6. Lineární regresní modely
|
|
- Otto Dostál
- před 8 lety
- Počet zobrazení:
Transkript
1 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu 6.6 Kritika metody v regresním tripletu 6.7 Lineární a nelineární kalibrace 1 7. Korelační modely
2
3 FORMULACE REGRESNÍHO MODELU j m j m i i ij im n n nj nm i n j m i n y x x x x x x x x x x x x x y x y x x y X ε β y závisle nezávisle proměnná regresní náhodná proměnná parametry chyba y = X +
4 TYPY REGRESNÍHO MODELU Regresní model předpokládá, že nezávislá proměnná (proměnné) je nenáhodná (tj. pevně určena, např. experimentátorem) a závislá proměnná je náhodná (měřená). Tento předpoklad nebývá v praxi splněn (často jsou obě nebo všechny veličiny naměřené, potom nazýváme tento model korelačním). Rozeznáváme: regresní modely lineární mají lineární postavení parametrů regresní modely nelineární mají nelineární postavení parametrů
5 PODSTATA REGRESNÍ ANALÝZY Podstatou řešení regrese je: Stanovit nejlepší regresní model (čili určit matematickou rovnici, která bude popisovat závislost y na x), Stanovit parametry modelu (tj. stanovit nejlepší odhady parametrů ), Stanovit statistickou významnost modelu (určit, zda nalezený model přispěje ke zpřesnění odhadu závisle proměnné oproti použití pouhého průměru), Výsledky dané modelem interpretovat z hlediska zadání.
6 URČENÍ VHODNÉHO MODELU 1) Najít řadu modelů, které svými vlastnostmi vyhovují řešenému problému (např. rozličné formy růstové funkce), 2) Potom najít takový model, který nejlépe vyhovuje naměřeným datům. Je nutné dbát, aby byla modelována skutečná příčinná závislost!
7 KRITÉRIA PRO HLEDÁNÍ A ROZLIŠENÍ NEJLEPŠÍHO REGRESNÍHO MODELU Střední kvadratická chyba predikce (MEP) MEP 1 n n i1 1 e 2 i H ii 2 e i 2 čtverec reziduí modelu H ii i-tý diagonální prvek projekční matice H Akaikovo informační kritérium (AIC) AIC RSC n ln 2m RSC reziduální součet čtverců n m počet parametrů Pravidlo: Čím je AIC (nebo MEP) menší, tím je model vhodnější.
8 Y Y Postačí R a D [%] k nalezení nejlepšího modelu? Výběr A Výběr B y = 0,5x + 3,0 R = 0, y = 0,5x + 3,0 R = 0, X X
9 Y Y Výběr C Výběr D y = 0,5x + 3,0 R = 0, y = 0,5x + 3,0 R = 0, X X
10 Grafy vyjadřují závislost mezi vysvětlovanou proměnnou (vektorem y) a jednou vysvětlující proměnnou x při statisticky j neměnném vlivu ostatních vysvětlujících proměnných, které tvoří matici X. Jde o grafickou obdobu parciálního korelačního (j) koeficientu u korelačních modelů.
11
12 Grafický výklad parciálního regresního grafu Příklad: Zajímá nás, zda všechny proměnné x 1-3 jsou v modelu oprávněně. Postup je vysvětlen pro proměnnou x 1. X X (1) y x 1 x 2 x 3 y x 1 x 2 x 3 x 1 =f(x (1) ) regrese v 1 rezidua u 1 Proměnná x 1 do modelu patří u 1 y=f(x (1) ) regrese Proměnná x 1 do modelu nepatří u 1 rezidua v 1 v 1
13
14
15 Ukázky parciálních regresních grafů u vícenásobného regresního modelu pro m = 3
16 Pokud body parciálního regresního grafu leží na přímce s nulovým úsekem, existuje lineární závislost mezi y a x j. Směrnice přímky proložená body parciálního regresního grafu číselně odpovídá regresnímu koeficientu b j původního regresního modelu. Korelační koeficient mezi u j a v j odpovídá parciálnímu korelačnímu koeficientu. Rezidua regresní přímky mezi u j a v j odpovídají reziduím původního modelu.
