Grafové algoritmy. Programovací techniky
|
|
- Danuše Vlčková
- před 6 lety
- Počet zobrazení:
Transkript
1 Grafové algoritmy Programovací techniky
2 Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být nulový u vrcholů ani u hran Grafy Orientované hrana (u,v) označena šipkou u->v Neorientované pokud ex. (u,v), existuje také (v,u) Souvislost graf je souvislý, jestliže pro všechny v(i) z V existuje cesta do libovolného v(j) z V, nesouvislý graf je rozdělen na komponenty Strom graf, ve kterém pro každé vrcholy existuje právě jedna cesta
3 Grafy Úvod - Terminologie
4 Grafy Úvod Reprezentace grafu Matice sousednosti Dvou dimenzionální pole, hodnoty A(i,j) jsou ohodnocením hrany mezi vrcholy i,j Pro neohodnocený graf jsou prvky matice typu Boolean Neorientované grafy mají A symetrickou podle diagonály
5 Grafy Úvod Reprezentace grafu Seznamem sousednosti Využívá pole seznamů Jeden seznam (sousedů) pro každý vrchol Vhodné, když chceme měnitelný počet hran
6 Grafy Úvod Reprezentace grafu Seznamem sousednosti (reprezentace polem) V: i E: i Snadno modifikovatelné pro ohodnocený graf Úsporná struktura Vhodné pro práci s neměnným počet vrcholů a hran 4
7 Grafy Úvod Reprezentace grafu Plexová struktura Vypadá jako reprezentace seznamem sousednosti, akorát vrcholy nejsou uloženy ve statickém poli, ale v dyn. struktuře (spojový seznam) => Můžeme měnit počet hran i vrcholů
8 Hledání nejkratší cesty - v neohodnoceném grafu Prohledáváním do šířky void unweighted(vertex s) { Queue q; Vertex v,w; q = new Queue(); q.enqueue(s); s.dist=0; while (!q.isempty()) { v = q.dequeue(); v.known = true; // Not really needed anymore for each w adjacent to v if (w.dist == INFINITY) { w.dist = v.dist + ; w.path = v; q.enqueue(w); } } } Slovníček: Adjacent to sousedící s Enqueue zařadit do fronty Dequeue vyndat z fronty Složitost: O(m+n) n počet vrcholů, m počet hran
9 Hledání nejkratší cesty - v neohodnoceném grafu Jak je to s hledáním do hloubky? Jak se implementuje? Lze využít při hledání cyklů a odhalování souvislosti grafu? Dá se použít pro hledání nejkratší cesty?
10 Poznámka - Hledání do hloubky (backtracking) - upgrade Ořezávání pokud vidím, že v nějakém uzlu (stavu) prohledáváním jeho následníků URČITĚ nenajdu řešení, neprohledávám dále, ale vrátím se o úroveň výš Příklad v grafu projít všechny uzly a a neurazit přitom délku větší než D Heuristika Upřednostním nějakého následníka mezi jinými, podle nějakého kritéria, které mi SNAD urychlí hledání řešení Příklad(negrafový) proskákat šachovnici koněm půjdeme na ta pole, z kterých budeme mít nejméně možností dalšího skoku - A* algoritmus zahrnuje prohledávání do šířky i do hloubky s heuristikou i ořezáváním, viz dále.
11 Hledání nekratší cesty v acyklickém orientovaném grafu DAG (directed acyclic graph) shortest path algorithms Jaká je nejkratší cesta z A do J v tomto obrázku?
12 Hledání nekratší cesty v acyklickém orientovaném grafu Graf je kvůli své struktuře rozložitelný na etapy Označíme:. etapa: A. etapa: B, C, D. etapa: E, F, G 4. etapa: H, I 5. etapa: J Nechť S udává uzel v etapě j a f j (S) je nejkratší cesta mezi uzly S a J, platí Kde c sz udává spočtený oblak hran SZ. Tímto dostáváme rekurentní vztah, který řeší náš problém.
