Teoretický úvod k cvičení z předmětu Technologie I : Klasické (konvenční) metody svařování

Rozměr: px
Začít zobrazení ze stránky:

Download "Teoretický úvod k cvičení z předmětu Technologie I : Klasické (konvenční) metody svařování"

Transkript

1 Teoretický úvod k cvičení z předmětu Technologie I : Klasické (konvenční) metody svařování

2 1. Svařování elektrickým obloukem v ochranných atmosférách Některé metody svařování byly vyvinuty pro velmi konkrétní aplikace, zatímco jiné jsou flexibilní a pokrývají široký sortiment svářečských prací. Ačkoliv se svařování užívá zásadně pro spojování stejných i nestejných kovových částí, užívá se stále více k opravám a renovacím opotřebovaných nebo poškozených součástek. Metoda svařování elektrickým obloukem, poprvé zavedená koncem 19. století, však zůstává nejvýznamnější a nejvíce používanou technikou tavného svařování. Jak název napovídá, zdrojem tepla je elektrický oblouk vytvořený nejčastěji mezi svařovaným dílem a elektrodou nebo svařovacím drátem. Elektrická energie přeměněná na teplo vytváří oblouk o teplotě až C, čímž se kovy roztaví a spojí. Zařízení se mohou lišit co do velikosti a komplexnosti, ale hlavní rozdíl spočívá v použití typu svařovacího materiálu. Jedním z hlavních problémů při svařování je, že kovy reagují s atmosférou rychleji, když stoupá jejich teplota. Metoda, jak chránit horký kov před atakem atmosféry, je druhým nejdůležitějším rozlišujícím znakem. Ochrana svarového kovu sahá od svařování pod tavidlem, které vytváří ochrannou strusku, až po svařování v ochranné atmosféře. Svařování v ochranných atmosférách nachází uplatnění ve všech oborech svařovaných konstrukcí. Jeho podíl se proti jiným technologiím zvětšuje. To je způsobeno těmito výhodami : - vysokou produktivitou - zlepšením hygieny prostředí - možností svařovat ve všech polohách - umožněním automatizace a robotizace svařování Při tomto způsobu svařování je svarová lázeň chráněna před nepříznivými účinky okolní atmosféry (hlavně kyslíku a dusíku a také vodíku) ochrannou atmosférou, která může být inertní nebo aktivní. - Inertní atmosféry (např. Argon, Helium ) nevstupují do chemických reakcí se svarovou lázní jsou vůči ní netečné - Aktivní atmosféry (např. Oxid uhličitý, směsné plyny tvořené směsí CO 2, Ar, O 2, H 2 ) Podílejí se na chemických reakcích ve svarové lázni, jejich škodlivé působení je však kompenzováno vhodným složením přídavného materiálu 1.1 Svařování metodou WIG (TIG) = svařování el. obloukem v ochranné atmosféře inertních plynů netavící se elektrodou V ČR a ve většině zemí EU se používá název WIG (= Wolfram Inert Gas welding), v anglosasky mluvících zemích TIG (Tungsten Inert Gas welding) a v USA se používá zkratka GTAW (Gas Tungsten Arc Welding). Tato metoda byla vyvinuta ve 40.letech obdobně jako svařování pod tavidlem, ovšem s jiným cílem. Byla určena především pro svařování hliníku (Al) a jiných silně reaktivních

