Návrh a tvorba WWW stránek 1/38 PHP Návrh a tvorba WWW stránek 1/38 PHP PHP Hypertext Preprocessor interpret stránek na serveru běží na serveru příkazy PHP nejprve provede a vloží do XHTML dokumentu, následně posílá klientovi příkazy PHP

Více

cyklus s daným počtem opakování cyklus s podmínkou na začátku (cyklus bez udání počtu opakování)

cyklus s daným počtem opakování cyklus s podmínkou na začátku (cyklus bez udání počtu opakování) Řídící příkazy: if podmíněný příkaz switch přepínač for while cyklus s daným počtem opakování cyklus s podmínkou na začátku (cyklus bez udání počtu opakování) if logický_výraz příkaz; příkaz; příkaz; Podmínka

Více

1.1 Struktura programu v Pascalu Vstup a výstup Operátory a některé matematické funkce 5

1.1 Struktura programu v Pascalu Vstup a výstup Operátory a některé matematické funkce 5 Obsah Obsah 1 Programovací jazyk Pascal 1 1.1 Struktura programu v Pascalu.................... 1 2 Proměnné 2 2.1 Vstup a výstup............................ 3 3 Operátory a některé matematické funkce 5

Více

Pole a Funkce. Úvod do programování 1 Tomáš Kühr

Pole a Funkce. Úvod do programování 1 Tomáš Kühr Pole a Funkce Úvod do programování 1 Tomáš Kühr (Jednorozměrné) pole u Datová struktura u Lineární u Homogenní = prvky stejného datového typu u Statická = předem určený počet prvků u Pole umožňuje pohodlně

Více

BOZP - akcepta ní testy

BOZP - akcepta ní testy BOZP - akcepta ní testy Kristýna Streitová Zadavatel: Ing. Ji í Chludil 13. prosince 2011 Obsah 1 Úvod 2 1.1 Popis test....................................... 2 2 Testy 3 2.1 ID - 1 P ihlá²ení do systému.............................

Více

1. Vsechny promenne jsou matice. Skalar je a(1,1). Vektor je bud' radkovy a(1,5) nebo sloupcovy

1. Vsechny promenne jsou matice. Skalar je a(1,1). Vektor je bud' radkovy a(1,5) nebo sloupcovy Strucny navod k programu MATLAB MATLAB je profesionaln interaktivn system urceny pro technicke vypocty. Je vyroben a neustale udrzovan rmou The MathWorks, Inc. a je Protected by U.S. patents (a to bez

Více

I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY

I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY 1. Ur ete a nakreslete deni ní obor a vrstevnice funkcí: a) f(, y) = + y b) f(, y) = y c) f(, y) = 2 + y 2 d) f(, y) = 2 y 2 e) f(, y) = y f) f(, y) =

Více

Základy programování (IZP)

Základy programování (IZP) Základy programování (IZP) Osmé počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 20.11.2017,

Více

Poznámky k p edm tu: Práce s po íta em a programování

Poznámky k p edm tu: Práce s po íta em a programování Poznámky k p edm tu: Práce s po íta em a programování 11 ledna 2011 Pavel Srb Katedra fyziky nízkých teplot, Troja budova C (kryopavilon) 1patro, dve e 132 telefon: 22191 2887 email: pavelsrb@matfyzcz

Více

Rovnice a nerovnice. Posloupnosti.

Rovnice a nerovnice. Posloupnosti. .. Veronika Sobotíková katedra matematiky, FEL ƒvut v Praze, http://math.feld.cvut.cz/ 30. srpna 2018.. 1/75 (v reálném oboru) Rovnicí resp. nerovnicí v reálném oboru rozumíme zápis L(x) P(x), kde zna

Více

Team Engineering. New in V13. TIA Portal news. Restricted / Siemens AG 2014. All Rights Reserved.

Team Engineering. New in V13. TIA Portal news. Restricted / Siemens AG 2014. All Rights Reserved. Team TIA Portal news siemens.com/s7-1500 Teamengineering jak pracovat v týmu PLC proxy pro práce v týmu pro a PLC inženýry lze uplatnit také v prost edí Classic Kopie a slou ení projekt vzájemné sdílení

Více

Zápis programu v jazyce C#

Zápis programu v jazyce C# Zápis programu v jazyce C# Základní syntaktická pravidla C# = case sensitive jazyk rozlišuje velikost písmen Tzv. bílé znaky (Enter, mezera, tab ) ve ZK překladač ignoruje každý příkaz končí ; oddělovač

Více

Uºivatelská p íru ka Octopus

Uºivatelská p íru ka Octopus Uºivatelská p íru ka Octopus Jan Bojko 11. prosince 2014 Abstrakt Uºivatelská p íru ka k aplikaci Octopus. Obsah 1 Úvod 2 2 P ihlá²ení 2 3 Naviga ní menu 2 4 Práce s tabulkou 3 5 Editace 6 5.1 Nový záznam.............................

