Metody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování

Rozměr: px
Začít zobrazení ze stránky:

Download "Metody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování"

Transkript

1 Metody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování

2 Základní (strukturální) vlastnosti sítí Stupně vrcholů a jejich distribuce rozsáhlé reálné sítě mají tu vlastnost, že mnoho uzlů má malý počet sousedů (malý stupeň), ale některé mají velmi vysoký počet sousedů (vysoký stupeň) distribuce stupňů odpovídá tzv. mocninnému rozdělení - power-law degree distribution. Existence shluků - je-li uzel a spojen s uzlem b, a je-li zároveň uzel b spojen s uzlem c, je pravděpodobné, že uzel c bude spojen také s uzlem a. Mnoho rozsáhlých reálných sítí má vysoký clustering coefficient (shlukovací koeficient). Vzdálenosti - průměr (diameter) - mnoho rozsáhlých reálných sítí má malý průměr - small-world phenomenon Souvislost sítě jsou zpravidla nesouvislé a v mnoha sítích existuje jedna velká komponenta (giant component) s řádově O(n) vrcholy.

3 Vzdálenost v grafu Např. pravidelná mřížka (v reálném prostoru) - vzdálenost daná metrikou Eukleidovská metrika Metrika Manhattan O sítích obecně ale zpravidla neuvažujeme v kontextu souřadnic reálného prostoru. Jak porovnat mřížku, náhodný graf a jiné typy grafů se stejným počtem vrcholů? Pomocí grafové vzdálenosti Velikost grafu (měřená vzdáleností, průměrem, ) roste: dim-rozměrná mřížka n 1/dim náhodný graf log(n)

4 Průměr, průměrná vzdálenost Nejkratší cesta (shortets path, geodesic path) Mezi všemi dvojicemi vrcholů Z výchozího Rozlišit ohodnocený, neohodnocený Diameter = průměr (nejdelší nejkratší cesta), D Mean shortest path - průměrná nejkratší cesta, L Orientovaný, ohodnocený Floydův, Dijkstrův, Bellman-Fordův Neorientovaný, neohodnocený BFS, DFS, ale rovněž Floydův, Dijkstrův, Bellman- Fordův

5 Souvislost Obr. A) n=6, m=6, L=1.87 (30 uspoř. dvojic vrcholů), D=3 Pravidelná mřížka je vždy souvislá, což neplatí např. pro náhodné grafy - u těch potřebujeme nejméně n-1 hran Erdős Rényi On Random Graphs I, 1959 ukázali, že náhodný graf je pravděpodobně souvislý má-li nejméně n*log(n)/2 hran pro velká n. Souvislost lze určit kterýmkoliv algoritmem na principu procházení grafem (Floyd,...)

6 Metody analýzy dat I (Data Analysis I) Modely

7 Literatura Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press. [ ] _2016_L3.pdf

8 Modely Vzhledem k průměru D, průměrné nejkratší cestě L, shlukovacímu koeficientu C a distribuci stupňů rozlišujeme 4 základní modely: Pravidelný graf (mřížka) - lattice Náhodný graf Random graph Model malého světa Small-world graph Bezškálový graf (Barabási-Albertové model) Scalefree graph

9 Pravidelné grafy (mřížky) Pravidelný (regulární graf) všechny vrcholy stejného stupně (Eukleidovské) mřížky (lattices) př. pevné látky a jejich krystalová mřížka (vrcholy atomy, hrany nejdůležitější vazby) Vlastnosti pravidelných grafů Průměr D velký Shlukovací koeficient C vysoký (nebo 0 u čtvercové mřížky) distribuce stupňů konstantní

10 Pravidelné grafy Na všech obr. je pravidelný graf s n=20, m=40, m=2n (řídký graf) Obr. A) pravidelná mřížka ve 2D, Pro obr. C) L=2.32, průměr D=4, C=0

11 Náhodné grafy Od 1959 do 90. let 20. století sítě modelovány jako náhodné grafy (random graphs) Náhodný graf máme množinu n vrcholů, hrany mezi nimi přidáváme náhodně s pravděpodobností p Každá hrana je stejně pravděpodobná Rozdílné modely náhodných grafů mají různé rozdělení pravděpodobnosti (nějakého jevu) Zkoumané vlastnosti, např.: Vyberu-li zcela náhodně jeden uzel grafu, jaká je pravděpodobnost P(d), že bude mít stupeň právě d? Jaká je průměrná vzdálenost? Jaká je souvislost grafu?