3 kovů, později se její použití rozšířilo i na slitiny železa (Fe) a další konstrukční materiály korozivzdorné a jiné vysokolegované oceli a litiny mědi Je to univerzální způsob a používá se v uspořádání pro ruční i automatické svařování i navařování. Je to metoda, při které elektrický oblouk hoří mezi netavící se wolframovou (W) elektrodou a základním materiálem, který je chráněný před účinky okolní atmosféry inertním (netečným) plynem převážně Argonem (Ar), výjimečně Heliem (He), Dusíkem (N) nebo směsnými plyny (Ar-He, Ar-H 2 ) a přídavný materiál je do oblouku podáván samostatně (ručně nebo pomocí podávacího mechanismu). Délka oblouku je regulována napěťovou regulací. Wolframová elektroda obsahuje zpravidla přísadu (do 2 %) Oxidu Thoria (ThO 2 ), který výrazně zvyšuje termoemisi elektronů = elektroda se tím lépe ochlazuje a snáší vyšší proudové zatížení. Thorium snižuje emisní energii, snese vyšší proudové zatížení a má vyšší (až o 1000 ºC) pracovní teplotu. Ale je radioaktivní nahrazováno Lanthanem. Konce elektrody je možno zbrousit do ostrého hrotu, oblouk je pak lépe soustředěn, klidněji hoří a hloubka závaru je větší. Všechny kovy ( s výjimkou hliníku Al, a Hořčíku Mg) se svařují stejnosměrným proudem s přímou polaritou (= elektroda -, svařovaný materiál +). Vzniká tak hlubší závar a je menší zatížení elektrody. Vlastnosti : - metoda WIG je málo produktivní - nízká účinnost přenosu tepla (60%), omezené proudové zatížení elektrody - velmi dobrá kvalita svaru (hlavní přednost!) - možnost svařovat vysokolegované oceli, Al, Cu, Ni, Mg,. Ti Svařování WIG zajišťuje výjimečně čisté a vysoce kvalitní svary. Protože nevzniká žádná struska, je sníženo na minimum riziko vměstků ve svarovém kovu a hotové svary nevyžadují žádné čištění. Použití : Metodu WIG lze použít téměř pro všechny kovy a hodí se jak pro ruční, tak pro automatizované svařování. Nejvíce se užívá na svařování hliníku a nerezavějících ocelí, kde je absolutně nejdůležitější celistvost svaru. Největší uplatnění má v jaderné technice, kosmické a letecké technice, přístrojové technice, chemickém a potravinářském průmyslu všude tam, kde se vyžaduje zvlášť vysoká čistota svaru Mechanizovaná zařízení nevedou k podstatnému zvýšení výkonu navaření, jen ke zvýšení kvality a rovnoměrnosti výsledků. Postupně začíná tuto metodu vytlačovat svařování plazmové (kvalita) a svařování MIG (produktivita). Ochranný plyn : Musí mít předepsanou čistotu a musí proudit kolem elektrody vhodnou rychlostí. Nedostatečné množství plynu nestačí zabránit styku vzduchu s tekutým kovem (optimální množství plynu bývá l/min). Při nedostatečné rychlosti proudění vzniká podtlak a ochranný plyn přisává vzduch a svar se znehodnocuje

4 Hořáky : Pro nižší výkony (do 150 A) chlazeny plynem, jednoduché a nenáročné, pro vyšší výkony (proudy) chlazení vodou. Mechanizovaná zařízení jsou vybavena samočinným podáváním přídavného materiálu a programovatelným průběhem proudu, aby jakost svaru byla zcela rovnoměrná a regulaci strmosti, náběhu proudu i vyplnění kráteru. Svařování hliníku : Povrch Hliníku a Hořčíku je pokryt více nebo méně kompaktní vrstvou nevodivých oxidů (např. Al 2 O 3 ) o vysoké tavící teplotě. Pro Hliník a Hořčík je nutné použít buď :stejnosměrného proudu s obrácenou polaritou (= elektroda +, svařovaný materiál -). Na základním materiálu se vytvoří katodová skvrna, která se pohybuje a vyhledává místa pokrytá oxidy. Tato místa mají nižší emisní energii pro emisi elektronů a po zasažení katodovou skvrnou se oxidy vypaří. Dalším efektem, který spolupůsobí, je proud kladných iontů plynu urychlovaný směrem ke svarové lázni. Dynamickým účinkem tohoto proudu dochází ke stažení vrstvy oxidů k okraji svarové lázně. Proud kladných iontů argonu, dopadající na povrch materiálu a žhavý katodový bod rychle se pohybující po povrchu plechu rozrušuje oxidickou vrstvu a umožňuje svařovat bez tavidla tzv. čistící účinek oblouku. Nedostatek této obrácené polarity je nedostatečná hloubka závaru Proto se používá střídavého proudu. V průběhu kladné polarity elektrody se povrch zbaví oxidů a v průběhu záporné polarity elektrody se materiál nataví do větší hloubky a elektroda se ochladí. Při svařování stříd.proudem vzniká zvláště při nižších proudech nestabilita oblouku, která způsobuje defekty ve svarech, případně zcela znemožňuje svařování. Proto je nutné oblouk stabilizovat vysokofrekvenčním vysokonapěťovým generátorem (napětí V a o frekvenci 2 5 MHz) nebo Pulsním generátorem s nízkou frekvencí. 1.2 Svařování metodami MIG, MAG = svařování el. obloukem v ochranné atmosféře (aktivního nebo inertního plynu) tavící se elektrodou V ČR a v EU se používají názvy MAG (Metal Active Gas welding) při použití aktivních plynů (CO 2, směsné plyny) a MIG (Metal-Inert-Gas welding) při použití inertních plynů (Argon, Helium). V USA se používá pro obě metody jednotný název GMAW (Gas Metal Arc Welding). Tyto metody jsou v principu identické, liší se pouze druhem ochranného plynu. Vyvinuly se jako kombinace : - svařování pod tavidlem (odkud převzaly způsob podávání přídavného materiálu) - svařování WIG (oblouk je chráněn plynem vhodného složení)