13 DAG řešení úlohy Začneme s f (J) Etapa 4 Zde se nic nerozhoduje, jen přejdeme do J. Tím, že jdeme do J tedy dostáváme f 4 (H)= a f 4 (I)=4. Etapa (viz tabulka S ) Jak spočítat f (F). Z F můžeme jít do H nebo do I. Hrana do H má hodnotu 6, následující je f 4 (H)=. Celkem tedy 9. Hrana do I má hodnotu, následující je f 4 (I)=4. Celkem tedy 7. Jakmile se tedy dostaneme do F, je nelepší jít přes I s vydáním = 7. Stejně pro E, G. Pokračujeme takto až do etapy
14 DAG shortest path Složitost hledání O(n+m) Nejdelší cesta v grafu V diagramu činností ukazuje nejkratší čas ukončení projektu
15 Floyd-Warshallův algoritmus Algoritmus hledající minimální cestu mezi všemi páry vrcholů (all-pair shortest path algorithm) Vhodný pro husté grafy v tom případě rychlejší než Dijkstra opakovaný pro všechny vrcholy Pracuje s maticí sousednosti Složitost O(n ) Můžeme stanovit max. počet vrcholů, přes které se jde Je technikou dynamického programování viz dále
16 Floyd-Warshallův algoritmus Matice sousednosti je uložena v a d je matice aktuálně spočtených nejkratších vzdáleností path je matice nejkratších mezicest, je nainicializována na - V každém kroku algoritmu zjišťuji, jestli existuje mezi vrcholy i,j kratší cesta přes vrchol k, pokud ano, nastavím vzdálenost v d[i][j] na novou velikost a do path[i][j] zaznamenám vrchol k
17 Floyd-Warshallův algoritmus Příklad je dána matice sousednosti grafu. FW algoritmem nalezněte nejkratší cestu mezi všemi vrcholy N N N N N N N N 0 4 (k,i,j)=(0,0,) 0+ N < N? NENÍ (k,i,j)=(0,0,) 0+<? NENÍ (k,i,j)=(0,,) N + N < 0? NENÍ (k,i,j)=(0,,) N + <? NENÍ
18 Floyd-Warshallův algoritmus Příklad - pokračování Nová d 4 0 N 4 4 N N 0 N N 0 N Nová path (k,i,j)=(0,,) +< 0? NENÍ (k,i,j)= (0,,) +< 5? JE Kratší cesta z do 4 vede přes 0
19 Floyd-Warshallův algoritmus Rekonstrukce nejkratší cesty mezi i,j V path[i][j] je index vrcholu k, přes který se má jít. Pokud k není - podívám se do path na nejkratší cestu mezi i,k a k,j Toto opakuji rekurzivně dokud nenajdu path[i][j] == -.
20 Dynamické programování Algoritmus na hledání nejkratší cesty v acyklickém grafu a Floyd-Warshall jsou zástupci techniky dynamického programování (DP) DP Se snaží rozdělit původní problém na podproblémy a pro ně nalézt nejlepší řešení. Řešení většího problému pomocí nejlepších malých řešení se provádí na základě rekurzivního vztahu. Až sem by se jednalo čistě o techniku Rozděl a panuj (třeba quicksort je RP). Nové a speciální je to, že se nejdříve zbavíme kandidátů, kteří nemají šanci na úspěch. Navíc se ukládá (do tabulky) informace o kandidátech, kteří mají šanci, že budou vést posloupnost vedoucí k nejlepšímu řešení. Problémy řešící DP Negrafové - dají se na graf převést, nebo ne (uzávorkování matic, Fibonacciho čísla,...)
