Ergodické Markovské et zce

Rozměr: px
Začít zobrazení ze stránky:

Download "Ergodické Markovské et zce"

Transkript

1 1. b ezen 2013

2 Denice 1.1 Markovský et zec nazveme ergodickým, jestliºe z libovolného stavu m ºeme p ejít do jakéhokoliv libovolného stavu (ne nutn v jednom kroku). Denice 1.2 Markovský et zec nazveme regulárním, jestliºe P n pro n jaké n neobsahuje ºádné nulové prvky. Jednodu²eji e eno, pro n jaké n je moºné se dostat z jakéhokoliv stavu do jakéhokoliv stavu p esn po n krocích. Kaºdý regulární et zec je ergodický, ale ergodický et zec nemusí být nutn regulární.

3 P íklad 1.1: Nech matice p echodu Markovského et zce je denována následovn ( ) 0 1 P = 1 0 Obrázek: P echod mezi stavy Tento et zec je ergodický, ale není regulární.

4 P íklad 1.2: Mnohem zajímav j²í p íklad ergodického ale neregulárního et zce je Ehrenfest v urn model /4 0 3/4 0 0 P = 0 1/2 0 1/ /4 0 1/ Obrázek: Ehrenfest urn model Tento et zec je ergodický, ale není regulární.

5 Teorém 1.1 Necht matice P je matice p echodu regulárního et zce. Pak pro n se matice P n limitn blíºí k matici W, která má ve v²ech ádcích stejný vektor w. Tento vektor je striktn positivním pravd podobnostím vektorem (jeho sloºky jsou kladné a jejich sou et je roven jedné). D kaz: stejné jako ukázat, ºe P n konverguje k matici s konstantními sloupci j-tý sloupec P n je P n y, kde y je sloupcový vektor s 1 na j-té pozici a 0 jinde sta í ukázat, ºe pro jakýkoliv sloupcový vektor y, P n y konverguje ke konstantnímu vektoru Protoºe kaºdý sloupec matice P je pravd podobnostním vektorem, Py nám dá nový sloupcový vektor, jehoº sloºky si budou bliº²í neº v p vodním sloupcovém vektoru y.

6 1/2 1/4 1/4 1/3 1/3 1/3 1/2 1/ = 7/4 2 3/2 Ukáºeme, ºe ve sloupcovém vektoru P n y se bude rozdíl mezi nejv t²í a nejmen²í sloºkou blíºit k 0 pro n. ij-tá pozice v matici P n, p (n) ij, udává pravd podobnost, ºe se proces za ínající ve stavu s i bude po n krocích nacházet ve stavu s j. Teorém 1.1 nám íká, ºe pravd podobnost toho, ºe se v dlouhodob trvajícím procesu budeme nacházet ve stavu s j, je rovna w j a je tedy nezávislá na po áte ním stavu.

7 Teorém 1.2 Nech matice P je regulární maticí p echodu, pak W = lim n P n. Nech w je ádek matice W a c je sloupcový vektor, jehoº sloºky jsou rovny jedné. Pak (a) wp=w a ádkový vektor v, pro n jº platí vp=v, je násobkem vektoru w. (b) Pc=c a sloupcový vektor x, pro n jº platí Px=x, je násobkem vektoru c.

8 Denice 1.3 ádkový vektor w s vlastností wp = w se nazývá pevný ádkový vektor (také limitní vektor) matice P. Obdobn sloupcový vektor x takový, ºe Px = x, se nazývá pevný sloupcový vektor matice P. Teorém 1.2 nám ukázal, ºe jakýkoliv pevný ádkový vektor matice P je násobkem vektoru w a jakýkoliv pevný sloupcový vektor matice P je konstantním vektorem. Ukaºme si n kolik dal²ích metod, jak spo ítat pevný ádkový vektor w regulárního Markovského et zce.