5 Elektrický oblouk hoří mezi holým (kovovým) přídavným drátem (nepřetržitě dodávaným do svaru) a základním svařovaným materiálem. Oblouk a svarová lázeň jsou chráněny proudem inertního nebo aktivního plynu. Používají se vysoké proudové hustoty ( A.mm -2 ) proto se dosahuje vysokých svařovacích rychlostí a výkonů navaření. Svařování MIG/MAG je podstatně produktivnější než ruční svařování el.obloukem obalovanou elektrodou (ROS = MMA - Manual Metal Arc), kde se produktivita ztrácí pokaždé, když svářeč zastaví, aby vyměnil spotřebovanou elektrodu. Při ROS vznikají také materiální ztráty při vyhazování nedopalků. Z každého kilogramu prodané obalené elektrody se asi jen 65 % stane součástí svaru (a zbytek se vyhodí). Používáním svařovacího a trubičkového drátu se účinnost zvýšila na %. Pro svařování se používají svařovací poloautomaty a automaty. Svařování MIG/MAG je univerzální metoda, kterou je možno ukládat svarový kov ve větším množství a ve všech svařovacích polohách. Použití : Tyto metody mají dobré operativní vlastnosti (svařování ve všech polohách) a možnost rychlé změny svař. parametrů podle programu = předpoklady pro použití těchto způsobů ve spojení se svařovacími roboty. Tato metoda se hodí pro většinu materiálů a přídavné materiály jsou k dispozici pro široký sortiment kovů. Používá se pro svařování velmi lehkých až středně těžkých ocelových konstrukcí, pro svařování slitin hliníku a zvláště tam, kde se vyžaduje vysoký podíl ruční práce svářeče. Trubičkové dráty nalézají uplatnění především v těžkých ocelových konstrukcích. Metoda MIG : především pro svařování Hliníku a jeho slitin. (přímou polaritou, zvýšený ohřev není na závadu) Oproti metodě WIG mnohonásobně vyšší produktivita (ovšem s horší jakostí svaru) Při svařování Mědi (Cu) je možno oblouk chránit dusíkem, který je levnější a vůči mědi netečný Metoda MAG : především pro svařování ocelí o vyšších pevnostech, slitinových ocelí (tam kde jsou kladeny vysoké nároky na jakost spoje a kde nelze použít svařování pod tavidlem - při použití plynu CO 2 je provozně nejlevnější vzhledem k relativně nízké ceně tohoto plynu (oproti Argonu ) - výkon odtavení je podstatně vyšší, než při svařování obalovanou elektrodou a ekonomičnost této metody může ještě zlepšit vhodná konstrukce spojů, která bere v úvahu relativně veliký závar. Svařování MIG i MAG lze plně automatizovat ve spojení s vhodnými roboty a manipulátory. Zhotovuje se takto řada i prostorově složitých svarů bez zásahu lidského činitele, typické jsou např. rámy motocyklů a kol, karosérie, kde je dostatečná sériovost. Přídavný materiál : Svařovací drát (relativně malého průměru 0,8 až 1,6 mm) nebo trubičková elektroda odvíjející se ze zásobníku a bowdenem se vede do svařovacího hořáku. (Proud se přivádí kluzným kontaktem ze slitiny CuBe, CuCr, která je dobře vodivá a tvrdá, odolná proti opotřebení) Ochranný plyn : Inertní (Argon, Helium, směsi) - pro svařování Hliníku, Titanu a jiných reaktivních kovů