12 Náhodné grafy n=20, m=40, náhodně spojíme dvojici vrcholů s p=2m/(n(n-1))= Relativní pozice vrcholů není důležitá (na rozdíl od např. krystalové mřížky) Obr. A) L=2.17, průměr D=5, C=0.134, náhodný graf Obr. B) L=2.22, D=4, C=0.15, pravidelný graf

13 Erdős Rényi model náhodného grafu Paul Erdös a Alfréd Rényi

14 Opak pravidelné mřížky Erdős Rényi model náhodného grafu Jejich model se označuje jako G n,p model, je určen n počet vrcholů 0 p 1 Pro každou dvojici vrcholů (i,j) se generuje hrana (i,j) nezávisle s pravděpodobností p, tj. každá hrana v grafu s n vrcholy existuje s pravděpodobností p a neexistuje s pravděpodobností 1-p.

15 p=0.01

16 Perkolace Vývoj grafu (graph evolution) - která vlastnost grafu je zachována roste-li p? Perkolace, fázový přechod, perkolační práh, treshold phenomenon: pro mnoho grafů ex. vlastnost současně - tedy existuje pravděpodobnost p c taková, že pro p<p c téměř všechny grafy vlastnost nemají a pro p>p c vlastnost mají téměř všechny grafy. Prahová hodnota p c pochází z tzv. teorie perkolace. Pro mřížky a náhodné grafy se p c analyzuje snadno

17 Perkolace v mřížce

18 Vlastnosti G n,p Vlastnosti G n,p : průměr D a průměrná vzdálenost L malé koeficient shlukování C nízký distribuce stupňů Poissonovo rozdělení Jak se na to přišlo? Experimentálně i analyticky.

19 Vlastnosti G n,p Vlastnosti G n,p se obvykle vyjadřují ve vztahu k hodnotě <d>, kde <d> je průměrný stupeň Průměrný počet hran v grafu G n,p je m=p*n*(n-1)/2, každá hrana je incidentní s dvěma vrcholy, proto průměrný stupeň vrcholu je < d >= n(n -1)p n = (n 1)p což je asi <d>=np pro velká n.

20 Distribuce stupňů v G n,p Pravděpodobnost p(d), že daný vrchol grafu o n vrcholech má stupeň d je dána binomickým rozdělením n -1 d n 1- d p(d) = B(n;d; p) = p ( 1 p) d Předpokládejme <d>=np = c, kde c je naše požadovaná hodnota průměrného stupně, n, B(n,d,p) pak lze aproximovat Poissonovým rozdělením d c c p(d) = P(d;c) = e d! Obě distribuce koncentrovány kolem prům. stupně <d>, konec klesá exponenciálně, jako 1/d!, pro d > <d>

21 Poissonovo rozdělení Binomické a Poissonovo rozdělení

22 Poissonovo rozdělení Jen málo vrcholů v náhodném grafu má velmi malý resp. velmi velký stupeň, většina vrcholů má průměrný stupeň Scale-free graf (A) a náhodný graf (B) mocninné (C) a Poissonovo rozdělení (D)

23 Distribuce stupňů v G n,p Pozn. Poissonovo rozdělení obecně lze pro všechny hodnoty x=0,1,2,... náhodné veličiny X vyjádřit pomocí parametru λ>0 jako Nejnižší resp. nejvyšší stupeň vrcholů náhodného grafu jsou určeny pro různá p Jestliže p n -1-1/d, pak téměř žádný náhodný graf nemá vrcholy se stupněm vyšším než d. Pro dostatečně velké p, tj. je-li pn/log(n) mají náhodné grafy nejvyšší stupeň řádově jako je stupeň průměrný, tedy mají poměrně homogenní stupně.