Více

Data v počítači EIS MIS TPS. Informační systémy 2. Spojení: e-mail: jan.skrbek@tul.cz tel.: 48 535 2442 Konzultace: úterý 14 20-15 50

Data v počítači EIS MIS TPS. Informační systémy 2. Spojení: e-mail: jan.skrbek@tul.cz tel.: 48 535 2442 Konzultace: úterý 14 20-15 50 Informační systémy 2 Data v počítači EIS MIS TPS strategické řízení taktické řízení operativní řízení a provozu Spojení: e-mail: jan.skrbek@tul.cz tel.: 48 535 2442 Konzultace: úterý 14 20-15 50 18.3.2014

Více

Vyučovací hodina. 1vyučovací hodina: 2vyučovací hodiny: Opakování z minulé hodiny. Procvičení nové látky

Vyučovací hodina. 1vyučovací hodina: 2vyučovací hodiny: Opakování z minulé hodiny. Procvičení nové látky Vyučovací hodina 1vyučovací hodina: Opakování z minulé hodiny Nová látka Procvičení nové látky Shrnutí 5 min 20 min 15 min 5 min 2vyučovací hodiny: Opakování z minulé hodiny Nová látka Procvičení nové

Více

Kompilace Makele C++ Zadání úlohy. Kompilace a Makele. OSD. O. Fi²er. April 18, O. Fi²er Kompilace, Makele

Kompilace Makele C++ Zadání úlohy. Kompilace a Makele. OSD. O. Fi²er. April 18, O. Fi²er Kompilace, Makele a. OSD O. Fi²er April 18, 2011 Obsah 1 2 3 4 Compiler - p eklada program, který vezme zdrojový text programu a p eloºí jej do jazyka stroje, coº jsou obvykle kódy instrukcí pro daný procesor. Výsledkem

Více

Operační systémy. Cvičení 4: Programování v C pod Unixem

Operační systémy. Cvičení 4: Programování v C pod Unixem Operační systémy Cvičení 4: Programování v C pod Unixem 1 Obsah cvičení Řídící struktury Funkce Dynamická alokace paměti Ladění programu Kde najít další informace Poznámka: uvedené příklady jsou dostupné

Více

Vstupní požadavky, doporučení a metodické pokyny

Vstupní požadavky, doporučení a metodické pokyny Název modulu: Základy PHP Označení: C9 Stručná charakteristika modulu Modul je orientován na tvorbu dynamických stánek aktualizovaných podle kontextu volání. Jazyk PHP umožňuje velmi jednoduchým způsobem

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Přednáška 1 Olga Majlingová Katedra matematiky, ČVUT v Praze 19. září 2011 Obsah Úvodní informace 1 Úvodní informace 2 3 4 Doporučená literatura web: http://marian.fsik.cvut.cz/zapg

Více

Plánování výroby elekt iny a ízení rizik na liberalizovaném trhu

Plánování výroby elekt iny a ízení rizik na liberalizovaném trhu Plánování výroby elekt iny a ízení rizik na liberalizovaném trhu 23. listopadu 2011 prezentace k lánku Power Generation Planning and Risk Managment in a Liberalised Market Thor Bjorkvoll, Stein-Erik Fleten,

Více

Základní praktikum laserové techniky

Základní praktikum laserové techniky Základní praktikum laserové techniky Fakulta jaderná a fyzikáln inºenýrská Úloha 4: Zna kování TEA CO 2 laserem a m ení jeho charakteristik Datum m ení: 1.4.2015 Skupina: G Zpracoval: David Roesel Kruh:

Více

Z OBRAZOVÉHO ZÁZNAMU. Jan HAVLÍK. Katedra teorie obvodů, Fakulta elektrotechnická

Z OBRAZOVÉHO ZÁZNAMU. Jan HAVLÍK. Katedra teorie obvodů, Fakulta elektrotechnická POROVNÁNÍ HRANOVÝCH DETEKTORŮ POUŽITÝCH PŘI PARAMETRIZACI POHYBU Z OBRAZOVÉHO ZÁZNAMU Jan HAVLÍK Katedra teorie obvodů, Fakulta elektrotechnická České vysoké učení technické v Praze Abstrakt Tento článek

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Přednáška 1 Olga Majlingová Katedra matematiky, ČVUT v Praze 21. září 2009 Obsah Úvodní informace 1 Úvodní informace 2 3 4 Organizace předmětu Přednášky 1. 5. Základní

Více

Maturitní témata z předmětu Programování a databázové systémy. pro šk. rok 2012/2013

Maturitní témata z předmětu Programování a databázové systémy. pro šk. rok 2012/2013 Maturitní témata z předmětu Programování a databázové systémy pro šk. rok 2012/2013 1. Základy - proměnné a datové typy a) Co je to proměnná, co znamená deklarace proměnné, a popište syntaxi deklarace

Více

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze na tabuli a nejsou zde obsaºeny.

