Definice a rozdělení
|
|
- Radka Alena Kopecká
- před 8 lety
- Počet zobrazení:
Transkript
1 Definice a rozdělení Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010
2 Rozdělení tech. materiálů
3 Jiné používané rozdělení
4 Rozdělení podle struktury
5 Specifická tuhost - Ashby
6 Možné vady materiálu
7 Vlastnosti technického materiálu Spojitá pevná látka o stálých rozměrech a tvaru kontinuum Ve všech místech stejné vlastnosti - homogenita Ve všech směrech stejné vlastnosti izotropie Z představy homogenního izotropního kontinua vychází základní technické aplikace mechanika, pružnost a pevnost
8 Kontinuální materiál Technický materiál musí mít stálý tvar a rozměry, nesmí být lehce dělitelný na části Základem musí být nejméně jedna pevná fáze. Pro kompozity možné dva systémy : - jedna spojitá pevná fáze matrice, v ní další nespojité fáze - nejméně dvě pevné fáze vzájemně se pronikající tak, že tvoří jeden kontinuální celek
9 Základní případy - vláknový kompozit - částicový kompozit - deskový kompozit
10 Homogenita materiálu 1 Prakticky nikdy není zcela splněno - záleží na měřítku a rozlišitelnosti Materiál musí být homogenní v porovnání s rozměry součásti.
11 Homogenita materiálu 2 Nesmíme se dostat do oblasti chemie nebo atomární fyziky Nehomogenity materiálu musí být dostatečně velké v porovnání s rozměry atomů a délkou jejich vazeb nanokompozity. Jinak jde o jiné části nanotechnologií.
12 Homogenita materiálu 3 Aby bylo možno považovat materiál za homogenní, musí být nespojité části materiálu v něm rozloženy přibližně rovnoměrně a jejich počet musí být veliký (teoreticky nekonečný). Systémy, v nichž je počet nespojitostí malý, označujeme jako kompozitní systémy. Příklad multivrstva. Řada závěrů pro kompozitní materiály platí i pro kompozitní systémy.
13 Izotropie materiálu Materiály svou povahou izotropní sklo U kovů a keramiky krystality anizotropní, ale náhodné rozdělení orientace velkého množství krystalitů jako celek izotropní Izotropii mohou slabě narušit vnější vlivy tváření za studena, válcování Celkově je možné běžné technické materiály považovat za izotropní
14 Izotropie kompozitů Většina typických kompozitů je uspořádána tak, že je anizotropní. Anizotropie kompozitů velmi silná až o několik řádů větší než u jiných materiálů. Někdy je možné anizotropii využít : luky, lyže. Pokud potřebujeme izotropní materiál, umělé vyrovnání anizotropie lamináty : vlastně kompozitní systém složený z několika kompozitů.
15 Problém homogenity kompozitů Složeny z několika jasně oddělených fází - nehomogenní, jako celek ale považovány za homogenní chceme s kompozitem počítat jako s celkem. Proto fiktivní hodnoty např. : napětí v kompozitu deformace kompozitu elektrická vodivost kompozitu hustota kompozitu pěnohliník má hustotu okolo 0,1 g/cm3, ale neplave.
16 Základní úloha modelů Fyzikální vlastnosti jednotlivých složek kompozitu jsou reálné mikromechanika Fyzikální vlastnosti kompozitu jako celku jsou fiktivní, ale nutné pro použití kompozitu makromechanika Určení makromechaniky z mikro mechaniky nutné modely. Často několikanásobné řešení lamináty, GLARE kompozitní systémy.
17 Definice kompozitu - problémy Nejstarší : jakýkoliv vícefázový materiál dřevo, litina, beton. Novější fáze si ponechají své vlastnosti, ale v systému se uplatní jejich přednosti a potlačí nedostatky. Fáze rovnoměrně rozděleny v objemu ne vždy Experti EU : fáze se musí vyskytovat odděleně a kompozit vytvořen jejich kombinací vyloučí usměrněné tuhnutí Někdy se požaduje jen umělý systém, jindy rozdělení na umělé a přírodní kompozity.
18 Moderní definice (USA) Definice MIL NASA (USA) : Kombinace dvou nebo více materiálů, lišících se v makroměřítku tvarem nebo složením. Složky si zachovají svou identitu (ani rozpouštění, ani slučování), ale na okolí působí v součinnosti (synergie). Každá složka může být fyzikálně identifikována a mezi ní a dalšími složkami je rozhraní.