24 Vzdálenosti v G n,p Náhodné grafy mají tendenci mít malou průměrnou vzdálenost, zpravidla okolo (log n/log<d>). <d> <1 typický náhodný graf je složen z izolovaných stromů, průměrná vzdálenost pak odpovídá průměrné vzdálenosti stromu <d> >1 v grafu ex. obrovská komponenta. Je li <d> >3.5 je průměrná vzdálenost grafu rovna průměrné vzdálenosti této obrovské komponenty a je úměrná L=log n/log<d> <d> >log n, téměř každý náhodný graf je souvislý a průměrné vzdálenosti L těchto grafů nabývají několika hodnot okolo L=log n/log<d>

25 Souvislost a G n,p Pro p=0 máme diskrétní graf s n komponentami a velikost komponenty je řádově O(1/n). Pro p=1 máme úplný graf s 1 komponentou a největší komponenta (jediná) má n vrcholů. A mezi tím?

26 Souvislost a G n,p Jestliže je <d> <1 (počet hran m je malý), pak graf obsahuje mnoho malých komponent (souvislých), největší komponenta má počet vrcholů nejvýše O(log n). Téměř všechny komponenty jsou buď stromy nebo obsahují právě jeden cyklus. Je-li <d> >1, největší komponenta má velikost Θ(n) a druhá největší O(log n). Jestliže <d> >log n, graf je souvislý. Jestliže <d> =1, nastane změna, která vede ke vzniku obrovské komponenty O(n 2/3 ), ve které platí mocninný zákon.

27 Souvislost a G n,p S je velikost největší komponenty vyjádřená poměrem k celkové velikosti sítě

28 Shlukování v G n,p Mějme uzel, jeho sousedy, pak pravděpodobnost, že dva z těchto sousedů jsou spojeny hranou je rovna pravděpodobnosti, že dva náhodně vybrané vrcholy jsou spojeny hranou, tedy shlukovací koeficient C = p. Jinak: v náhodném grafu (na rozdíl od trojuh. mřížky) není důvod, aby soused souseda vrcholu i měl nějaký vztah k i. Náhodný graf s n vrcholy má pn(n-1)/2 možných hran, pokud máme M hran, C=2M/n(n-1)= =<d>/(n-1)=p, zde (<d>=c)

29 Shlukování v G n,p <d> <d>

30 G n,p p <d> n L D Počet vrcholů v největší komponent ě

31 G n,p efekt průměrného stupně <d> Pro <d>< 1: Malé, izolované shluky Malý průměr D Malá L pro <d> = 1: Objevuje se velká komponenta Průměr D dosahuje vrcholu L je velká pro <d> > 1: Téměř všechny vrcholy propojeny Průměr D se snižuje L klesá d

32 Příklad - Zachary's karate club

33 Závěr - G n,p Model náhodného grafu nevyhovuje reálným sítím zejména proto, že: Reálné grafy mají mocninné rozdělení distribuce stupňů (power-law), ne Poissonovo. Reálné sítě mají vysoký shlukovací koeficient, náhodné grafy mají obecně malý shlukovací koeficient, který se s rostoucím n blíží k 0 (při konstantní p). Reálné sítě mají komunitní strukturu (vysvětlíme později v MADII) Jiné modely sítí vyhovující reálným sítím lépe, začaly vznikat koncem 90. let m.s.

Metody analýzy dat I (Data Analysis I) Strukturální vlastnosti sítí 1. krok analýzy

Metody analýzy dat I (Data Analysis I) Strukturální vlastnosti sítí 1. krok analýzy Metody analýzy dat I (Data Analysis I) Strukturální vlastnosti sítí 1. krok analýzy Literatura Newman, M. (2010). Networks: an introduction. Oxford University Press. [235-270] Zaki, M. J., Meira Jr, W.