6 Aktivní (CO 2, Argon s příměsí 2-5% O 2 ) pro svařování ocelí - tyto plyny mají oxidační charakter a ovlivňují složení svarového kovu Ochranná atmosféra se volí podle druhu svařovaného materiálu, ovlivňuje však i přenos materiálu, rozstřik a teplotní poměry v oblouku. U zařízení pro svařování MIG a MAG se nenastavuje svařovací proud, ale délka oblouku - prostřednictvím napětí na oblouku. Požadovaná velikost svař. proudu se nastaví rychlostí podávání drátu. Regulace délky oblouku je možná jedině tím, že zdroj má velmi plochou charakteristiku (= závislost Napětí na Proudu), takže změna délky oblouku má za následek velkou změnu proudu a tím se zrychlí nebo zpomalí odtavování elektrody. (Při obvyklých malých průměrech elektrody a vysokých podávacích rychlostech drátu až 20 m/min jiný systém regulace nepřichází v úvahu ) 1.3 Svařování metodou MOG =svařování trubičkovými eletktrodami Svařování se podle typu použité trubičky uskutečňuje v ochranné atmosféře nebo bez ní, je označováno jako MOG (Metal Ohne Gas). Pokud jde o práci a zařízení, je svařování trubičkovým drátem (FCAW - Flux Cored Arc Welding, dle normy správněji svařování plněnou elektrodou) velmi podobné svařování MIG/MAG. Nesvařuje se však plným drátem nebo elektrodou, ale je to kovový plášť vyplněný tavidlem. Trubičkové elektrody mají plášť z ocelového pásku, který je sbalen do trubičky. Náplň obsahuje legující, struskotvorné a dezoxidační prvky a sloučeniny. Tento způsob se používá pro svařování a navařování speciálních návarů. Při svařování zvyšuje produktivitu o 20 %.Vzniká však značné množství exhalací, které je nutno odsávat. Jako u svařování MIG/MAG závisí i tato metoda na ochranném plynu, který chrání svarovou oblast roztaveného kovu. Plyn se dodává buď samostatně (trubičkový drát je určen pro svařování v ochranné atmosféře) nebo vzniká rozkladem přísad z náplně (trubičkový drát s vlastní atmosférou). Kromě ochranného plynu produkuje trubičkový drát strusku, která slouží jako další ochrana při chladnutí svarového kovu a poté se z jeho povrchu odstraní. 1.4 Modifikace pro zvýšení produktivity : - svařování do úzkého úkosu o podstatné zvýšení produktivity a snížení množství svarového kovu o pro svařování velkých tlouštěk materiálu, snižuje tenzometrické účinky na základní materiál o svařuje se jedním nebo více svařovacími hořáky, které zavádějí drát do kouta. o Svarové housenky se na sebe vrství vertikálně o Svarová lázeň je chráněna přiváděným CO 2 nebo směsným plynem - tandemové svařování dvou napájených drátů o dva oblouky za sebou, zvyšují svařovací rychlost a snižují náklady - svařování druhým studeným nebo odporovým teplem ohřívaným drátem, který nemá napájení svařovacím proudem

7 - svařování s přidáváním horkého drátu (MAG + HW proces) o ocelový drát o průměru 1,2 2mm je ohříván na teplotu blízkou teplotě tavení materiálu přídavným zdrojem a dodáván do svarové lázně dosahuje se úspor na nákladech a energii - Svařování s přidáváním studeného drátu (MAG + CW)

Obloukové svařování wolframovou elektrodou v inertním plynu WIG (TIG) - 141

Obloukové svařování wolframovou elektrodou v inertním plynu WIG (TIG) - 141 Obloukové svařování wolframovou elektrodou v inertním plynu WIG (TIG) - 141 Při svařování metodou 141 hoří oblouk mezi netavící se elektrodou a základním matriálem. Ochranu elektrody i tavné lázně před

Více

Struktura svaru. Vzniká teplotně ovlivněná oblast změna vlastností

Struktura svaru. Vzniká teplotně ovlivněná oblast změna vlastností Svařování Pájení Svařování Aby se kovy mohly nerozebiratelně spojit, vyžaduje většina svařovacích metod vytvoření vysoké lokální teploty. Typ zdroje ohřevu označuje často svařovací metodu, např. svařování

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.6 Svářečská a karosářská odbornost Kapitola

Více

Systém značení evropských norem pro svařování přídavnými materiály

Systém značení evropských norem pro svařování přídavnými materiály Systém značení evropských norem pro svařování přídavnými materiály 111 - pro svařování ruční, obalenou elektrodou (ROS) EN ČSN Pro svařování... Vydáno Str. ČSN EN ISO 2560 05 5005 nelegovaných a jemnozrnných

Více

PARAMETRY, KTERÉ OVLIVŇUJÍ NÁKLADY NA SVAŘOVÁNÍ

PARAMETRY, KTERÉ OVLIVŇUJÍ NÁKLADY NA SVAŘOVÁNÍ PARAMETRY, KTERÉ OVLIVŇUJÍ NÁKLADY NA SVAŘOVÁNÍ Ing. Stanislav Novák, CSc., Ing. Jiří Mráček, Ph.D. PRVNÍ ŽELEZÁŘSKÁ SPOLEČNOST KLADNO, s. r. o. E-mail: stano@pzsk.cz Klíčová slova: Parametry ovlivňující

Více

Plazmové svařování a dělení materiálu. Jaromír Moravec

Plazmové svařování a dělení materiálu. Jaromír Moravec Plazmové svařování a dělení materiálu Jaromír Moravec 1 Definice plazmatu Definice plazmatu je následující: Plazma je kvazineutrální soubor částic s volnými nosiči nábojů, který vykazuje kolektivní chování.