21 DP zajímavý, nepříliš školní příklad Úkolem je rozdělit histogram rel. četností šedi obrázku na předem daný počet oblastí (barev) M V každém intervalu mezi 0-55 se podle daných vzorců spočte chyba a naším úkolem je vybrat takové rozložení intervalů, aby součet chyb k příslušným intervalům byl co nejmenší - > dostáváme dyn. formulaci problému D m { D (0, r ] + e ( r, n] } ( 0, n] = min m m m m rm < n
22 DP zajímavý, nepříliš školní příklad Převedení problém na hledání nekratší cesty v grafu délky M, ohodnocení hran je velikost chybové funkce Obrázek ukazuje interpretaci na graf 7 barev (místo 56), nejkratší cesta délky Nechá se použít například Floyd- Warshallův algoritmus, protože je snadno modifikovatelný pro nalezení nejratší cesty předem dané délky Stačí horní mez pro k v algoritmu omezit na M, místo na n (počet vrcholů)
23 DP zajímavý, nepříliš školní příklad Uniform Optimal
24 Dijkstrův algoritmus Hledání nejkratší cesty v ohodnoceném grafu Počítá vzdálenosti VŠECH vrcholů od počátečního Předpokládáme: Graf je souvislý Neorientované hrany Má nezáporně ohodnocené hrany Z navštívených vrcholů vytváříme mrak. Zpočátku obsahuje počáteční vrchol S, nakonci všechny vrcholy V každém kroku přidáme do mraku vrchol v vně mrak s nejmenší vzdáleností d(v) (prioritní fronta) Opravíme vzdálenosti vrcholů sousedících s v (vede často k relaxaci hran)
25 Dijkstrův algoritmus Relaxace hran Relaxace hrany e upravuje vzdálenost d(z) takto: d(z) min{d(z),d(u)+weight(e)}
26 Příklad() Dijkstrův algoritmus
27 Příklad() Dijkstrův algoritmus
28 Dijkstrův algoritmus Pseudokód V prioritní frontě jsou uložené nenavštívené vrcholy, které nebyly propagovány společně se vzdálenostmi, s kterými jsme se k nim dostali V každé iteraci z prioritní fronty vyhodíme vrchol s nejmenší vzdáleností pak provádíme relaxaci Vrchol z musí být v Q!
29 Dijkstrův algoritmus Rozšíření jak to provést, abychom mohli vypsat všechny nejkratší cesty? Pro každý vrchol si budeme pamatovat hranu, po které jsme se k němu dostali
30 Dijkstrův algoritmus Složitost Vkládání a hledání v prioritní frontě: log(n) Projdeme n vrcholů a m hran O((n+m) log(n)) průměrně při dobré implementaci Proč to nefunguje i pro záporně ohodnocené hrany? Protože algoritmus je Greedy (Hladový) Kdyby se přidal do mraku (hotové vrcholy), mohlo by to narušit vzdálenosti k vrcholům, které už v mraku jsou Vzdálenost C od A je, ale v mraku už máme hotovou vzdálenost 5
31 Primův-Jarníkův algoritmus Algorimus na hledání minimální kostry grafu (Minimum Spannig Tree) Kostra grafu minimální souvislý podgraf obsahující všechny vrcholy Nemá žádný cyklus, je tudíž stromem Postup stejný jako u Dijkstrovo algoritmu Další algoritmus na hledání min. kostry grafu Kruskalovo hladový (greedy) algoritmus (podobně jako Primův)
32 Primův-Jarníkův algoritmus Příklad()
33 Primův-Jarníkův algoritmus Příklad()
34 Prim-Jarník vs. Dijkstra
35 Hladové (greedy) algoritmy obecně Dijkstra, Kruskal, Prim Globálního optimálního řešení se dosáhne provedením lokální nejvhodnější operace => v každém kroku výpočtu dochází k seřazení kandidátů podle jejich kvality (prioritní fronta) a použitím nejlepšího => greedy algoritmy nemusí vždy dosahovat optimálního řešení jako Dijkstra, avšak jejich použitím můžeme dojít nějakému, uspokojivému řešení Co je to optimální? Příklad - negrafová úloha problém batohu (0/ Knapsack)
36 A* algoritmus Hledání nejkratší cesty stavovým prostorem K čemu je dobrý: Situace: Mám neorientovaný graf, hledám cestu A->B. Pokud bych bod B může být od A kdekoliv, tzn. nemám žádnou doplňující informaci o poloze B, budu zvětšovat okruh navštívených vrcholů kolem A podle Dijkstrova algoritmu. Mám aditivní informaci o B, např. B leží na sever od A. V tomto případě je vhodnější použít A* algoritmus
37 Vlastnosti A* Každý zpracovávaný uzel je ohodnocen funkcí f = g + h, g je suma všech ohodnocení, kterými jsme doposud prošli, h je heuristická funkce - odhad cesty k finálnímu uzlu (stavu). Garantuje nalézt nejkratší cestu z A->B, pokud h nikdy nepřecení ohodnocení zbytku cesty k finál. uzlu. Čím více máme relevantní informace o hledaném uzlu, tím rychleji jej dosáhneme. OPEN všechny uzly, které byly otevřeny a neprošlo se jimi prioritní fronta CLOSED - všechny uzly, kterými se prošlo