19 Moderní definice (EU) Definice G. F. Miltona, Cambridge, UK : Materiály s nehomogenitami mnohem většími než atomární rozměry (což nám umožní použít pro ně rovnice klasické fyziky u nanokompozitů ne vždy), které jsou ale v makroskopickém měřítku přirozeně (statisticky) homogenní.
20 Užívaná zjednodušená definice Pro naši potřebu postačí Pevná látka složená ze dvou nebo více fází, přirozená nebo umělá. V celku dosahujeme vlastností, které nemají složky a nedají se dosáhnout ani jejich sumací synergický efekt. efekt
21 Definice nanokompozitu Pro naši potřebu není ustálená Musí jít o kompozit, v němž je charakteristický rozměr disperze pod 100 nm (zpravidla desítky nm). Charakteristický rozměr : - pro vlákna a jednorozměrné částice ekvivalentní příčný průměr - pro dvojrozměrné částice ekvivalentní tloušťka - pro trojrozměrné částice ekvivalentní průměr částice - pro deskový kompozit tloušťka tenčích desek
22 Příklad synergického efektu Grafit má velkou pevnost, oxiduje Hliník neoxiduje, ale pevnost rychle klesá s teplotou Kompozit do 500 oc odolný oxidaci 3 slitina hliníku AlMgSi 1, 2 tatáž slitina s různými C vlákny
23 Historické příklady kompozitů Vysušená hlína s vlákny slámy odkazy v Bibli nálezy v Izraeli 800 let PNL pevnost 7 MPa Mongolské laminované luky - dřevo, šlachy a rohovina - tatarské nájezdy (dostřel 300 m) Damascénská ocel - střídavé plátky vysokouhlíkové a nízkouhlíkové oceli
24 Historie Lykurgovy poháry Poháry z období Římské říše Běžné sklo s malým množstvím nanočástic elektronu (slitina 30 % Au, 70 % Ag) Pohled ve vnějším (odraženém) světle Zdroj světla je uvnitř Způsob výroby není znám
25 Fáze v kompozitu Nejméně jedna spojitá fáze, která drží kompozit pohromadě matrice Další fáze, nespojité, podle možnosti rovnoměrně rozptýlené - disperze
26 Druhy podle typu disperze Kompozit Prvního druhu Druhého druhu Třetího druhu Pevná disperze Kapalná disperze Plynná disperze Samomazná Ložiska Dřevo Pěnové hmoty Některé rohože Kompozity s nanovlákny Nanopěny (aerogel) Většina nanokompozitů
27 Příklad kovová pěna
28 Dřevo - kompozit Mikrosnímek struktury dřeva Umělý model Struktury dřeva
29 Kompozity prvního druhu V technice nejdůležitější Podrobnější rozdělení podle matrice : PMC s plastovou matricí MMC s kovovou matricí CMC s keramickou matricí Dnes nejčastější s plastovou matricí Skleněnou matrici počítáme mezi CMC.