9 P íklad 1.3: Díky Teorému 1.1 m ºeme nalézt limitní vektor w matice p echodu pro Land of Oz: ( w 1 w 2 w 3 ) 1/2 1/4 1/4 1/2 0 1/2 1/4 1/4 1/2 (1)... w je pravd podobnostní vektor (2)... wp = w e²ením této soustavy je w = ( ). w 1 + w 2 + w 3 = 1 (1) = ( w 1 w 2 w 3 ) (2)

10 P íklad 1.4: Jiný zp sob, jak vy e²it tento p íklad. Zvolme w 1 = 1, a pak vy e²m soustavu wp = w. (1/2) + (1/2)w 2 + (1/4)w 3 = 1 (1/4) + (1/4)w 3 = w 2 e²ením ( w 1 w 2 w 3 ) = ( 1 1/2 1 ). Vektor w pak získáme w = w 3 i=1 w i = ( w 1 w 2 w 3 ) = ( )

11 Teorém 1.3 Necht P je matice p echodu ergodického et zce. Necht A n je matice denována A n = I + P + P P n n + 1 Pak A n W, kde W je matice se stejnými ádky w. Vektor w je limitním vektorem matice P.

12 P íklad 1.5: V Land of Oz trvá rok 525 dní. Stav ƒetnost Relativní. R N S Stav ƒetnost Relativní. R N S Tabulka: ƒetnosti po 525 dnech (vlevo), po dnech (vpravo)

13 D kuji za pozornost.

1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost

1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost (8 bod ) Náhodná veli ina X je po et rub p i nezávislých hodech mincí a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost P ( X EX < ) (9 bod ) b) Formulujte centrální limitní v tu a pomocí ní vypo

Více

T i hlavní v ty pravd podobnosti

T i hlavní v ty pravd podobnosti T i hlavní v ty pravd podobnosti 15. kv tna 2015 První p íklad P edstavme si, ºe máme atomy typu A, které se samovolným radioaktivním rozpadem rozpadají na atomy typu B. Pr m rná doba rozpadu je 3 hodiny.

Více

Vektor náhodných veli in - práce s více prom nnými

Vektor náhodných veli in - práce s více prom nnými Vektor náhodných veli in - práce s více prom nnými 12. kv tna 2015 N kdy k popisu n jaké situace pot ebujeme více neº jednu náhodnou veli inu. Nap. v k, hmotnost, vý²ku. Mezi t mito veli inami mohou být

Více

Skalární sou in. Úvod. Denice skalárního sou inu

Skalární sou in. Úvod. Denice skalárního sou inu Skalární sou in Jedním ze zp sob, jak m ºeme dva vektory kombinovat, je skalární sou in. Výsledkem skalárního sou inu dvou vektor, jak jiº název napovídá, je skalár. V tomto letáku se nau íte, jak vypo

Více

2. Ur íme sudost/lichost funkce a pr se íky s osami. 6. Na záv r na rtneme graf vy²et ované funkce. 8x. x 2 +4

2. Ur íme sudost/lichost funkce a pr se íky s osami. 6. Na záv r na rtneme graf vy²et ované funkce. 8x. x 2 +4 Pr b h funkce V této jednotce si ukáºeme jak postupovat p i vy²et ování pr b hu funkce. P edpokládáme znalost po ítání derivací a limit, které jsou dob e popsány v p edchozích letácích tohoto bloku. P

Více

Integrování jako opak derivování

Integrování jako opak derivování Integrování jako opak derivování V tomto dokumentu budete seznámeni s derivováním b ºných funkcí a budete mít moºnost vyzkou²et mnoho zp sob derivace. Jedním z nich je proces derivování v opa ném po adí.

Více

e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody

e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody V praxi se asto setkávame s p ípady, kdy je pot eba e²it více rovnic, takzvaný systém rovnic, obvykle s více jak jednou neznámou.

Více

Aplikace pravd podobnostních model v kurzovém sázení

Aplikace pravd podobnostních model v kurzovém sázení Aplikace pravd podobnostních model v kurzovém sázení 28.4.2016 Obsah 1 Kurzové sázení Tenis Kurz jako odhad pravd podobnosti Hodnocení kvality odhadu pravd podobnosti 2 Predikce pr b hu utkání Základní

Více

Kuželosečky a kvadriky ve škole i kolem

Kuželosečky a kvadriky ve škole i kolem Kuželosečky a kvadriky ve škole i kolem nás Bc. Aneta Mirová Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím

Více

nazvu obecnou PDR pro neznámou funkci

nazvu obecnou PDR pro neznámou funkci Denice. Bu n N a Ω R d otev ená, d 2. Vztah tvaru F (x, u(x), Du(x),..., D (n 1) u(x), D (n) u(x)) = 0 x Ω (1) nazvu obecnou PDR pro neznámou funkci u : Ω R d R Zde je daná funkce. F : Ω R R d R dn 1 R