17 17 1. vzorová úloha na výstavbu lineárního regresního modelu pomoci parciálního regresního grafu M619
18 18 Parciální regresní grafy tří nezávisle proměnných
19 19 ADSTAT 1.25 QC-EXPERT 3.1 NCSS2007
20 ADSTAT 1.25: statistická kritéria věrohodnosti regr. modelu 20 QC-EXPERT 3.1
21 Parciální regresní grafy pro tři nezávisle proměnné mají vesměs nenulovou směrnici. 21
22 Závěr: Nejlepší lineární regresní model musí vždy obsahovat kritéria věrohodnosti 22
23 23 2. vzorová úloha na výstavbu lineárního regresního modelu pomoci parciálního regresního grafu P651
24 Příklad P6.51
25 Parciální regresní grafy pro tři proměnné
26 Parciální regresní graf na proměnnou x1 Příklad P6.51
27 Parciální regresní graf na proměnnou x2 Příklad P6.51
28 Parciální regresní graf na proměnnou x3 Příklad P6.51
29 29 Odhady parametrů: Proměnná Odhad Směr.odch. Závěr Pravděpodobnost Spodní mez Horní mez Abs Významný P651x Významný P651x Významný P651x Nevýznamný Statistické charakteristiky regrese Vícenásobný korelační koeficient R : Koeficient determinace R^2 : Predikovaný korelační koeficient Rp : Střední kvdratická chyba predikce MEP : Akaikeho informační kritérium :
30
31
32
33
34 34 1. vzorová úloha na výstavbu lineárního regresního modelu pomoci parciálního reziduálního grafu M619
35 Parciální reziduální graf pro x1 proměnnou má nenulovou směrnici.
36 Parciální reziduální graf pro x2 proměnnou má nenulovou směrnici. Parciální reziduální graf pro x3 proměnnou má nenulovou směrnici.
37 Závěr: Nalezený nejlepší lineární regresní model musí obsahovat kritéria věrohodnosti 37
38 38 2. vzorová úloha na výstavbu lineárního regresního modelu pomoci parciálního reziduálního grafu P651
39 Parciální reziduální graf pro x1 proměnnou má nenulovou směrnici.
40 Parciální reziduální graf pro x2 proměnnou má nenulovou směrnici.
41 Parciální reziduální graf pro x3 proměnnou má téměř nulovou směrnici.
42 Závěr: Nalezený nejlepší lineární regresní model musí obsahovat kritéria věrohodnosti Odhady parametrů: Proměnná Odhad Směr.odch. Závěr Pravděpodobnost Spodní mez Horní mez Abs Významný P651x Významný P651x Významný P651x Nevýznamný Statistické charakteristiky regrese Vícenásobný korelační koeficient R : Koeficient determinace R^2 : Predikovaný korelační koeficient Rp : Střední kvdratická chyba predikce MEP : Akaikeho informační kritérium :
43 43 POSTUP VÝSTAVBY REGRESNÍHO MODELU
44 1. Kvalita nalezených odhadů parametrů a) Podle intervalů spolehlivosti (čím menší interval spolehlivosti, tím lépe) b C m s 2 F j j mm 1 ; m; nm b) Podle rozptylů parametrů, kde pro kvalitní odhad musí platit 2 D( b ) b j j
45 2. Kvalita dosažené těsnosti proložení a) Podle reziduálního rozptylu s(y). b) Podle regresního rabatu D (= koeficient determinace v %: čím více se blíží 100 %, tím lepší je proložení). 3. Vhodnost navrženého modelu Akaikovo informační kritérium AIC (čím je menší nebo zápornější, tím vhodnější je navržený model). Střední kvadratická chyba predikce MEP (čím je MEP menší, tím je predikční schopnost navrženého modelu lepší).
46 4. Predikční schopnost modelu Střední kvadratická chyba predikce MEP (čím je MEP menší, tím je predikční schopnost navrženého modelu lepší). 5. Kvalita experimentálních dat a) Na základě analýzy rozličných druhů reziduí. b) Na základě Indikace vlivných bodů (Jackknife rezidua, standardizovaná rezidua, normovaná rezidua, predikovaná rezidua, rekurzivní rezidua, Cookova vzdálenost, diagonální prvky projekční matice a věrohodnostní vzdálenosti).
