Statistická analýza jednorozměrných dat

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Statistická analýza jednorozměrných dat"

Transkript

1 Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky. 1

2 Kapitola 5.1 ANALÝZA ROZPTYLU ANOVA 2

3 Analýza rozptylu ANOVA K posouzení významnosti zdrojů variability v datech: 1. vliv přípravy na výsledek (analýzy), 2. vliv přístroje, člověka, experimentu na výsledek, 3. vliv laboratoří na výsledek analýz, 4. vyhodnocování plánovaných experimentů, 5. vliv faktorů A, B, C, (například teploty, času, koncentrace) na výsledek (analýzy). 3

4 Analýza rozptylu ANOVA rozptyl = složka objasněná + složka neobjasněná (známé zdroje variability) (náhodné chyby) Faktor A je na jistých úrovních A 1, A 2, A 3 Zdrojem variability měření y ij jsou úrovně A 1, A 2, A 3 y ij = μ i + ε ij μ i je skutečná hodnota a ε ij je j tá náhodná chyba. Cíl: který z faktorů A, B, C, má významný vliv na výsledek analýzy (např. reakční výtěžek) μ? Hodnotu μ zde odhadujeme x i, i = 1,, n i. 4

5 Jednofaktorová analýza rozptylu Faktor A má K úrovní A 1,, A K. Na každé úrovni A i je provedeno n i měření y ij, j = 1,, n i. Celkový počet měření je N = Uspořádání dat: K i=1 n i. 5

6 Sloupcový a celkový průměr, odhad efektů Sloupcový průměr n i μ i = 1 n i y ij Celkový průměr j=1 K μ = 1 K μ i Odhad efektů j=1 K α i = μ i μ za podmínky i=1 n i α i = 0 6

7 Sloupcový a celkový průměr, odhad efektů 7

8 Sloupcový a celkový průměr, odhad efektů 8

9 Modely s pevnými efekty Předpoklad: náhodné chyby ε ij jsou nezávislé náhodné veličiny s normálním rozdělením N 0, σ 2. Součet čtverců odchylek od celkového průměru S c K n i S c = y ij μ 2 i=1 lze rozložit na dvě složky K n i j=1 S c = (y ij μ i ) + (μ i μ) 2 i=1 j=1 = S A + S R 9

10 Modely s pevnými efekty kde S A je mezi jednotlivými úrovněmi faktoru A S A = K i=1 n i μ i μ 2 kde S R je reziduální S R, tj. uvnitř jednotlivých úrovní faktoru A K n i S R = y ij μ i 2 i=1 j=1 10

11 Faktor ANOVA u modelu s pevnými efekty Hypotéza nulová H 0 : α i = 0, i = 1,, K vs. Alternativní H A : α i 0, i = 1,, K 11

12 Testační statistika Fisher-Snedecorova F-testu: Testování: F exp = S A(N K) S R (K 1) Je-li F exp > F 1 α (K 1, N K), je nutné H 0 zamítnout a efekty považovat významné. 12

13 Příklad: Testování kvality AgNO 3 od různých výrobců U AgNO 3 od pěti dodavatelů byla sledována kvalita chemikálie. Z každé láhve byl odebrán počet vzorků (n 1 = n 3 = 6, n 2 = n 5 = 3, n 4 = 4). Otázka: Existují významné rozdíly v kvalitě AgNO 3 od těchto výrobců. 13

14 Pokračování příkladu Procentuální obsah chloru při užití AgNO 3 od pěti výrobců 14

15 Pokračování příkladu Řešení: μ = , μ 1 = , μ 2 = , μ 3 = , μ 4 = , μ 5 = , α 1 = , α 2 = , α 3 = 0.277, α 4 = 0.534, α 5 = 0.575, 15

16 Pokračování příkladu 16

17 Tabulka analýzy rozptylu pro jednoduché třídění u modelu s pevnými efekty 17

18 Analýza rozptylu pro obsah AgNO 3 Pro α = 0.05 je kvantil F ,17 = Závěr: F e > F 0.95 (4,17), a proto H 0 je nutné zamítnout. Kvalita AgNO 3 od pěti výrobců se významně liší. 18

19 Ověření normality chyb 1. Rankitové grafy 2. Standardizovaná rezidua esi = σ eji 1 1 n i mají přibližně normální rozdělení N(0,1) 19