Více

Co je to tensor... Vektorový prostor

Co je to tensor... Vektorový prostor Vektorový prostor Co je to tensor... Tato ást je tu jen pro p ipomenutí, pokud nevíte co je to vektorový prostor, tak tení tohoto textu ukon ete na konci této v ty, neb zbytek textu by pro Vás nebyl ni

Více

Limity funkcí v nevlastních bodech. Obsah

Limity funkcí v nevlastních bodech. Obsah Limity funkcí v nevlastních bodech V tomto letáku si vysv tlíme, co znamená, kdyº funkce mí í do nekone na, mínus nekone na nebo se blíºí ke konkrétnímu reálnému íslu, zatímco x jde do nekone na nebo mínus

Více

Binární operace. Úvod. Pomocný text

Binární operace. Úvod. Pomocný text Pomocný text Binární operace Úvod Milí e²itelé, binární operace je pom rn abstraktní téma, a tak bude ob as pot eba odprostit se od konkrétních p íklad a podívat se na v c s ur itým nadhledem. Nicmén e²ení

Více

Derivování sloºené funkce

Derivování sloºené funkce Derivování sloºené funkce V tomto letáku si p edstavíme speciální pravidlo pro derivování sloºené funkce (te funkci obsahující dal²í funkci). Po p e tení tohoto tetu byste m li být schopni: vysv tlit pojem

Více

Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web:

Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web: Pravd podobnost a statistika - cvi ení Simona Domesová simona.domesova@vsb.cz místnost: RA310 (budova CPIT) web: http://homel.vsb.cz/~dom0015 Cíle p edm tu vyhodnocování dat pomocí statistických metod

Více

p (1) k 0 k 1 je pravd podobnost p echodu ze stavu k i v l ; 1 kroku do stavu k j

p (1) k 0 k 1 je pravd podobnost p echodu ze stavu k i v l ; 1 kroku do stavu k j Markovovsk n hodn procesy U Markovovsk ho n hodn ho proces nez vis dal v voj na zp sobu, jak se proces dostal do sou asn ho stavu. Plat 8 t

Více

Matice a e²ení soustav lineárních rovnic

Matice a e²ení soustav lineárních rovnic Úvod Tato sbírka úloh z lineární algebry je ur ena student m Fakulty elektrotechniky a informatiky V B - Technické univerzity Ostrava T mto student m je p edev²ím ur eno skriptum profesora Zde ka Dostála

Více

Obsah. Zpracoval Ctirad Novotný pro matmodel.cz.

Obsah. Zpracoval Ctirad Novotný pro matmodel.cz. Obsah 1 Viskoelasticita 2 1.1 Modely viskoelastického materiálu...................... 2 1.1.1 Maxwell v model............................ 4 1.1.2 Kelvin v model............................. 5 1.1.3 Maxwell

Více

P íklad 1 (Náhodná veli ina)

P íklad 1 (Náhodná veli ina) P íklad 1 (Náhodná veli ina) Uvaºujeme experiment: házení mincí. Výsledkem pokusu je rub nebo líc, ºe padne hrana neuvaºujeme. Pokud hovo íme o náhodné veli in, musíme p epsat výsledky pokusu do mnoºiny

Více

Rovnice a nerovnice. Posloupnosti.

Rovnice a nerovnice. Posloupnosti. .. Veronika Sobotíková katedra matematiky, FEL ƒvut v Praze, http://math.feld.cvut.cz/ 30. srpna 2018.. 1/75 (v reálném oboru) Rovnicí resp. nerovnicí v reálném oboru rozumíme zápis L(x) P(x), kde zna

Více

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem. 1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její

Více

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze na tabuli a nejsou zde obsaºeny.

Více

Modelování v elektrotechnice

Modelování v elektrotechnice Katedra teoretické elektrotechniky Elektrotechnická fakulta ZÁPADOƒESKÁ UNIVERZITA V PLZNI Modelování v elektrotechnice Pánek David, K s Pavel, Korous Luká², Karban Pavel 28. listopadu 2012 Obsah 1 Úvod

Více

Soustava m lineárních rovnic o n neznámých je systém

Soustava m lineárních rovnic o n neznámých je systém 1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...