47
48
49
50
51 6. Testy regresního tripletu (Data + Model + Metoda): o 6.1 Fisher-Snedecorův test celkové regrese, o 6.2 Scottovo kritérium multikolinearity, o 6.3 Cook-Weisbergův test heteroskedasticity, o 6.4 Jarque-Berrův test normality reziduí, o 6.5 Waldův test autokorelace, o 6.6 Znaménkový test reziduí. 51
52
53 Úlohy na výstavbu lineárního regresního modelu Kritika modelu Software QC-EXPERT 3.1, 53 ADSTAT 1.25
54 Úloha M6.06 Vliv čtyř faktorů na koncentraci amoniakálního dusíku Zadání: Je vyšetřován vliv teploty x 1, ph x 2, koncentrace celkového dusíku x 3 a koncentrace rozpuštěného kyslíku x 4 na koncentraci amoniakálního dusíku y v odtoku z dosazovací nádrže. Úkoly: (1) Postavte vícerozměrný lineární regresní model a vyšetřete regresní triplet. (2) Pomocí parciálních regresních grafů a parciálních reziduálních grafů vyšetřete statistickou významnost jednotlivých faktorů. (3) Jsou v datech vlivné body? Je nutné odstranit vybočující hodnoty? (4) K čemu slouží znaménkový test navrženého regresního modelu? (5) Jak řešíme úlohu v případě porušení předpokladů MNČ, a to především při nalezené heteroskedasticitě v datech, autokorelaci a nenormalitě chyb? Data: Teplota x 1, ph x 2, koncentrace celkového dusíku x 3, koncentrace rozpuštěného kyslíku x 4, koncentrace amoniakálního dusíku y : x 1 x 2 x 3 x 4 y
55 Úloha M6.13 Vliv šesti parametrů na výtěžek destilace cyklohexanolu Zadání: Při studiu destilační kolony byly proměřovány jednotlivé fyzikálněchemické veličiny, ovlivňující výtěžek destilace. Pomocí lineárního regresního modelu diskutujte vliv dále v datech uvedených šesti sledovaných veličin x 1 až x 6 na koncentraci cyklohexanolu y. Úkoly: (1) Testujte statistickou významnost jednotlivých regresních parametrů. (2) Jsou v datech vlivné body? (3) Vysvětlete všech sedm předpokladů MNČ a řešení regresním tripletem. (4) Která kritéria jsou nejvhodnější při hledání lineárního regresního modelu? (5) Které z následujících kritérií je nejvýhodnější: střední kvadratická chyba predikce MEP, Akaikovo informační kritérium AIC a predikovaný koeficient determinace R 2 P. Data: Koncetrace cyklohexanolu v surovině x 1 [ppm], teplota na hlavě kolony x 2 [ C], tlak na hlavě kolony x 3 [atm], teplota na patě kolony x 4 [ C], reflux x 5 [kg/h], odtah x 6 [kg/h], koncetrace výsledného cyklohexanolu v produktu y [ppm]: x 1 x 2 x 3 x 4 x 5 x 6 y
56 Úloha M6.29 Vliv pěti parametrů experimentálních podmínek na výtěžek syntézy Zadání: Syntéza 1-fenyl-3-methylpyrazolonu (FMP) se provádí dvoustupňově: v prvním stupni reaguje diketen s amoniakem a ve druhém stupni vzniklý acetoacetamid s hydrochloridem fenylhydrazinu. V průběhu řady syntéz byly měněny tyto parametry: molární poměr amoniaku a diketenu x 1, molární poměr acetoacetamidu AAA a fenyl-hydrazinu FH x 2, reakční teplota x 3, reakční doba x 4 a čistota diketenu v % x 5. Výsledkem experimentů byl výtěžek FMP y, vyjádřený procentem vůči teoretickému výtěžku fenylhydrazinu. Úkoly: (1) Určete lineární regresní model a testujte statistickou významnost regresních parametrů. (2) Jsou v datech odlehlé body a je třeba odstranit nějaké? (3) Uveďte všechny tabulkové hodnoty numerických diagnostik indikace vlivných bodů, které se obvykle vyskytují na počítačovém výstupu. (4) Které diagnostiky užijete k testu významnosti jenotlivých parametrů? Data: Molární poměr amoniaku a diketenu x 1, molární poměr acetoacetamidu AAA a fenylhydrazinu FH x 2, reakční teplota [ C] x 3, reakční doba [min] x 4 a čistota diketenu [%] x 5, výtěžek [%] y : x 1 x 2 x 3 x 4 x 5 y