20 Indikace ε ij N(0, σ 2 ) Rankitový graf, tzn. přímka s nulovým úsekem a jednotkovou směrnicí 20

21 Technika vícenásobného porovnávání Vliv jednotlivých efektů je významný, tj. rozdíly mezi průměry μ i, μ j, i j jsou významné. Scheffého metoda vícenásobného porovnání: H 0 : μ i = μ j se zamítá pro všechny dvojice (i, j), pro které platí μ i μ j K 1 σ 2 F 1 α K 1, N K 1 n i + 1 n j pro všechny možné dvojice indexů (i, j). 21

22 Transformace k zesymetričtění rozdělení Přiblížení k normalitě transformací, např. posunutou logaritmickou transformaci y = ln(y + C) Optimální C se volí tak, 1. aby rezidua byla přibližně symetrická, 2. aby rankitový graf esi byl lineární závislostí. 22

23 Vyšetření vybočujících hodnot Užívají se Jackknife rezidua e Jij ejij = esij N K 1 2 N K esij Test: pro ejij 2 > 10 lze y ij považovat za silně vybočující. 23

24 24

25 25

26 26

27 Druhy analýzy rozptylu Jednofaktorová analýza rozptylu (faktor A) Rozklad μ i : μ i = μ + α i - Na průměr μ ze všech úrovní faktoru A - Efekt α i od i-té úrovně faktoru A Nulová hypotéza H 0 : μ 1 = μ 2 = μ 3, neboli H 0 : α 1 = α 2 = α 3 = 0. Vícefaktorová analýza rozptylu (faktory A, B, C, ) Rozklad μ ij : μ ij = μ + α i + β j + τ ij, na celkový průměr μ, složky α i odpovídající vlivu faktoru A, složky β j odpovídající vlivu faktoru B, a interakce τ ij faktoru A s faktorem B. 27

28 Dvoufaktorová analýza rozptylu V cele je obecně n ij pozorování. ANOVA bez opakování: v každé cele je jedno pozorování y ij = μ ij + ε ij Řádkové efekty α i, sloupcové efekty β i, interakce τ ij. 28

29 Modely interakcí Tukeyův model interakce τ ij = Cα i β j kde C je konstanta. Řádkově lineární model interakcí τ ij = γ i β j C R Sloupcově lineární model interakcí τ ij = α i C K δ j Aditivně multiplikativní model interakcí τ ij = γ i δ j C W 29

30 30

31 Modely s pevnými efekty bez opakování (každá cela: 1 hodnota) Předpoklady: 1. Náhodné chyby ε ij jsou nezávislé náhodné veličiny s normálním rozdělením N(0, σ 2 ). 2. Omezující podmínky N M i=1 α i = 0; j=1 β j = 0; i=1 τ ij = 0; j=1 τ ij = 0 3. U modelů bez interakce je τ ij = 0 pro i = 1, N, j = 1, M. N M 31

32 Odhady parametrů μ = 1 NM α i = 1 M β j = 1 N N i=1 M j=1 N i=1 M j=1 y ij y ij μ y ij μ Výpočet rezidua e ij podle e ij = y ij μ α i β j Výpočet interakce τ ij = E y ij μ α i β j e ij 32

33 Tukeyův model interakce Ze směrnice C přímky grafu neaditivity e ij vs. α i β j se odhaduje míra interakce N M i=1 j=1 e ijα i β j C = α 2 2 i β j N i=1 M j=1 Nenulová směrnice znamená interakci faktorů a součet čtverců odchylek Tukeyho interakce S T je k testování S T = N i=1 N i=1 M j=1 M j=1 y ij α i β j α 2 2 i β j 2 33

34 34

35 Reziduální součet čtverců bez interakcí S AB značí reziduální součet čtverců bez interakcí N M S AB = y ij μ α i β j 2 i=1 j=1 a odpovídající průměrný čtverec S AB M AB = (N 1)(M 1) 35

36 Příklad: Stanovení vody v rozpouštědlech v různých laboratořích U všech vzorků A 1, A 2 a A 3 nového rozpouštědla byl ve čtyřech laboratořích B 1, B 2, B 3 a B 4 určen obsah vody. Otázka: jsou významné odchylky v obsahu vody v zadaných vzorcích rozpouštědla a ve výsledcích zvolených laboratoří? Data: N = 3, M = 4 36