Více

1 Svařování Laser-Hybridem

1 Svařování Laser-Hybridem 1 Svařování Laser-Hybridem Laser-Hybrid je kombinace svařování nejčastěji pevnolátkovým Nd YAG laserem a jinou obloukovou technologií. V zásadě jsou známy tyto kombinace: laser TIG, laser MIG/MAG, laser

Více

Základní rozdělení metod obloukového svařování v ochranných atmosférách

Základní rozdělení metod obloukového svařování v ochranných atmosférách 1 OBLOUKOVÉ SVAŘOVÁNÍ V OCHRANNÝCH ATMOSFÉRÁCH Oblouk hoří obklopen atmosférou ochranného plynu, přiváděného hořákem. Ochranný plyn chrání elektrodu, oblouk a tavnou lázeň před účinky okolní atmosféry.

Více

NAUKA O MATERIÁLU PŘÍDAVNÉ MATERIÁLY I. Ing. Iveta Mičíková

NAUKA O MATERIÁLU PŘÍDAVNÉ MATERIÁLY I. Ing. Iveta Mičíková NAUKA O MATERIÁLU PŘÍDAVNÉ MATERIÁLY I. Ing. Iveta Mičíková Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám

Více

Seminární práce Technologie spojování kovových materiálů. Svařování metodou TIG

Seminární práce Technologie spojování kovových materiálů. Svařování metodou TIG Univerzita Jana Evangelisty Purkyně v Ústí n.l. Fakulta výrobních technologií a managementu Seminární práce Technologie spojování kovových materiálů. Svařování metodou TIG Vypracoval: Paur Petr Akademický

Více

Dělení a svařování svazkem plazmatu

Dělení a svařování svazkem plazmatu Dělení a svařování svazkem plazmatu RNDr. Libor Mrňa, Ph.D. Osnova: Fyzikální podstat plazmatu Zdroje průmyslového plazmatu Dělení materiálu plazmou Svařování plazmovým svazkem Mikroplazma Co je to plazma?

Více

Úvod do obloukového svařování v ochranném plynu (inertní, aktivní)

Úvod do obloukového svařování v ochranném plynu (inertní, aktivní) KURZY SVÁŘEČSKÝCH TECHNOLOGŮ A INŽENÝRŮ IWT / IWE Úvod do obloukového svařování v ochranném plynu (inertní, aktivní) doc. Ing. Jaromír MORAVEC, Ph.D., EWE Obloukové metody svařování v ochranném plynu -

Více

Svařování v ochranných atmosférách Přehled typů ochranných plynů

Svařování v ochranných atmosférách Přehled typů ochranných plynů Svařování v ochranných atmosférách Přehled typů ochranných plynů Svařování v ochranných atmosférách Přehled typů dodávaných plynů Jako na dlani Tento přehledný souhrn jednotlivých typů svařovacích plynů

Více

Svafiování elektronov m paprskem

Svafiování elektronov m paprskem Svafiování elektronov m paprskem Svařování svazkem elektronů je proces tavného svařování, při kterém se kinetická energie rychle letících elektronů mění na tepelnou při dopadu na povrch svařovaného materiálu.

Více

Pálení materiálu plazmou, svařování v ochranné atmosféře MIG, TIG, obalenou elektrodou

Pálení materiálu plazmou, svařování v ochranné atmosféře MIG, TIG, obalenou elektrodou Projekt: Téma: Pálení materiálu plazmou, svařování v ochranné atmosféře MIG, TIG, obalenou elektrodou Obor: Zámečník Ročník: 2. Zpracoval(a): Pavel Urbánek Střední průmyslová škola Uherský Brod, 2010 1

Více

Plazmové svařovací hořák ABICOR BINZEL

Plazmové svařovací hořák ABICOR BINZEL Plazmové svařovací hořák ABICOR BINZEL Základním požadavkem na všechny moderní procesy spojování materiálů je co vyšší výkon při současné úspoře investičních i provozních nákladů. Z tohoto pohledu je dnes

Více

Kemppi představuje produkty Wise pro dokonalejší svařování

Kemppi představuje produkty Wise pro dokonalejší svařování Kemppi představuje produkty Wise pro dokonalejší svařování Kemppi OY řídí směr k efektivnějšímu svařování s novou modifikací procesů obloukového svařování pod názvem WISE. Tento software je doplňkovým

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.6 Svářečská a karosářská odbornost Kapitola

Více

Základní informace o navařování páskovou elektrodou pod tavidlem

Základní informace o navařování páskovou elektrodou pod tavidlem NAVAŘOVACÍ PÁSKY Základní informace o navařování páskovou elektrodou pod tavidlem... I1 Použité normy pro navařovací pásky... I1 Přehled druhů navařovacích pásek v nabídce... I2 Pásky pro navařování Cr-Ni

Více

Slouží jako podklad pro výuku svařování. Text určen pro studenty 3. ročníku střední odborné školy oboru strojírenství.vytvořeno v září 2013.