57 Úloha M6.55 Vliv škodlivin ovzduší na koncentraci ozonu v ionosféře Zadání: Na stanovišti byly automatickými analyzátory po dobu 24 hodin proměřovány škodliviny a faktory ovzduší. Úkoly: (1)Navrhněte vhodný regresní model pro závislost koncentrace ozonu v ionosféře na jednotlivých sledovaných proměnných. (2) Jsou v datech vlivné body? (3) Který z parametrů je statisticky významný? (4) Vyšetřením regresního tripletu proveďte kritiku dat a pomocí parciálních regresních a parciálních reziduálních grafů a Sudentova t-testu vyšetřete statistickou významnost jednotlivých parametrů modelu. Data: x 1 značí obsah SO 2 [μg/m 3 ], x 2 obsah CO [μg/m 3 ], x 3 obsah NO 2 [μg/m 3 ], x 4 obsah benzenu [μg/m 3 ], x 5 množství prachu PM10 [μg/m 3 ], x 6 směr větru [stupeň], x 7 rychlost větru [m/s], x 8 teplota [ 0 C], x 9 relativní vlhkost [ %], y značí koncentraci ozonu O 3 [μg/m 3 ]. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 y
58 58
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
http: //meloun.upce.cz,
Porovnání rozlišovací schopnosti regresní analýzy spekter a spolehlivosti Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Chemickotechnologická fakulta, Univerzita Pardubice, nám. s. Legií 565,
Inovace bakalářského studijního oboru Aplikovaná chemie
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Regrese Závislostproměnných funkční y= f(x) regresní y= f(x)
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Kalibrace a limity její přesnosti
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Kalibrace a limity její přesnosti Autor: Přednášející: Prof. RNDr. Milan Meloun, DrS 1. VÝPOČET OBSAHU
Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )
Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte
Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )
Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium GALILEO a limity její přesnosti Seminární práce Monika Vejpustková leden 2016 OBSAH Úloha 1. Lineární kalibrace...
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE. Tvorba lineárních regresních modelů. 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D.
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE Tvorba lineárních regresních modelů 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D. Úloha 1 Porovnání regresních přímek u jednoduchého lineárního regresního modelu Porovnání
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Kalibrace a limity její přesnosti Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015
Tvorba lineárních regresních modelů
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Tvorba lineárních regresních modelů při analýze dat Zdravotní ústav
TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT Semestrální práce Licenční studium Galileo Interaktivní statistická analýza
KALIBRACE A LIMITY JEJÍ PŘESNOSTI. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie KALIBRACE A LIMITY JEJÍ PŘESNOSTI Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 2016
Kalibrace a limity její přesnosti
SEMESTRÁLNÍ PRÁCE Kalibrace a limity její přesnosti 005/006 Ing. Petr Eliáš 1. LINEÁRNÍ KALIBRACE 1.1 Zadání Povrchově upravená suspenze TiO je protiproudně promývána v kaskádě Dorrových usazováků. Nejvíce
Tvorba nelineárních regresních
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Tvorba nelineárních regresních modelů v analýze dat Zdravotní ústav
Úloha 1: Lineární kalibrace
Úloha 1: Lineární kalibrace U pacientů s podezřením na rakovinu prostaty byl metodou GC/MS měřen obsah sarkosinu v moči. Pro kvantitativní stanovení bylo nutné změřit řadu kalibračních roztoků o různé
Tvorba lineárních regresních modelů při analýze dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium GALILEO Tvorba lineárních regresních modelů při analýze dat Seminární práce Monika Vejpustková leden 2016
Semestrální práce. 2. semestr
Licenční studium č. 89002 Semestrální práce 2. semestr Tvorba lineárních regresních modelů při analýze dat Příklad 1 Porovnání dvou regresních přímek u jednoduchého lineárního regresního modelu. Počet
Příloha č. 1 Grafy a protokoly výstupy z adstatu
1 Příklad 3. Stanovení Si metodou OES Byly porovnávány naměřené hodnoty Si na automatickém analyzátoru OES s atestovanými hodnotami. Na základě testování statistické významnosti regresních parametrů (úseku