37 Pokračování příkladu 37

38 Pokračování příkladu Graf neaditivity vykazuje výrazný trend 38

39 Pokračování příkladu Analýza rozptylu dat obsahu vody v rozpouštědlech 39

40 Pokračování příkladu Závěr: Efekt interakce je nevýznamný a lze použít aditivní model analýzy rozptylu, zatímco efekty vzorků a laboratoří významné jsou. 40

41 Vyvážené modely V každé cele je n ij = n pozorování. Odhadem μ ij jsou aritmetické průměry μ ij = 1 n y ijk n k=1 α i = 1 M β j = 1 N M j=1 N i=1 μ = 1 NM μ ij μ μ ij μ N i=1 M j=1 μ ij 41

42 Vyvážené modely Odhad reziduí e ijk = y ijk μ α i β j Odhad interakcí τ ijk = μ ijk μ α i β j K ověření interakce lze vynášet graf τ ij vs. α i β j. Průměrné hodnoty E M A = σ 2 + nm N i=1 2 α i N 1 σ 2 = σ2 2 + nmσ A E M B = σ 2 + nm M j=1 2 β j M 1 σ 2 = σ2 2 + nnσ B 42

43 Vyvážené modely a E M AB = σ 2 + n N i=1 M j=1 2 τ ij N 1 (M 1)σ 2 = σ2 2 + nσ AB Rozptyl M R je nevychýleným odhadem σ 2 rozptylu chyb. Rozptyly σ A, σ B a σ AB odpovídají efektům řádků, sloupců a interakcí. 43

44 Vyvážené modely Test: s využitím F AB, F B a F A, zda je možné považovat sloupcové a řádkové efekty, resp. interakce za nevýznamné. H 0 : τ ij = 0, i = 1,, N a j = 1,, M Je-li F AB > F 1 α * N 1 M 1, M N (n 1)+ je H 0 zamítnuta. H 0 : α i = 0, i = 1,, N Je-li F A > F 1 α * N 1, M N (n 1)+ je H 0 zamítnuta. 44

45 Vyvážené modely H 0 : β j = 0, j = 1,, M Je-li F B > F 1 α * M 1, M N (n 1)+ je H 0 zamítnuta. 45

46 Dvoufaktorová ANOVA pro vyvážený experiment 46

47 Příklad: Přesnost chromatografického stanovení diethylenglykolu Tři laboranti A 1, A 2 a A 3 provádějí dvě opakovaná stanovení diethylenglykolu (DEG) v ethylenglykolu na třech chromatografech B 1, B 2 a B 3. Otázka: má na výsledek analýzy přístroj či laborant Data: N = 3, M = 3, n = 2. 47

48 Pokračování příkladu Obsahy DEG [%], měření třemi laboranty A na třech přístrojích B 48

49 Pokračování příkladu Řešení: F ,9 = 4.26 a F ,9 =

50 Pokračování příkladu Test: 1. Mají laboranti vliv na výsledek analýz zjistíme vyšetřením nulové hypotézy H 01 : α i = 0 a zároveň H 02 : τ ij = 0 S PA = S A + S AB = a testovací statistika F PA = =

51 Pokračování příkladu Jelikož F ,9 = je větší než statistika F PA, nemají laboranti významný vliv na výsledek analýz a model ANOVA lze vyjádřit rovnicí y ijk = μ + β j + e ijk 2. Otestujeme H 0 : β j = 0 a sloučíme příspěvky S A + S AB s reziduálním součtem čtverců. M R = S R + S A + S AB = =

52 Pokračování příkladu Testovací statistika F B = M B M = 4.58 je větší než R F ,15 = 3.68 a H 0 je zamítnuta. Vliv faktoru B (přístroje) na výsledek analýzy je na hladině α = 0.95 významný. Střední hodnota průměrného čtverce M B je E(M B ) = σ σ B. Pro odhad přístrojové chyby platí σ 2 B + M B σ 2 =

53 Pokračování příkladu Závěr: Na přesnost stanovení diethylenglykolu má statisticky významný vliv pouze použitý chromatograf. Variabilita způsobaná laboranty je σ 2 = , variabilita způsobená přístroji je σ B 2 = ^ 6. 53