38 A* algoritmus
39 A* algoritmus příklad negrafový h(n) = D * (abs(n.x-goal.x) + abs(n.y-goal.y)) Funkce pro odhad délky zbytku cesty
40 NP-úplné grafové problémy TSP (Travelling Salesman Problem) Acyklický, neorientovaný, souvislý graf., naším úkolem je počínaje vrcholem S navštívit všechny vrcholy v grafu právě jednou tak, aby cesta byla co nejkratší, a vrátit se do S Hamiltonovská kružnice To samé co TSP, akorát cesta nemusí být nejkratší Pokrytí vrcholů grafu max. velikosti X. Výběr vrcholů grafu tak, že se budou dotýkat všech hran z nich vedoucí mají dohromady ohodnocení co nejblíže danému X
41 P problémy řešitelné polynom. algoritmy NP nedeterministickými polynomiálními algoritmy NP úplné NP, které jsou na sebe deterministicky v polynom. čase převeditelné Co to znamená slovo NP? Co jak prakticky poznáme, že je problém NP? P = NP? NP-úplnost
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší
Vzdálenost uzlů v neorientovaném grafu
Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující
Algoritmy na ohodnoceném grafu
Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus
Algoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NEJKRATŠÍ CESTY I Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 7 Evropský sociální fond Praha & EU: Investujeme do vaší
07 Základní pojmy teorie grafů
07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
Paralelní grafové algoritmy
Paralelní grafové algoritmy Značení Minimální kostra grafu Nejkratší cesta z jednoho uzlu Nejkratší cesta mezi všemi dvojicemi uzlů Použité značení Definition Bud G = (V, E) graf. Pro libovolný uzel u
Prohledávání do šířky = algoritmus vlny
Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé
Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
Dynamické programování
ALG 0 Dynamické programování zkratka: DP Zdroje, přehledy, ukázky viz https://cw.fel.cvut.cz/wiki/courses/a4balg/literatura_odkazy 0 Dynamické programování Charakteristika Neřeší jeden konkrétní typ úlohy,
Použití dalších heuristik
Použití dalších heuristik zkracování cesty při FIND-SET UNION podle hodností Datové struktury... p[x] - předchůdce uzlu x MAKE-SET(x) p[x] := x hod[x] := 0 hod[x] - hodnost (aprox. výšky) UNION(x,y) LINK(FIND-SET(x),
Kostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019
Grafy 16. dubna 2019 Tvrzení. Je dán graf G, pak následující je ekvivalentní. 1 G je strom. 2 Graf G nemá kružnice a přidáme-li ke grafu libovolnou hranu, uzavřeme přesně jednu kružnici. 3 Graf G je souvislý
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
Matice sousednosti NG
Matice sousednosti NG V = [ v ij ] celočíselná čtvercová matice řádu U v ij = ρ -1 ( [u i, u j ] )... tedy počet hran mezi u i a u j?jaké vlastnosti má matice sousednosti?? Smyčky, rovnoběžné hrany? V
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2/2, Lekce Evropský sociální fond Praha & EU: Investujeme
Metody síťové analýzy
Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický
Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT
PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová
dag a dp v něm, bellman-ford, floyd-warshall
dag a dp v něm, bellman-ford, floyd-warshall Petr Ryšavý 24. září 2018 Katedra počítačů, FEL, ČVUT topologické očíslování Topologické očíslování Definice (Topologické očíslování) Topologické očíslování
Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 28. března 2017 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C
Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
Teorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014
Teorie grafů Radim Farana Podklady pro výuku pro akademický rok 013/014 Obsah Kostra grafu. Tahy,. Úloha čínského pošťáka. Zdroj: Vítečková, M., Přidal, P. & Koudela, T. Výukový modul k předmětu Systémová
Graf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd.