Tvorba lineárních regresních modelů při analýze dat
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Tvorba lineárních regresních modelů při analýze dat Autor: Přednášející: Prof. RNDr. Milan Meloun, DrS
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce KALIBRACE
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y Xβ ε Předpoklady: Matice X X n,k je matice realizací. Předpoklad: n > k, h(x) k - tj. matice
KALIBRACE A LIMITY JEJÍ PŘESNOSTI 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce KALIBRACE
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Tvorba nelineárních regresních modelů v analýze dat
Univerzita Pardubice Fakulta chemicko-technologická, Katedra analytické chemie Licenční studium GALILEO Interaktivní statistická analýza dat Semestrální práce z předmětu Tvorba nelineárních regresních
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Semestrální práce Licenční studium Galileo Předmět Nelineární regrese Jiří Danihlík Olomouc, 2016 Obsah... 1 Hledání vhodného
Semestrální práce. 2. semestr
Licenční studium č. 89002 Semestrální práce 2. semestr PŘEDMĚT 2.2 KALIBRACE A LIMITY JEJÍ PŘESNOSTI Příklad 1 Lineární kalibrace Příklad 2 Nelineární kalibrace Příklad 3 Rozlišení mezi lineární a nelineární
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie na téma Tvorba nelineárních regresních modelů v analýze dat Vedoucí licenčního studia Prof. RNDr.
Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese
Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese Závěrečná práce 12. licenčního studia Pythagoras Fakulta chemicko-technologická, katedra
Semestrální práce. 3.3 Tvorba nelineárních regresních modelů v analýze dat
Semestrální práce 1 3.3 Tvorba nelineárních regresních modelů v analýze dat Ing. Ján Lengyel, CSc. Centrální analytická laboratoř Ústav jaderného výzkumu Řež, a. s. Husinec Řež 130 250 68 Řež V Řeži, únor
Tvorba nelineárních regresních modelů v analýze dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Tvorba nelineárních regresních modelů v analýze dat Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza
Semestrální práce. 2. semestr
Licenční studium č. 89002 Semestrální práce 2. semestr PŘEDMĚT 2.1 TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT Příklad 4 Vícerozměrný lineární regresní model 2/24 V Ústí nad Orlicí dne: 20.8.2000
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti
POLYNOMICKÁ REGRESE. Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými.
POLYNOMICKÁ REGRESE Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými. y = b 0 + b 1 x + b 2 x 2 + + b n x n kde b i jsou neznámé parametry,
Fakulta chemicko technologická Katedra analytické chemie
Fakulta chemicko technologická Katedra analytické chemie Licenční studium statistické zpracování dat Tvorba lineárních a kalibračních modelů při analýze dat Pavel Valášek Školní rok 2001 02 OBSAH 1 POROVNÁNÍ
Licenční studium Galileo: Statistické zpracování dat. Tvorba lineárních regresních modelů při analýze dat. Semestrální práce
Licenční studium Galileo: Statistické zpracování dat Tvorba lineárních regresních modelů při analýze dat Semestrální práce Lenka Husáková Pardubice 2016 Obsah 1 Porovnání dvou regresních přímek u jednoduchého
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ SEMESTRÁLNÍ PRÁCE Kalibrace a limity její přesnosti Precheza a.s. Přerov 2005 Ing. Miroslav Štrajt 1. Zadání Úloha 1. Lineární kalibrace: u přímkové
LINEÁRNÍ REGRESE. Lineární regresní model
LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)
Univerzita Pardubice
Univerzita Pardubice 8. licenční studium chemometrie Statistické zpracování dat při managementu jakosti Semestrální práce Lineární regrese Ing. Jan Balcárek, Ph.D. vedoucí Centrálních laboratoří Precheza
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE. Tvorba nelineárních regresních modelů v analýze dat. 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D.