Více

Státnice - Rekurzivní a rekurzivn spo etné mnoºiny

Státnice - Rekurzivní a rekurzivn spo etné mnoºiny Kapitola 1 Státnice - Rekurzivní a rekurzivn spo etné mnoºiny 1.1 Rekurzivn spo etné mnoºiny Denice (Rekurzivní a rekurzivn spo etná mnoºina) Charakteristická funkce mnoºiny M ozna uje charakteristickou

Více

Kapitola 11: Vektory a matice:

Kapitola 11: Vektory a matice: Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i

Více

Reálná ísla a posloupnosti Jan Malý

Reálná ísla a posloupnosti Jan Malý Reálná ísla a posloupnosti Jan Malý Obsah 1. Reálná ísla 1 2. Posloupnosti 2 3. Hlub²í v ty o itách 4 1. Reálná ísla 1.1. Úmluva (T leso). Pod pojmem t leso budeme v tomto textu rozum t pouze komutativní

Více

Testy pro více veli in

Testy pro více veli in Kapitola 8 Testy pro více veli in 8.1 Testy parametr s více výb ry s p edpokladem normality dat 8.1.1 Testy s dv ma výb ry. P edpoklady: Pro spojité rozd lení normalita nebo velký výb r. Pro diskrétní

Více

Vektory. Vektorové veli iny

Vektory. Vektorové veli iny Vektor je veli ina, která má jak velikost tak i sm r. Ob tyto vlastnosti musí být uvedeny, aby byl vektor stanoven úpln. V této ásti je návod, jak vektory zapsat, jak je s ítat a od ítat a jak je pouºívat

Více

Pr b h funkce I. Obsah. Maxima a minima funkce

Pr b h funkce I. Obsah. Maxima a minima funkce Pr b h funkce I Maxima a minima funkce V této jednotce ukáºeme jak derivování m ºe být uºite né pro hledání minimálních a maximálních hodnot funkce. Po p e tení tohoto letáku nebo shlédnutí instruktáºního

Více

na za átku se denuje náhodná veli ina

na za átku se denuje náhodná veli ina P íklad 1 Generujeme data z náhodné veli iny s normálním rozd lením se st ední hodnotou µ = 1 a rozptylem =. Rozptyl povaºujeme za známý, ale z dat chceme odhadnout st ední hodnotu. P íklad se e²í v následujícím

Více

1/10. Kapitola 12: Soustavy lineárních algebraických rovnic

1/10. Kapitola 12: Soustavy lineárních algebraických rovnic 1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11

Více

4. Trojúhelníkový rozklad p. 1/20

4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet

Více

Domácí úkol 2. Obecné pokyny. Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab.

Domácí úkol 2. Obecné pokyny. Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab. Domácí úkol 2 Obecné pokyny Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab. Návod pro výpo et v Matlabu Jestliºe X Bi(n, p), pak

Více

Stochastické procesy ve nan ní matematice. Doc. RNDr. Martin Kolá, Ph.D.

Stochastické procesy ve nan ní matematice. Doc. RNDr. Martin Kolá, Ph.D. Stochastické procesy ve nan ní matematice Doc. RNDr. Martin Kolá, Ph.D. 1 Tento u ební text vznikl za p isp ní Evropského sociálního fondu a státního rozpo tu ƒr prost ednictvím Opera ního programu Vzd

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

1 Existence e²ení systému diferenciálních rovnic. 2 Jednozna nost e²ení pro systém diferenciálních rovnic

1 Existence e²ení systému diferenciálních rovnic. 2 Jednozna nost e²ení pro systém diferenciálních rovnic 1 Existence e²ení systému diferenciálních rovnic Denice. Funkci x : I R n, I otev ený interval, nazveme e²ením (DR), jestliºe 1. t I : (x(t), t) Ω 2. t I : x (t) vlastní 3. t I : x (t) = f(x(t), t) Lemma

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

Obsah. Zpracoval Ctirad Novotný pro matmodel.cz.