Graf 2 0 3 1 4 5 Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Běžné reprezentace grafu Uzly = indexy Stupně uzlů
opakování reprezentace grafů, dijkstra, bellman-ford, johnson
opakování reprezentace grafů, dijkstra, bellman-ford, johnson Petr Ryšavý 19. září 2016 Katedra počítačů, FEL, ČVUT opakování reprezentace grafů Graf Definice (Graf) Graf G je uspořádaná dvojice G = (V,
Hledáme efektivní řešení úloh na grafu
Hledáme efektivní řešení úloh na grafu Mějme dán graf následující úlohy: G = ( V, E), chceme algoritmicky vyřešit Je daný vrchol t dosažitelný z vrcholu s? Pokud ano, jaká nejkratší cesta tyto vrcholy
ALG 04. Zásobník Fronta Operace Enqueue, Dequeue, Front, Empty... Cyklická implementace fronty. Průchod stromem do šířky
LG 04 Zásobník Fronta Operace nqueue, equeue, Front, mpty... yklická implementace fronty Průchod stromem do šířky Grafy průchod grafem do šířky průchod grafem do hloubky Ořezávání a heuristiky 1 Zásobník
STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta
STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka
Teorie grafů BR Solutions - Orličky Píta (Orličky 2010) Teorie grafů / 66
Teorie grafů Petr Hanuš (Píta) BR Solutions - Orličky 2010 23.2. 27.2.2010 Píta (Orličky 2010) Teorie grafů 23.2. 27.2.2010 1 / 66 Pojem grafu Graf je abstraktní pojem matematiky a informatiky užitečný
TGH08 - Optimální kostry
TGH08 - Optimální kostry Jan Březina Technical University of Liberec 14. dubna 2015 Problém profesora Borůvky řešil elektrifikaci Moravy Jak propojit N obcí vedením s minimální celkovou délkou. Vedení
= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez
Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,
Jarníkův algoritmus. Obsah. Popis
1 z 6 28/05/2015 11:44 Jarníkův algoritmus Z Wikipedie, otevřené encyklopedie Jarníkův algoritmus (v zahraničí známý jako Primův algoritmus) je v teorii grafů algoritmus hledající minimální kostru ohodnoceného
Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová
Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy
Operační výzkum. Síťová analýza. Metoda CPM.
Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus
Dijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
Jan Březina. 7. března 2017
TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 7. března 2017 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,
opakování reprezentace grafů, dijkstra, bellman-ford, johnson
opakování reprezentace grafů, dijkstra, bellman-ford, johnson Petr Ryšavý 18. září 2017 Katedra počítačů, FEL, ČVUT opakování reprezentace grafů Graf Definice (Graf) Graf G je uspořádaná dvojice G = (V,
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Aproximativní algoritmy UIN009 Efektivní algoritmy 1
Aproximativní algoritmy. 14.4.2005 UIN009 Efektivní algoritmy 1 Jak nakládat s NP-těžkými úlohami? Speciální případy Aproximativní algoritmy Pravděpodobnostní algoritmy Exponenciální algoritmy pro data
1. Nejkratší cesta v grafu
08. Nekratší cesty. Úloha obchodního cestuícího. Heurstky a aproxmační algortmy. Metoda dynamckého programování. Problém batohu. Pseudopolynomální algortmy 1. Nekratší cesta v grafu - sled e lbovolná posloupnost
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Diskrétní matematika. DiM /01, zimní semestr 2018/2019
Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka
4EK311 Operační výzkum. 5. Teorie grafů
4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,
3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
"Agent Hledač" (3. přednáška)
"Agent Hledač" (3. přednáška) Přehled 3. přednášky v této přednášce se budeme zabývat "goal-based" agenty Přehled 3. přednášky v této přednášce se budeme zabývat "goal-based" agenty připomeňme, že "goal-based"
zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.
Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
Návrh Designu: Radek Mařík
1. 7. Najděte nejdelší rostoucí podposloupnost dané posloupnosti. Použijte metodu dynamického programování, napište tabulku průběžných délek částečných výsledků a tabulku předchůdců. a) 5 8 11 13 9 4 1
Dynamické datové struktury III.
Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované
10. Složitost a výkon
Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří
4. NP-úplné (NPC) a NP-těžké (NPH) problémy
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA 4. NP-úplné (NPC) a NP-těžké (NPH) problémy Karpova redukce
TEORIE GRAFŮ TEORIE GRAFŮ 1
TEORIE GRAFŮ 1 TEORIE GRAFŮ Přednášející: RNDr. Jiří Taufer, CSc. Fakulta dopravní ČVUT v Praze, letní semestr 1998/99 Zpracoval: Radim Perkner, tamtéž, v květnu 1999 ZÁKLADNÍ POJMY Říkáme, že je dán prostý
1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10
Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10
Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A
Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A Každá úloha je hodnocena maximálně 25 body. Všechny své odpovědi zdůvodněte! 1. Postavte na stůl do řady vedle
6. Tahy / Kostry / Nejkratší cesty
6. Tahy / Kostry / Nejkratší cesty BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké
8 Přednáška z
8 Přednáška z 3 12 2003 Problém minimální kostry: Dostaneme souvislý graf G = (V, E), w : E R + Našim úkolem je nalézt strom (V, E ) tak, aby výraz e E w(e) nabýval minimální hodnoty Řešení - Hladový (greedy)
Základní pojmy teorie grafů [Graph theory]
Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme
Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.
Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě,
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,
Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.
Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
PROGRAMOVÁNÍ. Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky.
Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky. V průběhu budou vysvětlena následující témata: 1. Dynamicky alokovaná paměť 2. Jednoduché
12. Globální metody MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP
CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP 1. Definice úlohy Úloha VRP (Vehicle Routing Problem problém okružních jízd) je definována na obecné dopravní síti S = (V,H), kde V je množina uzlů sítě a H
Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů
Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti
Dynamické programování UIN009 Efektivní algoritmy 1
Dynamické programování. 10.3.2005 UIN009 Efektivní algoritmy 1 Srovnání metody rozděl a panuj a dynamického programování Rozděl a panuj: top-down Dynamické programování: bottom-up Rozděl a panuj: překrývání
PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
PROHLEDÁVÁNÍ GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 4 Evropský sociální fond Praha & EU: Investujeme do