Univerzita Pardubice SEMESTRÁLNÍ PRÁCE Tvorba nelineárních regresních modelů v analýze dat 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D. Úloha Nalezení vhodného modelu pro popis reakce TaqMan real-time PCR
12. licenční studium Statistické zpracování dat při managementu jakosti. Lenka Hromádková
12. licenční studium Statistické zpracování dat při managementu jakosti Lenka Hromádková Desinfekční přípravky slouží k zneškodňování mikroorganismů (MO) vyvolávající onemocnění člověka nebo zvířat Druhy
Tabulka č. 1 95%ní intervaly Úsek Směrnice model L1 L2 L1 L2 Leco1-0, , , ,15618 OES -0, , , ,21271
1 Příklad 1. Porovnání dvou regresních přímek Při výrobě automatových ocelí dané jakosti byla porovnávána závislost obsahu uhlíku v posledním zkušebním vzorku (odebraném z mezipánve na ZPO a analyzovaném
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Kalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie
Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.3 Tvorba nelineárních regresních modelů v analýze dat Semestrální
VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR
KORELACE A REGRESE 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/..00/8.001)
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
2.2 Kalibrace a limity její p esnosti
UNIVERZITA PARDUBICE Òkolní rok 000/001 Fakulta chemicko-technologická, Katedra analytické chemie LICEN NÍ STUDIUM STATISTICKÉ ZPRACOVÁNÍ DAT PÌI MANAGEMENTU JAKOSTI P EDM T:. Kalibrace a limity její p
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 3.3 v analýze dat Autor práce: Přednášející: Prof. RNDr. Milan Meloun, DrSc Pro
Tvorba nelineárních regresních modelů v analýze dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium GALILEO Tvorba nelineárních regresních modelů v analýze dat Seminární práce Monika Vejpustková červen 2016
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
Semestrální práce str. 1. Semestrální práce. 2.1 Tvorba lineárních regresních modelů při analýze dat. 2.3 Kalibrace a limity její přesnosti
Semestrální práce str. Semestrální práce 2. Tvorba lineárních regresních modelů při analýze dat 2.3 Kalibrace a limity její přesnosti Ing. Ján Lengyel, CSc. Centrální analytická laboratoř Ústav jaderného
III. Semestrální práce
Licenční studium GALILEO STATISTICKÁ ANALÝZA DAT III. Semestrální práce 2.1 TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT Ing. Marek Bilko listopad, 2015 OBSAH 2.1 TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie na téma Kalibrace a limity její přesnosti Vedoucí licenčního studia Prof. RNDr. Milan Meloun,
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Vedoucí studia a odborný garant: Prof. RNDr. Milan Meloun, DrSc. Vyučující: Prof. RNDr. Milan Meloun, DrSc. Autor práce: ANDRII
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium chemometrie na téma Statistické zpracování dat Semestrální práce ze 6. soustředění Předmět: 3.3 Tvorba nelineárních
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE. Semestrální práce z CHEMOMETRE. TOMÁŠ SYROVÝ 4.ročník
FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE Semestrální práce z CHEMOMETRE TOMÁŠ SYROVÝ 4.ročník OBSAH: 1.Příklad C112 CHYBY A VARIABILITA INSTRUMENTÁLNÍCH MĚŘENÍ... 3 2. Příklad H207 PRŮZKUMOVÁ
Korelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení dvanácté aneb Regrese a korelace Statistika (KMI/PSTAT) 1 / 18 V souboru 25 jedinců jsme měřili jejich výšku a hmotnost. Výsledky jsou v tabulce a grafu. Statistika (KMI/PSTAT)
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 2.1 Tvorba lineárních regresních modelů při analýze dat Autor práce: Přednášející:
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Licenční studium Galileo: Statistické zpracování dat. Kalibrace a limity její přesnosti. Semestrální práce