Více

Metody analýzy dat I. Míry a metriky - pokračování

Metody analýzy dat I. Míry a metriky - pokračování Metody analýzy dat I Míry a metriky - pokračování Literatura Newman, M. (2010). Networks: an introduction. Oxford University Press. [168-193] Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis:

Více

Metody analýzy dat I (Data Analysis I) Míry a metriky (Measures and Metrics) - - pokračování

Metody analýzy dat I (Data Analysis I) Míry a metriky (Measures and Metrics) - - pokračování Metody analýzy dat I (Data Analysis I) Míry a metriky (Measures and Metrics) - - pokračování Literatura Newman, M. (2010). Networks: an introduction. Oxford University Press. [168-193] Zaki, M. J., Meira

Více

Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)

Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Literatura Albert-László Barabási. Network Science http://barabasi.com/networksciencebook/ kapitoly 1 a 2 http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_

Více

PROSTOROVÉ ANALÝZY DAT

PROSTOROVÉ ANALÝZY DAT PROSTOROVÉ ANALÝZY DAT doc. Dr. Ing. Jiří Horák VŠB-TU Ostrava, HGF, Institut geoinformatiky, 2018 7.vydání část C linie, grafy a sítě 1 Obsah: 1 Linie... 4 1.1 Analýza interakčních dat... 4 1.1.1 Prostorové

Více

Algoritmy na ohodnoceném grafu

Algoritmy na ohodnoceném grafu Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus

Více

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová

Více

Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)

Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Literatura Newman, M. (2010). Networks: An Introduction. Oxford University Press. [15-77] Leskovec, J., Rajaraman, A., Ullman, J. D.

Více

07 Základní pojmy teorie grafů

07 Základní pojmy teorie grafů 07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná

Více

Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)

Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Literatura Newman, M. (2010). Networks: An Introduction. Oxford University Press. [15-77] Leskovec, J., Rajaraman, A., Ullman, J. D.

Více

Metody analýzy dat II

Metody analýzy dat II Metody analýzy dat II Detekce komunit MADII 2018/19 1 Zachary s club, Collaboration network in Santa Fe Institute, Lusseau s network of Bottlenose Dolphins 2 Web Pages, Overlaping communities of word associations

Více

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2. 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste

Více

Metody analýzy dat I (Data Analysis I) Modely - pokračování

Metody analýzy dat I (Data Analysis I) Modely - pokračování Metody analýzy dat I (Data Analysis I) Modely - pokračování Literatura Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press. [112-133]

Více

Metody analýzy dat I (Data Analysis I) Modely pokračování Model malého světa

Metody analýzy dat I (Data Analysis I) Modely pokračování Model malého světa Metody analýzy dat I (Data Analysis I) Modely pokračování Model malého světa Literatura Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University

Více

Paralelní grafové algoritmy

Paralelní grafové algoritmy Paralelní grafové algoritmy Značení Minimální kostra grafu Nejkratší cesta z jednoho uzlu Nejkratší cesta mezi všemi dvojicemi uzlů Použité značení Definition Bud G = (V, E) graf. Pro libovolný uzel u

Více

Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest

Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

4EK311 Operační výzkum. 5. Teorie grafů

4EK311 Operační výzkum. 5. Teorie grafů 4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,

Více

Vzdálenost uzlů v neorientovaném grafu

Vzdálenost uzlů v neorientovaném grafu Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující

Více

opakování reprezentace grafů, dijkstra, bellman-ford, johnson

opakování reprezentace grafů, dijkstra, bellman-ford, johnson opakování reprezentace grafů, dijkstra, bellman-ford, johnson Petr Ryšavý 19. září 2016 Katedra počítačů, FEL, ČVUT opakování reprezentace grafů Graf Definice (Graf) Graf G je uspořádaná dvojice G = (V,

Více

TGH06 - Hledání nejkratší cesty

TGH06 - Hledání nejkratší cesty TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

TGH06 - Hledání nejkratší cesty

TGH06 - Hledání nejkratší cesty TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší

Více

Graf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd.