Slouží jako podklad pro výuku svařování. Text určen pro studenty 3. ročníku střední odborné školy oboru strojírenství.vytvořeno v září 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Svařování Rozdělení a druhy elektrod,značení,volba

Více

PŘÍDAVNÉ MATERIÁLY PRO LEHKÉ KOVY SVAŘOVÁNÍ A PÁJENÍ HLINÍKU A JEHO SLITIN SVAŘOVÁNÍ HOŘČÍKU, SVAŘOVÁNÍ TITANU

PŘÍDAVNÉ MATERIÁLY PRO LEHKÉ KOVY SVAŘOVÁNÍ A PÁJENÍ HLINÍKU A JEHO SLITIN SVAŘOVÁNÍ HOŘČÍKU, SVAŘOVÁNÍ TITANU PŘÍDAVNÉ MATERIÁLY PRO LEHKÉ KOVY SVAŘOVÁNÍ A PÁJENÍ HLINÍKU A JEHO SLITIN SVAŘOVÁNÍ HOŘČÍKU, SVAŘOVÁNÍ TITANU OBSAH PROSPEKTU Úvod...... 1 Použití přídavných materiálů pro různé typy hliníku a slitin......

Více

3/3.1 Přehled vybraných metod a jejich číselné značení

3/3.1 Přehled vybraných metod a jejich číselné značení SVAŘOVÁNÍ KOVŮ V PRAXI část 3, díl 3, kap. 1, str. 1 3/3.1 Přehled vybraných metod a jejich číselné značení obloukové. Při obloukovém se jako zdroj tepla využívá elektrický oblouk hořící mezi elektrodou

Více

strana PŘEDMLUVA ZÁKLADNÍ POJMY (Doc. Ing. Milan Němec, CSc.) SLÉVÁRENSTVÍ (Doc. Ing. Milan Němec, CSc.)

strana PŘEDMLUVA ZÁKLADNÍ POJMY (Doc. Ing. Milan Němec, CSc.) SLÉVÁRENSTVÍ (Doc. Ing. Milan Němec, CSc.) OBSAH strana PŘEDMLUVA 3 1. ZÁKLADNÍ POJMY (Doc. Ing. Milan Němec, CSc.) 4 1.1 Výrobní procesy ve strojírenské výrobě 4 1.2 Obsah technologie 6 1.2.1. Technologie stroj írenské výroby 7 1.3 Materiály ve

Více

TECHNOLOGIE I. (345303/02)

TECHNOLOGIE I. (345303/02) VŠB Technická univerzita Ostrava Fakulta strojní TECHNOLOGIE I. (345303/02) ČÁST SVAŘOV OVÁNÍ doc. Ing. Ivo Hlavatý, Ph.D. místnost A405 ivo.hlavaty hlavaty@vsb.cz http://fs1.vsb vsb.cz/~hla80 Podmínky

Více

Svarové spoje. Druhy svařování:

Svarové spoje. Druhy svařování: Svarové spoje Svarové spoje patří mezi nejpoužívanější a nejefektivnější nerozebíratelné spojení strojních součástí. Svařování je spojování kovových i nekovových materiálů působením tepla nebo tlaku nebo

Více

Technologie I. Část svařování. Kontakt : E-mail : michal.vslib@seznam.cz Kancelář : budova E, 2. patro, laboratoře

Technologie I. Část svařování. Kontakt : E-mail : michal.vslib@seznam.cz Kancelář : budova E, 2. patro, laboratoře Část svařování cvičící: Ing. Michal Douša Kontakt : E-mail : michal.vslib@seznam.cz Kancelář : budova E, 2. patro, laboratoře Doporučená studijní literatura Novotný, J a kol.:technologie slévání, tváření

Více

METODICKÉ LISTY Svařování a obrábění

METODICKÉ LISTY Svařování a obrábění Projekt: Rozvoj technického vzdělávání v Jihočeském kraji CZ.1.07/1.1.00/44.0007 Souborné dílo METODICKÉ LISTY Svařování a obrábění Uspořádala: Mgr. Eliška Malá Partner projektu: SOŠ a SOU Milevsko Čs.

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Svařování

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Svařování Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Svařování Svařování patří do kategorie nerozebíratelných spojení, při kterém dochází k roztavení přídavného

Více

Příručka trojí úspory. Šetřím čas, práci a peníze s třísložkovými směsmi Messer.