Obsah. Zpracoval Ctirad Novotný pro matmodel.cz. Obsah 1 Viskoelasticita 2 1.1 Modely viskoelastického materiálu...................... 2 1.1.1 Maxwell v model............................ 4 1.1.2 Kelvin v model............................. 5 1.1.3 Maxwell

Více

Matematika I Lineární závislost a nezávislost

Matematika I Lineární závislost a nezávislost Matematika I Lineární závislost a nezávislost RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Co u¾ známe? vektory - základní operace

Více

Systém bonus - malus s více typy ²kod

Systém bonus - malus s více typy ²kod Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁ SKÁ PRÁCE Martina Kaplanová Systém bonus - malus s více typy ²kod Katedra pravd podobnosti a matematické statistiky Vedoucí bakalá ské práce:

Více

Lineární algebra pro fyziky. Zápisky z p edná²ek. Dalibor míd

Lineární algebra pro fyziky. Zápisky z p edná²ek. Dalibor míd Lineární algebra pro fyziky Zápisky z p edná²ek Dalibor míd ƒást 1 První semestr KAPITOLA 1 Soustavy lineárních rovnic Nejjednodu²²í lineární rovnicí je Popisuje p ímku v rovin Podobn 1 Úvod 2x y = 3

Více

Aplikovaná matematika 1

Aplikovaná matematika 1 Aplikovaná matematika 1 NMAF071 Tomá² Sala 1 MÚ UK, MFF UK ZS 2017-18 1 Tímto bych cht l pod kovat doc. RNDr. Mirkovi Rokytovi, CSc. a doc. Milanu Pokornému za poskytnutí podklad, které jsem pouze mírn

Více

Jevy, nezávislost, Bayesova v ta

Jevy, nezávislost, Bayesova v ta Jevy, nezávislost, Bayesova v ta 17. b ezna 2015 Instrukce: Projd te si v²echny p íklady. Kaºdý p íklad se snaºte pochopit. Pak vymyslete a vy- e²te p íklad podobný. Tím se ujistíte, ºe p íkladu rozumíte.

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Kapitola 11: Vektory a matice 1/19

Kapitola 11: Vektory a matice 1/19 Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =

Více

OBSAH. 1. Základní p edstava o k ivkách a plochách

OBSAH. 1. Základní p edstava o k ivkách a plochách OBSAH 1. Základní p edstava o k ivkách a plochách 1.díl: P edstava o plo²e.... 2 I trojrozm rné objekty lze znázornit v rovin. 2.díl: Reálná ísla a p ímka.... 3 Souvislost mezi ísly a geometrií. 3.díl:

Více

P íklady k prvnímu testu - Pravd podobnost

P íklady k prvnímu testu - Pravd podobnost P íklady k prvnímu testu - Pravd podobnost 28. února 204 Instrukce: Projd te si v²echny p íklady. Kaºdý p íklad se snaºte pochopit. Pak vymyslete a vy- e²te p íklad podobný. Tím se ujistíte, ºe p íkladu

Více

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo 0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Denice integrálu: Od Newtona k Bendové

Denice integrálu: Od Newtona k Bendové Denice integrálu: Od Newtona k Bendové Jan MALÝ UK v Praze a UJEP v Ústí nad Labem OSMA, V B-TU Ostrava, 3. listopadu 2015 Jan MALÝ Od Newtona... 1 / 32 Toto není p edná²ka o historii matematiky. Jan MALÝ

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

5. Aplikace diferenciálního a integrálního po tu v jedné dimenzi ZS 2017/18 1 / 32

5. Aplikace diferenciálního a integrálního po tu v jedné dimenzi ZS 2017/18 1 / 32 5. Aplikace diferenciálního a integrálního po tu v jedné dimenzi Tomá² Sala MÚ UK, MFF UK ZS 2017/18 5. Aplikace diferenciálního a integrálního po tu v jedné dimenzi ZS 2017/18 1 / 32 5.1 Funkce spojité

Více

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru 1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).

Více

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A úterý 28. listopadu 2017, 9:2011:20 ➊ (8 bod ) Lze nebo nelze k rozhodnutí o stejnom rné konvergence ady ( 1) n+1 x ln(n) n 6 + n 2 x 4 na intervalu

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu. Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní

Více

Zápo tová písemná práce. 1 z p edm tu 01RMF varianta A

Zápo tová písemná práce. 1 z p edm tu 01RMF varianta A Zápo tová písemná práce. 1 z p edm tu 1MF varianta A tvrtek 19. listopadu 215, 13:215:2 ➊ (5 bod ) Nech f (x), g(x) L 1 () a f (x) dx = A, x f (x) dx = µ, Vypo ítejte, emu se rovná z( f g)(z) dz. g(x)

Více

1 Spojitý model. 1.1 Princip stochastického modelu

1 Spojitý model. 1.1 Princip stochastického modelu Spojitý model Veli iny v dopravním systému jsou náhodné posloupnosti indexované diskrétním asem t. V kaºdém asovém okamºiku to jsou náhodné veli iny, po zm ení dostaneme realizace náhodné veli iny. Tyto

Více

VEKTOROVÝ PROSTOR. Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání, odčítání vektorů a reálný násobek vektoru.