Základy umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
Základy informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant
Základy informatiky 07 Teorie grafů Kačmařík/Szturcová/Děrgel/Rapant Obsah přednášky barvení mapy teorie grafů definice uzly a hrany typy grafů cesty, cykly, souvislost grafů Barvení mapy Kolik barev je
bfs, dfs, fronta, zásobník
bfs, dfs, fronta, zásobník Petr Ryšavý 25. září 2018 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší cesty, plánování cest. Prohledávání
3. Prohledávání grafů
3. Prohledávání grafů Prohledání do šířky Breadth-First Search BFS Jde o grafový algoritmus, který postupně prochází všechny vrcholy v dané komponentě souvislosti. Algoritmus nejprve projde všechny sousedy
NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do
Algoritmy a datové struktury
Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu
3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem
ČVUT FEL X36PAA - Problémy a algoritmy 3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem Jméno: Marek Handl Datum: 1. 1. 2009 Cvičení: Pondělí 9:00 Zadání Naprogramujte
VYUŽITÍ NĚKTERÝCH METOD TEORIE GRAFŮ PŘI ŘEŠENÍ DOPRAVNÍCH PROBLÉMŮ
VYUŽITÍ NĚKTERÝCH METOD TEORIE GRAFŮ PŘI ŘEŠENÍ DOPRAVNÍCH PROBLÉMŮ Markéta Brázdová 1 Anotace: Metody operačního výzkumu mají při řešení praktických problémů široké využití. Článek se zabývá problematikou
Ohodnocené orientované grafy
Ohodnocené orientované grafy Definice Buď G graf Funkce w : H( G) (, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Definice Nechť G je orientovaný graf
Binární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
Problémy třídy Pa N P, převody problémů
Problémy třídy Pa N P, převody problémů Cvičení 1. Rozhodněte o příslušnosti následujících problémů do tříd Pa N P(N PCověříme později): a)jedanýgrafsouvislý? danýproblémjeztřídy P,řešíhonapř.algoritmyDFS,BFS.
Tato tematika je zpracována v Záznamy přednášek: str
Obsah 10. přednášky: Souvislosti Složitost - úvod Výpočet časové složitosti Odhad složitosti - příklady Posuzování složitosti Asymptotická složitost - odhad Přehled technik návrhů algoritmů Tato tematika
Obsah přednášky. Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41
Obsah přednášky Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41 Analýza algoritmu Proč vůbec dělat analýzu? pro většinu problémů existuje několik různých přístupů aby
Prioritní fronta, halda
Prioritní fronta, halda Priority queue, heap Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 26 Prioritní fronta Halda Heap sort 2 / 26 Prioritní fronta (priority queue) Podporuje
Binární soubory (datové, typované)
Binární soubory (datové, typované) - na rozdíl od textových souborů data uložena binárně (ve vnitřním tvaru jako v proměnných programu) není čitelné pro člověka - všechny záznamy téhož typu (může být i
1 Teorie grafů. Základní informace
Teorie grafů Základní informace V této výukové jednotce se student seznámí s matematickým pojetím grafů a na konkrétních příkladech si vyzkouší vybrané algoritmy pro hledání v grafech. Výstupy z výukové
Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje
OZD. Organizace a zpracování dat. učební text
OZD Organizace a zpracování dat učební tet Datové typy Datové typy Dělení elementární strukturované = datové struktury základní (statické) základní struktury programovacího jazyka vyšší (dynamické) Datové
Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém
Obsah přednášky Mgr. Květuše Sýkorová Optimalizace Lineární programování Distribuční úlohy Okružní problém KI Př UJEP Ústí nad Labem Nederivační metody Metody 1D optimalizace Derivační metody Optimalizace
TOKY V SÍTÍCH II. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
TOKY V SÍTÍCH II Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 010/011, Lekce 10 Evropský sociální fond Praha & EU: Investujeme do vaší
DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3
DobSort Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 V roce 1980 navrhl Dobosiewicz variantu (tzv. DobSort),
GRAFY A GRAFOVÉ ALGORITMY
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ
PLANARITA A TOKY V SÍTÍCH
PLANARITA A TOKY V SÍTÍCH Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 9 Evropský sociální fond Praha & EU: Investujeme
5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
H {{u, v} : u,v U u v }
Obyčejný graf Obyčejný graf je dvojice G= U, H, kde U je konečná množina uzlů (vrcholů) a H {{u, v} : u,v U u v } je (konečná) množina hran. O hraně h={u, v} říkáme, že je incidentní s uzly u a v nebo