Licenční studium Galileo: Statistické zpracování dat Kalibrace a limity její přesnosti Semestrální práce Lenka Husáková Pardubice 2016 Obsah 1 Lineární kalibrace... 3 1.1 Zadání... 3 1.2 Data... 3 1.3
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
4EK211 Základy ekonometrie
4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
odpovídá jedna a jen jedna hodnota jiných
8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOS A SAISIKA Regresní analýza - motivace Základní úlohou regresní analýzy je nalezení vhodného modelu studované závislosti. Je nutné věnovat velkou pozornost tomu aby byla modelována REÁLNÁ
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ
MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS
Regresní analýza. Eva Jarošová
Regresní analýza Eva Jarošová 1 Obsah 1. Regresní přímka 2. Možnosti zlepšení modelu 3. Testy v regresním modelu 4. Regresní diagnostika 5. Speciální využití Lineární model 2 1. Regresní přímka 3 nosnost
Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie
Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat Kalibrace a limity její přesnosti Semestrální práce 2009 RNDr. Markéta
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
ANOVA. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 2015 Ing. Petra Hlaváčková, Ph.D.
Zobecněná analýza rozptylu, více faktorů a proměnných
Zobecněná analýza rozptylu, více faktorů a proměnných Menu: QCExpert Anova Více faktorů Zobecněná analýza rozptylu (ANalysis Of VAriance, ANOVA) umožňuje posoudit do jaké míry ovlivňují kvalitativní proměnné
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat ANOVA Zdravotní ústav se sídlem v Ostravě Odbor hygienických laboratoří
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce ANALÝZA
AVDAT Geometrie metody nejmenších čtverců
AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε
10. Předpovídání - aplikace regresní úlohy
10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu
Statistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
Univerzita Pardubice Fakulta chemicko-technologická. Licenční studium Statistické zpracování dat
Univerzita Pardubice Fakulta chemicko-technologická Licenční studium Statistické zpracování dat 3.3 Tvorba nelineárních regresních modelů v analýze dat RNDr. Lada Kovaříková České technologické centrum
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
Úlohy. Kompendium 2012, Úloha B8.01a, str. 785, Model y = P1 * exp( P2/(B801x + P3)
Úlohy Kompendium 2012, Úloha B8.01a, str. 785, Model y = P1 * exp( P2/(B801x + P3) Úloha B8.01 Závislost hmotnosti očních čoček na stáří králíků Dudzinksi a Mykytowycz (1961) ukázali, že hmotnost vysušených
S E M E S T R Á L N Í
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět ANOVA analýza rozptylu
Ilustrační příklad odhadu LRM v SW Gretl
Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná
2.1 Tvorba lineárních regresních
UNIVERZITA PARDUBICE Òkolní rok 2000/2001 Fakulta chemicko-technologická, Katedra analytické chemie LICEN NÍ STUDIUM STATISTICKÉ ZPRACOVÁNÍ DAT PÌI MANAGEMENTU JAKOSTI P EDM T: 2.1 Tvorba lineárních regresních
Menu: QCExpert Nelineární regrese Modul nelineární regrese slouží pro tvorbu a analýzu explicitních nelineárních regresních modelů v obecném tvaru
Nelineární regrese Menu: QCExpert Nelineární regrese Modul nelineární regrese slouží pro tvorbu a analýzu explicitních nelineárních regresních modelů v obecném tvaru y = F(x,p) (1-1) kde y je nezávisle
ÚLOHA 1. EXPONENCIÁLNÍ MODEL...2 ÚLOHA 2. MOCNINNÝ MODEL...7
OBSAH ÚLOHA 1. EXPONENCIÁLNÍ MODEL...2 ÚLOHA 2. MOCNINNÝ MODEL...7 Úloha 1. Exponenciální model Zadání: Použijte exponenciální model pro stanovení počáteční hodnoty aktivity radionuklidu Ag 110m. Aktivita