Příručka trojí úspory. Šetřím čas, práci a peníze s třísložkovými směsmi Messer. Příručka trojí úspory Šetřím čas, práci a peníze s třísložkovými směsmi Messer. Moderní materiály volají po moderních plynech Při výrobě a montáži ocelových konstrukcí je celková efektivita produkce výrazně

Více

Energeticky redukovaný krátký světelný oblouk ke spojování tenkých plechů a smíšených spojů

Energeticky redukovaný krátký světelný oblouk ke spojování tenkých plechů a smíšených spojů coldarc Energeticky redukovaný krátký světelný oblouk ke spojování tenkých plechů a smíšených spojů Dr.-Ing. Sven-F. Goecke 2004 EWM HIGHTEC WELDING GmbH EWM-coldArc 1/ 14 Sven.Goecke@EWM.de 22.03.2006

Více

TECHNOLOGIE I. (345303/02)

TECHNOLOGIE I. (345303/02) VŠB Technická univerzita Ostrava Fakulta strojní TECHNOLOGIE I. (345303/02) ČÁST SVAŘOV OVÁNÍ doc. Ing. Ivo Hlavatý, Ph.D. místnost A405 ivo.hlavaty hlavaty@vsb.cz http://fs1.vsb vsb.cz/~hla80 Podmínky

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Označení materiálu Digitální učební materiál CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_G.2.03 Název školy Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Autor Petr

Více

Mendelova univerzita v Brně Agronomická fakulta Ústav techniky a automobilové dopravy Moderní trendy v technologii svařování technických materiálů

Mendelova univerzita v Brně Agronomická fakulta Ústav techniky a automobilové dopravy Moderní trendy v technologii svařování technických materiálů Mendelova univerzita v Brně Agronomická fakulta Ústav techniky a automobilové dopravy Moderní trendy v technologii svařování technických materiálů Bakalářská práce Vedoucí práce: Ing. et Ing. Petr Dostál,

Více

Maxx Gases. ochranné atmosféry pro rychlé a čisté svařování

Maxx Gases. ochranné atmosféry pro rychlé a čisté svařování Maxx Gases ochranné atmosféry pro rychlé a čisté svařování Plyny Ferromaxx, které byly vyvinuty pro svařování uhlíkové, uhlíko manganové a nízkolegované oceli, zajišťují jakostní svar, vysokou produktivitu

Více

CENÍK kurzů a služeb svářečské školy 07-085

CENÍK kurzů a služeb svářečské školy 07-085 CENÍK kurzů a služeb svářečské školy 07-085 platný od 2.ledna 2013 (uvedené ceny jsou bez 21% DPH) Kontakt: Stanislav NĚMEC, vedoucí svářečské školy tel. +420474651848 fax +420474651849 mob. +420606345468

Více

Technologie I. Obloukové technologie v ochranných atmosférách (MIG/MAG, WIG)

Technologie I. Obloukové technologie v ochranných atmosférách (MIG/MAG, WIG) Technologie I. Obloukové technologie v ochranných atmosférách (MIG/MAG, WIG) Obloukové technologie v ochranných atmosférách (MIG/MAG, WIG) Při obloukovém svařování v ochranných plynech hoří oblouk obklopen

Více

KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide

KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide Metody tepelného dělení, problematika základních materiálů Tepelné dělení materiálů je lze v rámci strojírenské

Více

BO02 PRVKY KOVOVÝCH KONSTRUKCÍ

BO02 PRVKY KOVOVÝCH KONSTRUKCÍ BO02 PRVKY KOVOVÝCH KONSTRUKCÍ Normativní podklady: ČSN 73 14 01 Navrhování ocelových konstrukcí (původní již neplatná norma nahrazená Eurokódem) ČSN EN 1993 Eurokód 3: Navrhování ocelových konstrukcí

Více

Elektrostruskové svařování

Elektrostruskové svařování Nekonvenční technologie svařování Elektrostruskové svařování doc. Ing. Ivo Hlavatý, Ph.D. ivo.hlavaty@vsb.cz http://fs1.vsb.cz/~hla80 1 Elektroda zasahuje do tavidla, které je v pevném skupenství nevodivé.

Více

1 PŘÍDAVNÝ MATERIÁL PRO PLAMENNÉ SVAŘOVÁNÍ

1 PŘÍDAVNÝ MATERIÁL PRO PLAMENNÉ SVAŘOVÁNÍ 1 PŘÍDAVNÝ MATERIÁL PRO PLAMENNÉ SVAŘOVÁNÍ 1.1 SVAŘOVACÍ DRÁTY Jako přídavný materiál se při plamenovém svařování používá drát. Svařovací drát podstatně ovlivňuje jakost svaru. Drát se volí vždy podobného

Více

DRUHÝ GARSTKA A. 28.6.2013. Název zpracovaného celku: SVAROVÉ SPOJE. Svarové spoje