30 Dělení podle tvaru disperze Vlákna zanedbatelná ohybová tuhost spojitá po celé délce dlouhá plně využitá jejich pevnost krátká pevnost není plně využita Částice izometrické globule, krychle dvojrozměrné destičky (příčné rozměry ne po celé šířce) jednorozměrné jehličky, tyčinky Desky speciální případ mizí rozdíl mezi matricí a disperzí
31 Deskový kompozit Zaniká rozdíl mezi červenou a zelenou fází Žádná fáze není zcela spojitá Tvar udržují obě fáze současně Pro modely libovolná volba, co je matrice a co disperze zpravidla matrice to, čeho je více
32 Vlákna a jednoosé částice Spojitá vlákna jsou jasně definovaná Někdy vznikají pochybnosti, co je krátké vlákno a co jednoosá částice (jehlička, tyčinka) Rozhodující je ohybová tuhost u vláken je vždy zanedbatelná proti tuhosti v tahu tlaku. U jednoosých částic zanedbatelná není (na jednoosé částici nelze udělat uzel)
33 Jednoosé uspořádání vláken Vlákna nebo jehličky s osami v jednom směru Označení 1D - jednorozměrné uspořádání vláken Směr vláken směr délky kompozitu - označení L nebo x1 Směr kolmý na vlákna směr šířky - označení T nebo x2 Třetí směr směr tloušťky - označení S nebo x3
34 Dosažení jednoosého uspořádání Princip stáčení os vláken v proudící viskozní kapalině Vlákna se nesmějí sbalovat dobrá smáčivost Spojitá nebo dostatečně dlouhá vlákna je možné na konci fixovat Časté je také použití tkaniny nevýhody : vlákna nejsou zcela natažená ve směru délky je jen asi 50 % vláken Z tenkých kratších vláken nit - multifil
35 Symetrie jednoosého uspořádání V podélném směru se vlákna projeví nejvíce - hlavní směr Pokud je matrice izotropní, je chování kompozitu ve všech směrech kolmých na vlákna stejné - příčná rovina izotropie Kompozit je příčně izotropní
36 Rovinné uspořádání vláken Náhodné rozházení jehliček na vodorovnou rovinu Osy vláken jsou rovnoběžné s jednou rovinou hlavní rovina. Dvourozměrné 2D uspořádání vláken nebo jehliček
37 Anizotropie rovinného uspořádání vláken Vzhledem k náhodnému uspořádání os vláken v hlavní rovině je to rovina izotropie. Všechna vlákna jsou kolmá na normálu hlavní roviny v tomto směru vlastnosti výrazně jiné hlavní směr. Opět jde tedy o příčně izotropní kompozit jako délku označíme směr normály hlavní roviny. Zpravidla opačný význam hlavní osy pro 1D strukturu nejlepší, pro 2D strukturu nejhorší
38 Porovnání 1D a 2D struktur Řez strukturou 1D v rovině izotropie Řez strukturou 2D v rovině izotropie
39 Rovinné uspořádání destiček Destičky poházeny po vodorovné rovině - hlavní rovina Normála k hlavní rovině představuje hlavní směr Pro destičky nejjednodušší uspořádaná orientace Opět příčně izotropní kompozit
40 Základní symetrie kompozitu Všechny předchozí případy - příčně izotropní kompozit. Kompozit můžeme natočit o libovolný úhel kolem hlavní osy, aniž by se změnily jeho vlastnosti Mluvíme o jedné nekonečné ose symetrie. Jde o symetrii např. rotačního elipsoidu. Stejnou symetrii musí mít i všechny vlastnosti kompozitu. Nezaměňovat s ortotropií!
41 Neuspořádané (izotropní) kompozity V kompozitu s izometrickými částicemi jsou všechny směry ekvivalentní. Rovněž v kompozitu s destičkami nebo jehlicemi s náhodně uspořádanými osami. U vláken je poměrně obtížné dosáhnout rovnoměrné rozdělení vláken tak, aby jejich osy směřovaly náhodně do všech směrů 3D struktury vláken (vlákna mohou tvořit klubíčka).
Definice a rozdělení
Definice a rozdělení Cíle přednášky 1. Úloha kompozitů mezi technickými materiály 2. Základní požadavky a vlastnosti technických materiálů - homogenita - izotropie 3. Definice kompozitů a nanokompozitů
Kompozitní materiály definice a rozdělení
Kompozitní materiály definice a rozdělení Technická univerzita v Liberci Doc. Ing. Karel Daďourek 2008 Rozdělení materiálů Požadavky na technické materiály Struktura technických materiálů Technické materiály
Kompozitní materiály. přehled
Kompozitní materiály přehled Porovnání vlastností Porovnání vlastností (2) dřevo nemá konkurenci jako lehká tuhá konstrukce Porovnání vlastností (3) dobře tlumí slitiny Mg Cu a vlákny zpevněné plasty Definice
Kompozitní materiály
Kompozitní materiály Základy materiálového inženýrství Katedra materiálu Strojní fakulta Technická univerzita v Liberci Pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Definice kompozitu
ÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVOD DO MODOVÁNÍ V MCHANIC MCHANIKA KOMPOZINÍCH MARIÁŮ Přednáška č. 5 Prof. Ing. Vladislav aš, CSc. Základní pojmy pružnosti Vlivem vnějších sil se těleso deformuje a vzniká v něm napětí dn Normálové napětí
Kap. 3 Makromechanika kompozitních materiálů
Kap. Makromechanika kompozitních materiálů Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVU v Praze. listopadu 7 Základní pojmy a vztahy Notace
Adhezní síly v kompozitech