Více

Úvod Petr Kropík pkropik@kte.zcu.cz. viz: http://home.zcu.cz/~pkropik/zpe

Úvod Petr Kropík pkropik@kte.zcu.cz. viz: http://home.zcu.cz/~pkropik/zpe Úvod Petr Kropík pkropik@kte.zcu.cz 1. viz: http://home.zcu.cz/~pkropik/zpe Základy programování pro elektrotechniku (KTE/ZPE) http://portal.zcu.cz - potřebné informace o předmětu > Portál ZČU > Courseware

Více

P íprava projektové ádosti. Seminá PAAK - P íprava projekt

P íprava projektové ádosti. Seminá PAAK - P íprava projekt P íprava projektové ádosti Seminá PAAK - P íprava projekt Koncipování a tvorba projektu Obecné kroky p i tvorb projektu: Stanovení projektového zám ru Výb r vhodné oblasti podpory v rámci ROP SV Sb r a

Více

Sbírka úloh pro elektronickou stavebnici. Stručný popis programovacího jazyka Bascom AVR

Sbírka úloh pro elektronickou stavebnici. Stručný popis programovacího jazyka Bascom AVR Sbírka úloh pro elektronickou stavebnici Sbírka úloh obsahuje pracovní listy pro práci s moduly elektronické stavebnice, které vedou k samostatné práci. Ve sbírce jsou uvedeny pracovní listy, které postupnými

Více

Prezentace. Ing. Petr V elák 6. b ezna 2009

Prezentace. Ing. Petr V elák 6. b ezna 2009 Prezentace Ing. Petr V elák 6. b ezna 2009 1 OBSAH OBSAH Obsah 1 Úvodní slovo 3 2 P íprava prezentace 4 2.1 Jak prezentace ned lat........................ 4 2.1.1 Kontrast písma a pozadí...................

Více

KTE / PPEL Počítačová podpora v elektrotechnice

KTE / PPEL Počítačová podpora v elektrotechnice KTE / PPEL Počítačová podpora v elektrotechnice 22.12.2010 Ing. Lenka Šroubová, Ph.D. email: lsroubov@kte.zcu.cz http://home.zcu.cz/~lsroubov Příklad: Obvod RLC v sérii R=200 Ω L=0,5 H C=5. 10-6 F U 0

Více

Publicita projektu, udr itelnost projektu, pracovní místa, ú etnictví projektu. Seminá PAAK ízení projekt

Publicita projektu, udr itelnost projektu, pracovní místa, ú etnictví projektu. Seminá PAAK ízení projekt Publicita projektu, udr itelnost projektu, pracovní místa, ú etnictví projektu Seminá PAAK ízení projekt 1. Publicita P íjemce dotace je povinen informovat, e projekt je (byl) financován ze zdroj EU v

Více

Stru ný obsah. Úvod do Microsoft.NET Kapitola 1: Vývoj her a ízený kód...15

Stru ný obsah. Úvod do Microsoft.NET Kapitola 1: Vývoj her a ízený kód...15 Stru ný obsah Úvod...11 Úvod do Microsoft.NET Kapitola 1: Vývoj her a ízený kód...15 Základy grafiky, první hra Kapitola 2: Návrh první hry...31 Kapitola 3: Pochopení kostry aplikace DirectX...39 Kapitola

Více

Transak ní zpracování I

Transak ní zpracování I Transak ní zpracování I Ing. Michal Valenta PhD. Katedra softwarového inºenýrství Fakulta informa ních technologií ƒeské vysoké u ení technické v Praze c Michal Valenta, 2010 Databázové systémy BI-DBS

Více

více křivek v jednom grafu hold on přidrží aktuální graf v grafickém okně, lze nakreslit více grafů do jednoho grafického okna postupně hold off

více křivek v jednom grafu hold on přidrží aktuální graf v grafickém okně, lze nakreslit více grafů do jednoho grafického okna postupně hold off více křivek v jednom grafu hold on přidrží aktuální graf v grafickém okně, lze nakreslit více grafů do jednoho grafického okna postupně hold off vypnutí, konec možnosti kreslit více grafů do jednoho grafického

Více

P ÍPRAVY NA HODINU MATEMATIKA

P ÍPRAVY NA HODINU MATEMATIKA Modernizace výuky v rámci odborných a všeobecných p edm t st ední školy. íslo projektu: CZ.1.07/1.1.10/01.0021 P ÍPRAVY NA HODINU MATEMATIKA Tyto p ípravy na hodinu jsou spolufinancovány Evropským sociálním

Více

1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost

1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost (8 bod ) Náhodná veli ina X je po et rub p i nezávislých hodech mincí a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost P ( X EX < ) (9 bod ) b) Formulujte centrální limitní v tu a pomocí ní vypo

Více

Aplikace Embedded systémů v Mechatronice. Michal Bastl A2/713a

Aplikace Embedded systémů v Mechatronice. Michal Bastl A2/713a Aplikace Embedded systémů v Mechatronice Aplikace Embedded systémů v Mechatronice Obsah přednášky: Opakovaní Funkce v C Tvorba knihoven Konfigurační bity #pragma Makra v C #define Debugging v MPLAB Hardware

Více