54 Nevyvážené modely V (i, j)-té cele je n ij pozorování Přibližný rozklad celkového součtu čtverců n k pro všechny cely. μ ij = 1 n k Reziduální součet čtverců N M n k k=1 y ijk S R = y ijk μ ij 2 i=1 j=1 Pro výpočet dalších složek rozkladu celkového součtu čtverců se používá μ ij. k 54

55 Nevyvážené modely Jsou určeny z ekvivalentního počtu n n = 1 NM N i=1 M j=1 1 n ij S A = n N M i=1 μ i μ 2 s ( N 1) stupni volnosti S B = n M N μ j μ 2 j=1 s ( M 1) stupni volnosti 1 55

56 Nevyvážené modely N M S AB = n μ ij μ i μ j + μ 2 i=1 j=1 s N 1 (M 1) stupni volnosti. Je použito μ i = 1 M M j=1 μ ij ; μ j = 1 N N i=1 μ ij ; μ i = 1 NM N i=1 M j=1 μ ij Testování hypotéz: stejně jako u vyvážených experimentů. 56

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat ANOVA Zdravotní ústav se sídlem v Ostravě Odbor hygienických laboratoří

Více

ANOVA. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie

ANOVA. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 2015 Ing. Petra Hlaváčková, Ph.D.

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015 UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce ANALÝZA

Více

S E M E S T R Á L N Í

S E M E S T R Á L N Í Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět ANOVA analýza rozptylu

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Pythagoras Statistické zpracování experimentálních dat Semestrální práce ANOVA vypracoval: Ing. David Dušek

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

PYTHAGORAS Statistické zpracování experimentálních dat

PYTHAGORAS Statistické zpracování experimentálních dat UNIVERZITA PARDUBICE Fakulta chemicko-technologická, Katedra analytické chemie SEMESTRÁLNÍ PRÁCE Květen 2008 Licenční studium PYTHAGORAS Statistické zpracování experimentálních dat Předmět 1.4 ANOVA a

Více

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D. Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA. Semestrální práce

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA. Semestrální práce Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015 Doc. Mgr. Jan Muselík, Ph.D.

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO

Více

Analýza rozptylu ANOVA

Analýza rozptylu ANOVA Licenční studium Galileo: Statistické zpracování dat ANOVA ANOVA B ANOVA P Analýza rozptylu ANOVA Semestrální práce Lenka Husáková Pardubice 05 Obsah Jednofaktorová ANOVA... 3. Zadání... 3. Data... 3.3

Více

Statistika, Biostatistika pro kombinované studium. Jan Kracík

Statistika, Biostatistika pro kombinované studium. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

AVDAT Geometrie metody nejmenších čtverců

AVDAT Geometrie metody nejmenších čtverců AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε

Více

Dva případy chybného rozhodnutí při testování: a) Testační statistika padne mimo obor přijetí nulové H hypotézy O, tj.

Dva případy chybného rozhodnutí při testování: a) Testační statistika padne mimo obor přijetí nulové H hypotézy O, tj. Uvedeme obecný postup statistického testování:. Formulace nulové H 0a alternativní hpotéz H A.. Volba hladin významnosti α.. Volba testační statistik např... Určení kritického oboru testové charakteristik.

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Inovace bakalářského studijního oboru Aplikovaná chemie

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 8. Analýza rozptylu Mgr. David Fiedor 13. dubna 2015 Motivace dosud - maximálně dva výběry (jednovýběrové a dvouvýběrové testy) Příklad Na dané hladině významnosti α = 0,05

Více

Masarykova univerzita v Brně. Analýza rozptylu. Vypracovala: Marika Dienová

Masarykova univerzita v Brně. Analýza rozptylu. Vypracovala: Marika Dienová Masarykova univerzita v Brně Přírodovědecká fakulta BAKALÁŘSKÁ PRÁCE Analýza rozptylu Vypracovala: Marika Dienová Vedoucí bakalářské práce: Mgr. Jan Koláček, Ph.D. Brno 2006/2007 Prohlášení Prohlašuji,

Více

Přednáška IX. Analýza rozptylu (ANOVA)

Přednáška IX. Analýza rozptylu (ANOVA) Přednáška IX. Analýza rozptylu (ANOVA) Princip a metodika výpočtu Předpoklady analýzy rozptylu a jejich ověření Rozbor rozdílů jednotlivých skupin násobné testování hypotéz Analýza rozptylu jako lineární

Více

Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )

Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte

Více

INTERAKTIVNÍ POČÍTAČOVÁ ANALÝZA DAT prof. RNDr. Milan Meloun, DrSc.