Adhezní síly v kompozitech Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Vazby na rozhraní
Okruhy otázek ke zkoušce
Kompozity A farao pokračoval: "Hle, lidu země je teď mnoho, a vy chcete, aby nechali svých robot? Onoho dne přikázal farao poháněčům lidu a dozorcům: Propříště nebudete vydávat lidu slámu k výrobě cihel
MMC kompozity s kovovou matricí
MMC kompozity s kovovou matricí Přednosti MMC proti kovům Vyšší specifická pevnost (ne absolutní) Vyšší specifická tuhost (ne absolutní) Lepší únavové vlastnosti Lepší vlastnosti při vysokých teplotách
PMC - kompozity s plastovou matricí
PMC - kompozity s plastovou matricí Rozdělení PMC PMC částicové vláknové Matrice elastomer Matrice elastomer Matrice termoplast Matrice termoplast Matrice reaktoplast Matrice reaktoplast Částice v polymeru
KONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
Druhy vláken. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008
Druhy vláken Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Druhy různých vláken Přírodní vlákna Skleněná vlákna Uhlíková a grafitová vlákna Aramidová a silonová
Křehké materiály. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008
Křehké materiály Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008 Základní charakteristiky Křehký lom bez znatelné trvalé deformace Mez pevnosti má velký rozptyl
Pevnost kompozitů obecné zatížení
Pevnost kompozitů obecné zatížení Osnova Příčná pevnost v tahu Pevnost v tahu pod nenulovým úhlem proti vláknům Podélná pevnost v tlaku Příčná pevnost v tlaku Pevnost vláknových kompozitů - obecně Základní
Nespojitá vlákna. Nanokompozity
Nespojitá vlákna Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Vliv nespojitých vláken Uspořádaná
Vláknové kompozitní materiály, jejich vlastnosti a výroba
Kap. 1 Vláknové kompozitní materiály, jejich vlastnosti a výroba Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVUT v Praze 26. října 2007 1
Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
Adhezní síly. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008
Adhezní síly Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Vazby na rozhraní Mezi fázemi v kompozitu jsou rozhraní mezifázové povrchy. Možné vazby na rozhraní
Druhy vláken. Nanokompozity
Druhy vláken Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Druhy různých vláken Přírodní
Namáhání na tah, tlak
Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále
Cvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:
ÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?
Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti
Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající
PRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
Pevnost v tahu vláknový kompozit. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008
Pevnost v tahu vláknový kompozit Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Předpoklady výpočtu Vycházíme z uspořádání Voigtova modelu Všechna vlákna mají
Pevnost v tahu vláknový kompozit
Pevnost v tahu vláknový kompozit Obsah přednášky Předpoklady výpočtu pevnosti Stejná tažnost matrice i vlákna (disperze) Tažnější matrice než vlákna Kritické množství vláken Tažnější vlákna než matrice
Katedra materiálu.
Katedra materiálu Vedoucí katedry: prof. Ing. Petr Louda, CSc. Zástupce vedoucího katedry: doc. Ing. Dora Kroisová, Ph.D. Tajemnice katedry: Ing. Daniela Odehnalová http://www.kmt.tul.cz/ EF TUL, Gaudeamus
Vojtěch Hrubý: Esej pro předmět Seminář EVF
Vojtěch Hrubý: Esej pro předmět Seminář EVF Plazma Pod pojmem plazma většinou myslíme plynné prostředí, které se skládá z neutrálních částic, iontů a elektronů. Poměr množství neutrálních a nabitých částic
1. Úvod do pružnosti a pevnosti
1. Úvod do pružnosti a pevnosti Mechanika je nejstarší vědní obor a její nedílnou součástí je nauka o pružnosti a pevnosti. Pružností nazýváme schopnost pevných těles získat po odstranění vnějších účinků
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE PLASTY VZTAH MEZI STRUKTUROU A VLASTNOSTMI Obsah Definice Rozdělení plastů Vztah mezi strukturou a vlastnostmi chemické složení a tvar molekulárních jednotek
Optimalizace vláknového kompozitu
Optimalizace vláknového kompozitu Bc. Jan Toman Vedoucí práce: doc. Ing. Tomáš Mareš, Ph.D. Abstrakt Optimalizace trubkového profilu z vláknového kompozitu při využití Timošenkovy hypotézy. Hledání optimálního
ROZDĚLENÍ, VLASTNOSTI A POUŽITÍ MATERIÁLŮ
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; platnost do r. 2016 v návaznosti na použité normy. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D. Kavková
Pracovní diagram vláken
Druhy vláken Rozdělení přednášky Základní vlastnosti vláken a nanovláken Přírodní vlákna Skleněná vlákna Uhlíková a grafitová vlákna Aramidová a silonová vlákna Keramická vlákna Kovová vlákna Whiskery
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů.
Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů. Násobky jednotek název značka hodnota kilo k 1000 mega M 1000000 giga G 1000000000 tera T 1000000000000 Tělesa a látky Tělesa
Okruhy otázek ke SZZ navazujícího magisterského studijního programu Strojní inženýrství, obor Konstrukce a výroba součástí z plastů a kompozitů
Materiály 1. Molekulární struktura polymerů, polarita vazeb, ohebnost řetězců. 2. Krystalizace a nadmolekulární struktura polymerů, vliv na vlastnosti. 3. Molární hmotnost, její distribuce a vliv na vlastnosti.
Vlastnosti polymerních dlouhovláknových kompozitů s různými výztužemi
Vlastnosti polymerních dlouhovláknových kompozitů s různými výztužemi Petr Kos Vedoucí práce: Ing. Zdeňka, Jeníková, Ph.D. Abstrakt Cílem práce je provést stručný úvod do problematiky kompozitních materiálů
Nespojitá vlákna. Technická univerzita v Liberci kompozitní materiály 5. MI Doc. Ing. Karel Daďourek 2008
Nespojitá vlákna Technická univerzita v Liberci kompozitní materiály 5. MI Doc. Ing. Karel Daďourek 2008 Vliv nespojitých vláken Zabývejme se nyní uspořádanými nespojitými vlákny ( 1D systém) s tahovým
MŘÍŽKY A VADY. Vnitřní stavba materiálu
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.
Pružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB
Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 12. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Nejdůleţitější konstrukční prvek pro ohyb je nosník.
Příklady použití kompozitních materiálů
Příklady použití kompozitních materiálů Podpěrný nosník AVCO Systems Staré řešení vlevo nosník 20 x 20 mm, tl 3 mm, plocha 374 mm 2, AL slitina, váha 1,05 kg/m Nové řešení vpravo dole Al + 50 % B vláken
Minule vazebné síly v látkách
MTP-2-kovy Minule vazebné síly v látkách Kuličkový model polykrystalu kovu 1. Vakance 2. Když se povede divakance, je vidět, oč je pohyblivější než jednovakance 3. Nejzávažnější je ovšem prezentování zrn
Kompozity ve strojírenství
Kompozity ve strojírenství Doplněná inovovaná přednáška Zpracoval: Jozef Kaniok Pracoviště: Katedra textilních a jednoúčelových strojů TUL Tento materiál vznikl jako součást projektu In-TECH 2, který je
Voigtův model kompozitu
Voigtův model kompozitu Osnova přednášky Směšovací pravidlo použitelnost Princip Voigtova modelu Důsledky Voigtova modelu Specifika vláknových kompozitů Směšovací pravidlo Nejjednoduší vztah pro vlastnost
Ing. Jan BRANDA PRUŽNOST A PEVNOST
Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická
Příklady kompozitních materiálů. Otomanský luk Pykrete Židle T3.1
Kompozity A farao pokračoval: "Hle, lidu země je teď mnoho, a vy chcete, aby nechali svých robot? Onoho dne přikázal farao poháněčům lidu a dozorcům: Propříště nebudete vydávat lidu slámu k výrobě cihel
JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK)
JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) Ing. Jan Závitkovský e-mail: jan.zavitkovsky@centrum.cz
18MTY 1. Ing. Jaroslav Valach, Ph.D.