VEKTOROVÝ PROSTOR. Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání, odčítání vektorů a reálný násobek vektoru. VEKTOROVÝ PROSTOR Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání, odčítání vektorů a reálný násobek vektoru. Soubor n-složkových vektorů je libovolná skupina vektorů,

Více

Podobnost matic. Definice 8.6. Dány matice A, B M n (C). Jestliže existuje regulární matice P M n (C) tak,

Podobnost matic. Definice 8.6. Dány matice A, B M n (C). Jestliže existuje regulární matice P M n (C) tak, Podobnost matic Definice 84 Dány matice A, B M n (C) Jestliže existuje regulární matice P M n (C) tak, že B = P 1 AP, pak říkáme, že matice B je podobná matici A a píšeme A B Takto zavedená binární relace

Více

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule. Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A st eda 19. listopadu 2015, 11:2013:20 ➊ (3 body) Pro diferenciální operátor ˆL je mnoºina W q denována p edpisem W q = { y(x) Dom( ˆL) : ˆL(y(x))

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY

I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY 1. Ur ete a nakreslete deni ní obor a vrstevnice funkcí: a) f(, y) = + y b) f(, y) = y c) f(, y) = 2 + y 2 d) f(, y) = 2 y 2 e) f(, y) = y f) f(, y) =

Více

se nazývá charakter grupy G. Dále budeme uvaºovat pouze kone né grupy G. Charaktery tvo í také grupu, s násobením denovaným

se nazývá charakter grupy G. Dále budeme uvaºovat pouze kone né grupy G. Charaktery tvo í také grupu, s násobením denovaným Charaktery a Diskrétní Fourierova transforace Nejd leºit j²í kvantový algorite je Diskrétní Fourierova transforace (DFT) D vody jsou dva: DFT je pro kvantové po íta e exponenciáln rychlej²í neº pro po

Více

pokud A Rat(M), pak také A Rat(M).

pokud A Rat(M), pak také A Rat(M). Kone né automaty Pojem automat je historicky spojen s n jakou konstruktivní, algoritmickou procedurou rozhodující n jaký problém, i abstraktn ji e eno, rozhodující o tom, zda n jaký prvek pat í do dané

Více

Operace s maticemi. Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen.

Operace s maticemi. Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. Jdi na stranu Celá obr./okno Zavřít 1 Operace s maticemi Studijnı materia ly Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. Brno 2014 RNDr. Rudolf Schwarz, CSc.

Více

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální

Více

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0)

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 4 DVOJMATICOVÉ HRY Strategie Stiskni páku Sed u koryta Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 125 DVOJMATICOVÁ HRA Je-li speciálně množina hráčů Q = {1, 2} a prostory strategií S 1, S 2

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

P íklady k prvnímu testu - Scilab

P íklady k prvnímu testu - Scilab P íklady k prvnímu testu - Scilab 24. b ezna 2014 Instrukce: Projd te si v²echny p íklady. Kaºdý p íklad se snaºte pochopit. Pak vymyslete a naprogramujte p íklad podobný. Tím se ujistíte, ºe p íkladu

Více

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových

Více

Vektorový prostor. d) Ke každému prvku u V n existuje tzv. opačný prvek u, pro který platí, že u + u = o (vektor u nazýváme opačný vektor k vektoru u)

Vektorový prostor. d) Ke každému prvku u V n existuje tzv. opačný prvek u, pro který platí, že u + u = o (vektor u nazýváme opačný vektor k vektoru u) Hodnost matice Vektorový prostor Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání vektorů a reálný násobek vektoru, přičemž platí: a) V n je uzavřenou množinou vůči

Více

Relace. Základní pojmy.