Graf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Graf 2 0 3 1 4 5 Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Běžné reprezentace grafu Uzly = indexy Stupně uzlů

Více

PB050: Modelování a predikce v systémové biologii

PB050: Modelování a predikce v systémové biologii PB050: Modelování a predikce v systémové biologii David Šafránek 21.10.2009 Obsah Pojem modelu a simulace in silico opakování Obsah Pojem modelu a simulace in silico opakování Workflow systémové biologie

Více

Jan Březina. 7. března 2017

Jan Březina. 7. března 2017 TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 7. března 2017 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,

Více

Teorie grafů BR Solutions - Orličky Píta (Orličky 2010) Teorie grafů / 66

Teorie grafů BR Solutions - Orličky Píta (Orličky 2010) Teorie grafů / 66 Teorie grafů Petr Hanuš (Píta) BR Solutions - Orličky 2010 23.2. 27.2.2010 Píta (Orličky 2010) Teorie grafů 23.2. 27.2.2010 1 / 66 Pojem grafu Graf je abstraktní pojem matematiky a informatiky užitečný

Více

Operační výzkum. Síťová analýza. Metoda CPM.

Operační výzkum. Síťová analýza. Metoda CPM. Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Základy informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant

Základy informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant Základy informatiky 07 Teorie grafů Kačmařík/Szturcová/Děrgel/Rapant Obsah přednášky barvení mapy teorie grafů definice uzly a hrany typy grafů cesty, cykly, souvislost grafů Barvení mapy Kolik barev je

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Dynamické programování

Dynamické programování ALG 0 Dynamické programování zkratka: DP Zdroje, přehledy, ukázky viz https://cw.fel.cvut.cz/wiki/courses/a4balg/literatura_odkazy 0 Dynamické programování Charakteristika Neřeší jeden konkrétní typ úlohy,

Více

IV117: Úvod do systémové biologie

IV117: Úvod do systémové biologie IV117: Úvod do systémové biologie David Šafránek 1.10.2008 Obsah Pojem modelu a simulace in silico Statická analýza modelu Dynamická analýza modelu Obsah Pojem modelu a simulace in silico Statická analýza

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

opakování reprezentace grafů, dijkstra, bellman-ford, johnson

opakování reprezentace grafů, dijkstra, bellman-ford, johnson opakování reprezentace grafů, dijkstra, bellman-ford, johnson Petr Ryšavý 18. září 2017 Katedra počítačů, FEL, ČVUT opakování reprezentace grafů Graf Definice (Graf) Graf G je uspořádaná dvojice G = (V,

Více

Teorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014

Teorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014 Teorie grafů Radim Farana Podklady pro výuku pro akademický rok 013/014 Obsah Kostra grafu. Tahy,. Úloha čínského pošťáka. Zdroj: Vítečková, M., Přidal, P. & Koudela, T. Výukový modul k předmětu Systémová

Více

H {{u, v} : u,v U u v }

H {{u, v} : u,v U u v } Obyčejný graf Obyčejný graf je dvojice G= U, H, kde U je konečná množina uzlů (vrcholů) a H {{u, v} : u,v U u v } je (konečná) množina hran. O hraně h={u, v} říkáme, že je incidentní s uzly u a v nebo

Více

TEORIE GRAFŮ TEORIE GRAFŮ 1

TEORIE GRAFŮ TEORIE GRAFŮ 1 TEORIE GRAFŮ 1 TEORIE GRAFŮ Přednášející: RNDr. Jiří Taufer, CSc. Fakulta dopravní ČVUT v Praze, letní semestr 1998/99 Zpracoval: Radim Perkner, tamtéž, v květnu 1999 ZÁKLADNÍ POJMY Říkáme, že je dán prostý

Více

Metody síťové analýzy

Metody síťové analýzy Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický

Více

Úvod do teorie grafů

Úvod do teorie grafů Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí

Více

Metody analýzy dat II

Metody analýzy dat II Metody analýzy dat II Vzorkování (Sampling) MAD2 2018/19 1 Literatura http://tuvalu.santafe.edu/~aaronc/courses/53 52/csci5352 2017 L9.pdf https://cs.stanford.edu/~jure/pubs/samplingkdd06.pdf https://www.cs.purdue.edu/homes/neville/co

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento

Více

Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.

Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. 6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje

Více

TGH05 - aplikace DFS, průchod do šířky

TGH05 - aplikace DFS, průchod do šířky TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující

Více

MADI. Model bezškálového grafu (Scale-free graphs) - pokračování

MADI. Model bezškálového grafu (Scale-free graphs) - pokračování MADI Model bezškálového grafu (Scale-free graphs) - pokračování Předchozí modely Mřížka pravidelný stupeň, velký shlukovací koeficient C, velká průměrná vzdálenost L Náhodné grafy všechny hrany stejně

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Státnice odborné č. 20

Státnice odborné č. 20 Státnice odborné č. 20 Shlukování dat Shlukování dat. Metoda k-středů, hierarchické (aglomerativní) shlukování, Kohonenova mapa SOM Shlukování dat Shluková analýza je snaha o seskupení objektů do skupin

Více

TGH05 - aplikace DFS, průchod do šířky

TGH05 - aplikace DFS, průchod do šířky TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 28. března 2017 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující

Více

Drsná matematika III 10. demonstrovaná cvičení Kostry grafů

Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus

Více

STROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy

STROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy STROMY Základní pojmy Strom T je souvislý graf, který neobsahuje jako podgraf kružnici. Strom dále budeme značit T = (V, X). Pro graf, který je stromem platí q = n -, kde q = X a n = V. Pro T mezi každou

Více

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13. Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy

Více

Pravděpodobnost a statistika I KMA/K413

Pravděpodobnost a statistika I KMA/K413 Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,

Více

Moderní aplikace statistické fyziky II - TMF050

Moderní aplikace statistické fyziky II - TMF050 Moderní aplikace statistické fyziky II - TMF050 Body 2, E-Kredity 3, 2/0 Zk - LS Miroslav Kotrla a František Slanina kotrla@fzu.cz slanina@fzu fzu.cz kmenově: externě: ÚTF UK FZÚ AV ČR, v.v.i. oddělení

Více

PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze PROHLEDÁVÁNÍ GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 4 Evropský sociální fond Praha & EU: Investujeme do

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 7 Rozdělení pravděpodobnosti spojité náhodné veličiny Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka

Více

5 Orientované grafy, Toky v sítích

5 Orientované grafy, Toky v sítích Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

Prohledávání do šířky = algoritmus vlny

Prohledávání do šířky = algoritmus vlny Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé

Více

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo

Více

dag a dp v něm, bellman-ford, floyd-warshall

dag a dp v něm, bellman-ford, floyd-warshall dag a dp v něm, bellman-ford, floyd-warshall Petr Ryšavý 24. září 2018 Katedra počítačů, FEL, ČVUT topologické očíslování Topologické očíslování Definice (Topologické očíslování) Topologické očíslování

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

TGH08 - Optimální kostry

TGH08 - Optimální kostry TGH08 - Optimální kostry Jan Březina Technical University of Liberec 14. dubna 2015 Problém profesora Borůvky řešil elektrifikaci Moravy Jak propojit N obcí vedením s minimální celkovou délkou. Vedení

Více

3. Prohledávání grafů

3. Prohledávání grafů 3. Prohledávání grafů Prohledání do šířky Breadth-First Search BFS Jde o grafový algoritmus, který postupně prochází všechny vrcholy v dané komponentě souvislosti. Algoritmus nejprve projde všechny sousedy

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D.

9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D. 9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Lehký úvod Digitální modely terénu jsou dnes v geoinformačních systémech

Více

Redukce bezškálových grafů pomocí genetických algoritmů Scale-free Network Reduction by Genetic Algorithms

Redukce bezškálových grafů pomocí genetických algoritmů Scale-free Network Reduction by Genetic Algorithms VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky Redukce bezškálových grafů pomocí genetických algoritmů Scale-free Network Reduction by Genetic Algorithms 2014

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Shluková analýza Shluková analýza je souhrnným názvem pro celou řadu výpočetních algoritmů, jejichž cílem

Více

Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení

Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat

Více

TGH02 - teorie grafů, základní pojmy

TGH02 - teorie grafů, základní pojmy TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 28. února 2017 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms)

Více

Jarníkův algoritmus. Obsah. Popis

Jarníkův algoritmus. Obsah. Popis 1 z 6 28/05/2015 11:44 Jarníkův algoritmus Z Wikipedie, otevřené encyklopedie Jarníkův algoritmus (v zahraničí známý jako Primův algoritmus) je v teorii grafů algoritmus hledající minimální kostru ohodnoceného