18MTY 1. Ing. Jaroslav Valach, Ph.D. valach@fd.cvut.cz Informace o předmětu http://mech.fd.cvut.cz/education/bachelor/18mty Popis předmětu Témata přednášek Pokyny k provádění cvičení Informace ke zkoušce
Úvod do strukturní analýzy farmaceutických látek
Úvod do strukturní analýzy farmaceutických látek Garant předmětu: Vyučující: doc. Ing. Bohumil Dolenský, Ph.D. prof. RNDr. Pavel Matějka, Ph.D., A136, linka 3687, matejkap@vscht.cz doc. Ing. Bohumil Dolenský,
Adhezní síly v kompozitních materiálech
Adhezní síly v kompozitních materiálech Obsah přednášky Adhezní síly, jejich původ a velikost. Adheze a smáčivost. Metoty určování adhezních sil. Adhezní síly na rozhraní Mezi fázemi v kompozitu jsou rozhraní
16. Matematický popis napjatosti
p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti
Přetváření a porušování materiálů
Přetváření a porušování materiálů Přetváření a porušování materiálů 1. Viskoelasticita 2. Plasticita 3. Lomová mechanika 4. Mechanika poškození Přetváření a porušování materiálů 2. Plasticita 2.1 Konstitutivní
LOGO. Struktura a vlastnosti pevných látek
Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním
Téma 2 Napětí a přetvoření
Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram
Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření
Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
Analýza napjatosti PLASTICITA
Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném
Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce
Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.
Skořepinové konstrukce. tloušťka stěny h a, b, c
Skořepinové konstrukce skořepina střední plocha a b tloušťka stěny h a, b, c c Různorodé technické aplikace skořepinových konstrukcí Mezní stavy skořepinových konstrukcí Ztráta stability zhroucení konstrukce
Značení krystalografických rovin a směrů
Značení krystalografických rovin a směrů (studijní text k předmětu SLO/ZNM1) Připravila: Hana Šebestová 1 Potřeba označování krystalografických rovin a směrů vyplývá z anizotropie (směrové závislosti)
LETECKÉ MATERIÁLY. Úvod do předmětu
LETECKÉ MATERIÁLY Úvod do předmětu Historický vývoj leteckých konstrukčních materiálů Uplatnění konstrukčních materiálů souvisí s pevnostními koncepcemi leteckých konstrukcí Pevnostní koncepce leteckých
ČVUT v Praze, Fakulta stavební. seminář Stanovení vlastností materiálů při hodnocení existujících konstrukcí Masarykova kolej, 3. 4.
STANOVENÍ VLASTNOSTÍ KONSTRUKČNÍHO DŘEVA PETR KUKLÍK ČVUT v Praze, Fakulta stavební seminář Stanovení vlastností materiálů při hodnocení existujících konstrukcí Masarykova kolej, 3. 4. 2007 Inovace metod
STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK
Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 21. 4. 2013 Název zpracovaného celku: STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Pevné látky dělíme na látky: a) krystalické b) amorfní
VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0220 Anotace
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
4 Halové objekty a zastřešení na velká rozpětí
4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické
4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny
Nauka o materiálu Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny Difuze v tuhých látkách Difuzí nazýváme přesun atomů nebo iontů na vzdálenost větší než je meziatomová vzdálenost. Hnací
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední
Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední a ta jej zase předá svému sousedovi. Částice si tedy
Nejpoužívanější podmínky plasticity
Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova
2 MECHANICKÉ VLASTNOSTI SKLA
2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost
Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -
Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
Nauka o materiálu. Přednáška č.14 Kompozity
Nauka o materiálu Úvod Technické materiály, které jsou určeny k dalšímu technologickému zpracování zahrnují širokou škálu možného chemického složení, různou vnitřní stavbu a různé vlastnosti. Je nutno
ZESILOVÁNÍ A STATICKÉ ZAJIŠTĚNÍ KONSTRUKCÍ KOMPOZITNÍ MATERIÁLY