Relace. Základní pojmy. Relace. Základní pojmy. I kdyº pojem funkce je v matematice jeden ze základních a nejd leºit j²ích, p esto se n které vztahy mezi objekty pomocí funkce popsat nedají. Jde o situace, kdybychom cht li p

Více

1. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) x cotg x 1. c) lim. g) lim e x 1. cos(x) =

1. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) x cotg x 1. c) lim. g) lim e x 1. cos(x) = I. L'HOSPITALOVO PRAVIDLO A TAYLOR V POLYNOM. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) a) lim tg sin ( + ) / e e) lim a a i) lim a a, a > P ipome me si: 3 tg 4 2 tg b) lim 3 sin 4 2 sin

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

Záludnosti velkých dimenzí

Záludnosti velkých dimenzí Jan Vybíral KM/FJFI/ƒVUT 6. listopadu 2017 1/28 Warm-up Dva problémy na zah átí Geometrie R d Kolik bod je t eba rozmístit v jednotkové krychli [0, 1] d v dimenzi d, aby v kaºdém kvádru o objemu 1/10 leºel

Více

Soustavy lineárních rovnic a determinanty

Soustavy lineárních rovnic a determinanty Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

ízení Tvorba kritéria 2. prosince 2014

ízení Tvorba kritéria 2. prosince 2014 ízení. prosince 014 Spousta lidí má pocit, ºe by m la n co ídit. A n kdy to bývá pravda. Kdyº uº nás my²lenky na ízení napadají, m li bychom si poloºit následující t i otázky: ídit? Obrovskou zku²eností

Více

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - základní úrove obtíºnosti MAGZD10C0T01 e²ené p íklady

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - základní úrove obtíºnosti MAGZD10C0T01 e²ené p íklady Státní maturita 00 Maturitní generálka 00 Matematika: didaktický test - základní úrove obtíºnosti MAGZD0C0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 6. b ezna 0 http://www.vachtova.cz/ Obsah Úloha Úloha.

Více

Teorie her. Klasikace. Pomocný text

Teorie her. Klasikace. Pomocný text Pomocný text Teorie her Milí e²itelé, první ty i úlohy kaºdé série spojuje jisté téma a vám bude poskytnut text, který vás tímto tématem mírn provede a pom ºe vám p i e²ení t chto úloh. Teorie her, jiº

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

11 Soustavy rovnic a nerovnic, Determinanty a Matice

11 Soustavy rovnic a nerovnic, Determinanty a Matice 11 Soustavy rovnic a nerovnic, Determinanty a Matice (r zné typy soustav rovnic a nerovnic, matice druhy matic, operace s maticemi, hodnost matice, inverzní matice, Gaussova elimina ní metoda, determinanty

Více

Operace s maticemi. Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen.

Operace s maticemi. Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. U stav matematiky a deskriptivnı geometrie Operace s maticemi Studijnı materia ly Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. Brno 2014 RNDr. Rudolf Schwarz,

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

e²ení 4. série Binární operace

e²ení 4. série Binární operace e²ení 4. série Binární operace Úloha 4.1. V Hloup tínské jaderné elektrárn do²lo jednoho dne k úniku radioaktivního zá ení. Obyvatelé byli pro tento p ípad kvalitn vy²koleni v obran proti záke ným ásticím,

Více

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Lineární algebra - I. část (vektory, matice a jejich využití)

Lineární algebra - I. část (vektory, matice a jejich využití) Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory

Více

e²ení 3. série Hrátky s t lesy

e²ení 3. série Hrátky s t lesy e²ení 3. série Hrátky s t lesy Úloha 3.1. Lib nka, protoºe je parádnice, si vzala krychli s hranou 1 vyrobenou ze zrcadel a poloºila ji hranami na sou adnicové osy. Mat j ji sledoval a lstiv jí v rohu

Více

Odhad sm si se smí²enými daty

Odhad sm si se smí²enými daty Odhad sm si se smí²enými daty Pod názvem smí²ená data máme na mysli data, která obsahují jak spojité y t tak i diskrétní z t veli iny. B ºné sm si obsahují dva typy model. Jednak jsou to komponenty (a

Více

Lineární a Celo íselné Programování

Lineární a Celo íselné Programování Lineární a Celo íselné Programování text k p edná²kám Obsah 1 Lineární a celo íselné programování 4 1.1 Obecná formulace.................................... 4 1.2 Algebraický model...................................

Více