INTERAKTIVNÍ POČÍTAČOVÁ ANALÝZA DAT prof. RNDr. Milan Meloun, DrSc. INTERAKTIVNÍ POČÍTAČOVÁ ANALÝZA DAT prof. RNDr. Milan Meloun, DrSc. studijní materiál ke kurzu Mezioborové dimenze vědy Fakulta informatiky a managementu Univerzity Hradec Králové Projekt Informační, kognitivní

Více

ANALÝZA ROZPTYLU (ANOVA)

ANALÝZA ROZPTYLU (ANOVA) ANALÝZA ROZPTYLU (ANOVA) 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

1.4 ANOVA. Vliv druhu plodiny na míru napadení houbami Fusarium culmorum a Fusarium graminearum v systému ekologického hospodaření

1.4 ANOVA. Vliv druhu plodiny na míru napadení houbami Fusarium culmorum a Fusarium graminearum v systému ekologického hospodaření 1.4 ANOVA Úloha 1 Jednofaktorová ANOVA Vliv druhu plodiny na míru napadení houbami Fusarium culmorum a Fusarium graminearum v systému ekologického hospodaření Bylo měřeno množství DNA hub Fusarium culmorum

Více

Plánování experimentu

Plánování experimentu Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Ing. Radek Růčka Přednášející: Prof. Ing. Jiří Militký, CSc. 1. LEPTÁNÍ PLAZMOU 1.1 Zadání Proces

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování

Více

Statistika. Testování hypotéz - statistická indukce Parametrické testy. Roman Biskup

Statistika. Testování hypotéz - statistická indukce Parametrické testy. Roman Biskup Statistika Testování hypotéz - statistická indukce Parametrické testy Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 1. února 01 Statistika by Birom

Více

Semestrální práce. 2. semestr

Semestrální práce. 2. semestr Licenční studium č. 89002 Semestrální práce 2. semestr Tvorba lineárních regresních modelů při analýze dat Příklad 1 Porovnání dvou regresních přímek u jednoduchého lineárního regresního modelu. Počet

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA) NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Úvod do analýzy rozptylu

Úvod do analýzy rozptylu Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme

Více

UNIVERZITA PARDUBICE

UNIVERZITA PARDUBICE UNIVERZITA PARDUBICE Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie na téma Tvorba nelineárních regresních modelů v analýze dat Vedoucí licenčního studia Prof. RNDr.

Více

IDENTIFIKACE BIMODALITY V DATECH

IDENTIFIKACE BIMODALITY V DATECH IDETIFIKACE BIMODALITY V DATECH Jiří Militky Technická universita v Liberci e- mail: jiri.miliky@vslib.cz Milan Meloun Universita Pardubice, Pardubice Motto: Je normální předpokládat normální data? Zvláštnosti

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě

Více

http: //meloun.upce.cz,

http: //meloun.upce.cz, Porovnání rozlišovací schopnosti regresní analýzy spekter a spolehlivosti Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Chemickotechnologická fakulta, Univerzita Pardubice, nám. s. Legií 565,

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ

Více

Testy statistických hypotéz

Testy statistických hypotéz Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce KALIBRACE

Více

UNIVERZITA PARDUBICE

UNIVERZITA PARDUBICE UNIVERZITA PARDUBICE Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie na téma Kalibrace a limity její přesnosti Vedoucí licenčního studia Prof. RNDr. Milan Meloun,

Více

12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)

12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi

Více

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního

Více

LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica

LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica LINEÁRNÍ REGRESE Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu Popisná

Více

12. cvičení z PST. 20. prosince 2017

12. cvičení z PST. 20. prosince 2017 1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace

Více

Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup

Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup Statistika Testování hypotéz statistická indukce Úvod do problému Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by Birom

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

Cvičící Kuba Kubina Kubinčák Body u závěrečného testu

Cvičící Kuba Kubina Kubinčák Body u závěrečného testu 1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.