Více

Diagnostika síťových aplikací - Zkouška

Diagnostika síťových aplikací - Zkouška Diagnostika síťových aplikací - Zkouška Radek Mařík, January 19, 2018 1 Zkouška B2M32DSA a její hodnocení, platí od 1. 1. 2018 Zkoušení mohou být jen ti studenti, kteří získali zápočet ze cvičení. Zkouška

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme

Více

VLASTNOSTI GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 5

VLASTNOSTI GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 5 VLASTNOSTI GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 5 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

8 Přednáška z

8 Přednáška z 8 Přednáška z 3 12 2003 Problém minimální kostry: Dostaneme souvislý graf G = (V, E), w : E R + Našim úkolem je nalézt strom (V, E ) tak, aby výraz e E w(e) nabýval minimální hodnoty Řešení - Hladový (greedy)

Více

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti

Více

Teorie síťových modelů a síťové plánování

Teorie síťových modelů a síťové plánování KSI PEF ČZU Teorie síťových modelů a síťové plánování Část přednášky doc. Jaroslava Švasty z předmětu systémové analýzy a modelování. Zápis obsahuje základní vymezení projektu, časového plánování a popis

Více

Diskrétní matematika. DiM /01, zimní semestr 2018/2019

Diskrétní matematika. DiM /01, zimní semestr 2018/2019 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Shluková analýza Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Typy shlukových analýz Shluková analýza: cíle a postupy Shluková analýza se snaží o

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

bfs, dfs, fronta, zásobník, prioritní fronta, halda

bfs, dfs, fronta, zásobník, prioritní fronta, halda bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší

Více

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky

Více

SAFETY IN LOGISTIC TRANSPORT CHAINS USING THEORY OF GRAPHS

SAFETY IN LOGISTIC TRANSPORT CHAINS USING THEORY OF GRAPHS SAFETY IN LOGISTIC TRANSPORT CHAINS USING THEORY OF GRAPHS Jan Chocholáč, Martin Trpišovský, Petr Průša 1 ABSTRACT This article focuses on the elementary explanation of safety requirement in logistic transport

Více

Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout

Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní graf má stromovou šířku nejvýše k, a je-li tomu tak, také vrátí příslušný stromový rozklad. Poznamenejme, že je-li k součástí vstupu,

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Kartografické modelování. VIII Modelování vzdálenosti

Kartografické modelování. VIII Modelování vzdálenosti VIII Modelování vzdálenosti jaro 2015 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Vzdálenostní funkce

Více

TGH10 - Maximální toky

TGH10 - Maximální toky TGH10 - Maximální toky Jan Březina Technical University of Liberec 23. dubna 2013 - motivace Elektrická sít : Elektrická sít, jednotlivé vodiče mají různou kapacitu (max. proud). Jaký maximální proud může

Více

A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti Přednáška 2

A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti Přednáška 2 A6M33SSL: Statistika a spolehlivost v lékařství Teorie spolehlivosti Přednáška 2 Vojta Vonásek vonasek@labe.felk.cvut.cz České vysoké učení technické v Praze Fakulta elektrotechnická Katedra kybernetiky

Více

Binární vyhledávací stromy pokročilé partie

Binární vyhledávací stromy pokročilé partie Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUT OF INFORMATICS GRAFY A GRAFOVÉ ALGORITMY GRAPHS AND GRAPH

Více

Prostorová variabilita

Prostorová variabilita Prostorová variabilita prostorová závislost (autokorelace) reprezentuje korelaci mezi hodnotami určité náhodné proměnné v místě i a hodnotami téže proměnné v jiném místě j; prostorová heterogenita je strukturální

Více

Usuzování za neurčitosti

Usuzování za neurčitosti Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA APLIKOVANÝCH VĚD Katedra matematiky. Analytické metody evoluční teorie her

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA APLIKOVANÝCH VĚD Katedra matematiky. Analytické metody evoluční teorie her ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA APLIKOVANÝCH VĚD Katedra matematiky DIPLOMOVÁ PRÁCE Analytické metody evoluční teorie her Plzeň 2013 Stanislav KOCOUR Prohlášení Prohlašuji, že jsem tuto diplomovou

Více