ZESILOVÁNÍ A STATICKÉ ZAJIŠTĚNÍ KONSTRUKCÍ KOMPOZITNÍ MATERIÁLY Důvody a cíle pro statické zesilování a zajištění konstrukcí - zvýšení užitného zatížení - oslabení konstrukce - konstrukční chyba - prodloužení
Nelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
Obecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
TEORIE TVÁŘENÍ. Lisování
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA, Praha 10, Na Třebešíně 2299 příspěvková organizace zřízená HMP Lisování TEORIE TVÁŘENÍ TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM, STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Libor Kasl 1, Alois Materna 2
SROVNÁNÍ VÝPOČETNÍCH MODELŮ DESKY VYZTUŽENÉ TRÁMEM Libor Kasl 1, Alois Materna 2 Abstrakt Příspěvek se zabývá modelováním desky vyztužené trámem. Jsou zde srovnány různé výpočetní modely model s prostorovými
P Ř Í K L A D Č. 5 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VÝRAZNĚ ROZDÍLNÝM ROZPĚTÍM NÁSLEDUJÍCÍCH POLÍ
P Ř Í K L A D Č. 5 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VÝRAZNĚ ROZDÍLNÝ ROZPĚTÍ NÁSLEDUJÍCÍCH POLÍ Projekt : FRVŠ 011 - Analýza metod výpočtu železobetonových lokálně podepřených desek Řešitelský
CMC kompozity s keramickou matricí
CMC kompozity s keramickou matricí Základní požadavky Zvýšení houževnatosti - hlavně vlákna Zpevnění - vyrovnání pevnosti v tahu a tlaku - vlákna, především whiskery Zvýšení otěruvzdornosti v extremních
PRŮŘEZOVÉ CHARAKTERISTIKY
. cvičení PRŮŘEZOVÉ CHRKTERISTIKY Poznámka Pojem průřezu zavádíme u prutových konstrukčních prvků. Průřez je rovinný obrazec, který vznikne myšleným řezem vedeným kolmo k podélné ose nedeformovaného prutu,
Elektřina a magnetizmus - elektrické napětí a elektrický proud
DUM Základy přírodních věd DUM III/2-T3-03 Téma: Elektrické napětí a elektrický proud Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus
Elektrická vodivost - testové otázky:
Elektrická vodivost - testové otázky: 1) Elektrický náboj (proud) je přenášen? a) elektrony b) protony c) jádry atomu 2) Elektrický proud prochází pouze kovy? a) ano b) ne 3) Nejlepšími vodiči elektrického
Navrhování konstrukcí z korozivzdorných ocelí
Navrhování konstrukcí z korozivzdorných ocelí Marek Šorf Seminář Navrhování konstrukcí z korozivzdorných ocelí 27. září 2017 ČVUT Praha 1 Obsah 1. část Ing. Marek Šorf Rozdíl oproti navrhování konstrukcí
CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO.
CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO. 01) Složení látek opakování učiva 6. ročníku: Všechny látky jsou složeny z částic nepatrných rozměrů (tj. atomy, molekuly,
Pružnost a pevnost. 2. přednáška, 10. října 2016
Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné
PENETRACE TENKÉ KOMPOZITNÍ DESKY OCELOVOU KULIČKOU
PENETRACE TENKÉ KOMPOZITNÍ DESKY OCELOVOU KULIČKOU : Ing.Bohuslav Tikal CSc, ZČU v Plzni, tikal@civ.zcu.cz Ing.František Valeš CSc, ÚT AVČR, v.v.i., vales@cdm.cas.cz Anotace Výpočtová simulace slouží k
Využití kompozitních materiálů v leteckém průmyslu
Využití kompozitních materiálů v leteckém průmyslu Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky Využití kompozitních materiálů v leteckém průmyslu
Kritéria porušení laminy
Kap. 4 Kritéria porušení laminy Inormační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky S ČVU v Praze.. 007-6.. 007 Úvod omové procesy vyvolané v jednosměrovém
Ultrazvuková defektoskopie. Vypracoval Jan Janský
Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací
BIOMECHANIKA BIOMECHANIKA KOSTERNÍHO SUBSYSTÉMU
BIOMECHANIKA BIOMECHANIKA KOSTERNÍHO SUBSYSTÉMU MECHANICKÉ VLASTNOSTI BIOLOGICKÝCH MATERIÁLŮ Viskoelasticita, nehomogenita, anizotropie, adaptabilita Základní parametry: hmotnost + elasticita (akumulace
Netkané textilie. Materiály 2
Materiály 2 1 Pojiva pro výrobu netkaných textilií Pojivo je jednou ze dvou základních složek pojených textilií. Forma pojiva a jeho vlastnosti předurčují technologii a podmínky procesu pojení způsob rozmístění
Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.
Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
Momenty setrvačnosti a deviační momenty
Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty charakterizují spolu shmotností a statickými momenty hmoty rozložení hmotnosti tělesa vprostoru. Jako takové se proto vyskytují