Více

STATISTICA Téma 7. Testy na základě více než 2 výběrů

STATISTICA Téma 7. Testy na základě více než 2 výběrů STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm

Více

odpovídá jedna a jen jedna hodnota jiných

odpovídá jedna a jen jedna hodnota jiných 8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

LINEÁRNÍ MODELY. Zdeňka Veselá

LINEÁRNÍ MODELY. Zdeňka Veselá LINEÁRNÍ MODELY Zdeňka Veselá vesela.zdenka@vuzv.cz Genetika kvantitativních vlastností Jednotlivé geny nejsou zjistitelné ani měřitelné Efekty většího počtu genů poskytují variabilitu, kterou lze většinou

Více

Vzorová prezentace do předmětu Statistika

Vzorová prezentace do předmětu Statistika Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti SEMESTRÁLNÍ PRÁCE Kalibrace a limity její přesnosti 005/006 Ing. Petr Eliáš 1. LINEÁRNÍ KALIBRACE 1.1 Zadání Povrchově upravená suspenze TiO je protiproudně promývána v kaskádě Dorrových usazováků. Nejvíce

Více

VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová

VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),

Více

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846 1 5 ANALÝZA ROZPTYLU Vzorová úloha 5.1 Zkrácený postup jednofaktorové analýzy rozptylu Na úloze B5.02 Porovnání nové metody v sedmi laboratořích ukážeme postup 16 jednofaktorové analýzy rozptylu. Kirchhoefer

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK11 Základy ekonometrie Autokorelace Cvičení 5 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady 1. E(u) = náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný

Více

Základní statistické metody v rizikovém inženýrství

Základní statistické metody v rizikovém inženýrství Základní statistické metody v rizikovém inženýrství Petr Misák Ústav stavebního zkušebnictví Fakulta stavební, VUT v Brně misak.p@fce.vutbr.cz Základní pojmy Jev souhrn skutečností zobrazujících ucelenou

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Lineární regrese. Komentované řešení pomocí MS Excel

Lineární regrese. Komentované řešení pomocí MS Excel Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =

Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je = Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti

Více

UNIVERZITA PARDUBICE

UNIVERZITA PARDUBICE UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Vedoucí studia a odborný garant: Prof. RNDr. Milan Meloun, DrSc. Vyučující: Prof. RNDr. Milan Meloun, DrSc. Autor práce: ANDRII

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Tvorba lineárních regresních modelů při analýze dat

Tvorba lineárních regresních modelů při analýze dat Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Tvorba lineárních regresních modelů při analýze dat Autor: Přednášející: Prof. RNDr. Milan Meloun, DrS

Více

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

INDUKTIVNÍ STATISTIKA

INDUKTIVNÍ STATISTIKA 10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Regulační diagramy (RD)

Regulační diagramy (RD) Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

MÍRY ZÁVISLOSTI (KORELACE A REGRESE)

MÍRY ZÁVISLOSTI (KORELACE A REGRESE) zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium GALILEO a limity její přesnosti Seminární práce Monika Vejpustková leden 2016 OBSAH Úloha 1. Lineární kalibrace...

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko pro podporu jakosti 1 ANALÝZA ROZPTYLU a její využití při vyhodnocování experimentálních dat Eva Jarošová, VŠE Praha 2 Obsah Podstata metody, jednofaktorová ANOVA F-test Mnohonásobná

Více

Regresní analýza. Eva Jarošová

Regresní analýza. Eva Jarošová Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

Charakteristika datového souboru

Charakteristika datového souboru Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

ÚVOD D OPTIMÁLNÍ PLÁNY

ÚVOD D OPTIMÁLNÍ PLÁNY Ročník 2012 Číslo III ANOVA Základní metoda vyhodnocování experimentů M. Motyčka, O. Tůmová Katedra technologií a měření, Fakulta elektrotechnická, ZČU v Plzni, Univerzitní 26, Plzeň E-mail : mmotycka@ket.zcu.cz,

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

Základy navrhování průmyslových experimentů DOE

Základy navrhování průmyslových experimentů DOE Základy navrhování průmyslových experimentů DOE cílová hodnota V. Vícefaktoriální experimenty Gejza Dohnal střední hodnota cílová hodnota Vícefaktoriální návrhy experimentů počet faktorů: počet úrovní:

Více