DRUHÝ GARSTKA A. 28.6.2013. Název zpracovaného celku: SVAROVÉ SPOJE. Svarové spoje Předmět: Ročník: Vytvořil: Datum: STAVBA A PROVOZ STROJŮ DRUHÝ GARSTKA A. 28.6.2013 Název zpracovaného celku: SVAROVÉ SPOJE Obecný úvod Svarové spoje Při svařování dvou dílů se jejich materiály spojí ve

Více

CENTRUM VZDĚLÁVÁNÍ PEDAGOGŮ ODBORNÝCH ŠKOL

CENTRUM VZDĚLÁVÁNÍ PEDAGOGŮ ODBORNÝCH ŠKOL Projekt: CENTRUM VZDĚLÁVÁNÍ PEDAGOGŮ ODBORNÝCH ŠKOL Kurz: Kurz Vývoj, zkoušení, výroba, skladování a expedice technických plynů 1 OBSAH 1. Úvod... 3 2. Vlastnosti a plyny používané ve svařování... 4 3.

Více

NAVAŘOVACÍ PÁSKY A TAVIDLA

NAVAŘOVACÍ PÁSKY A TAVIDLA NAVAŘOVACÍ PÁSKY A TAVIDLA (Pro kompletní sortiment navařovacích pásek a tavidel kontaktujte ESAB) Základní informace o navařování páskovou elektrodou pod tavidlem... J1 Použité normy pro navařovací pásky...

Více

Kalení Pomocí laserového paprsku je možné rychle a kvalitně tepelně zušlechtit povrch materiálu až do hloubek v jednotkách milimetrů.

Kalení Pomocí laserového paprsku je možné rychle a kvalitně tepelně zušlechtit povrch materiálu až do hloubek v jednotkách milimetrů. Kalení Pomocí laserového paprsku je možné rychle a kvalitně tepelně zušlechtit povrch materiálu až do hloubek v jednotkách milimetrů. Výhody laserového kalení: Nižší energetická náročnost (kalení pouze

Více

VLIV OCHRANNÝCH PLYNŮ NA VLASTNOSTI SVAROVÉHO SPOJE PŘI SVAŘOVÁNÍ NELEGOVANÝCH KONSTRUKČNÍCH OCELÍ METODOU 135 - MAG

VLIV OCHRANNÝCH PLYNŮ NA VLASTNOSTI SVAROVÉHO SPOJE PŘI SVAŘOVÁNÍ NELEGOVANÝCH KONSTRUKČNÍCH OCELÍ METODOU 135 - MAG VLIV OCHRANNÝCH PLYNŮ NA VLASTNOSTI SVAROVÉHO SPOJE PŘI SVAŘOVÁNÍ NELEGOVANÝCH KONSTRUKČNÍCH OCELÍ METODOU 135 - MAG Ing. Martin Roubíček, Ph.D., AIR LIQUIDE CZ, s.r.o. Prof. Ing. Václav Pilous, DrSc.,

Více

FastMig M. Výkonný profesionální MIG / MAG svařovací zdroj pro náročné aplikace

FastMig M. Výkonný profesionální MIG / MAG svařovací zdroj pro náročné aplikace FastMig M Výkonný profesionální MIG / MAG svařovací zdroj pro náročné aplikace Kemppi FastMig M jsou moderní a vysokovýkonné synergické MIG / MAG svařovací zdroje určené pro nasazení v náročných podmínkách,

Více

katalog výrobků_011 www.selcoweld.com

katalog výrobků_011 www.selcoweld.com katalog výrobků_011 CZ www.selcoweld.com com www.selcoweld.com Selco: vývoj a následná výroba svářecích, plasmových řezacích zdrojů a strojních zařízení. S profesionály bok po boku ve všech koutech světa.

Více

Tab. 1 Označení pro typ tavidla podle charakteristické chemické složky

Tab. 1 Označení pro typ tavidla podle charakteristické chemické složky Klasifikace tavidel Původní klasifikační norma tavidel pro svařování nelegovaných, nízkolegovaných, vysokolegovaných, korozivzdorných a žáruvzdorných ocelí včetně niklu a slitin na bázi niklu byla zrušena

Více

EWM-activArc. Maximáln. lní úspornost ovací vlastnosti. Nejjednodušší. obsluha BEZPEČNĚJŠÍ SVAŘOVÁNÍ

EWM-activArc. Maximáln. lní úspornost ovací vlastnosti. Nejjednodušší. obsluha BEZPEČNĚJŠÍ SVAŘOVÁNÍ -activarc BEZPEČNĚJŠÍ SVAŘOVÁNÍ Maximáln lní úspornost Perfektní svařovac ovací vlastnosti Nejjednodušší obsluha 2007 EWM HIGHTEC WELDING GmbH H.Lakhnati, B.Ivanov Schulung 1/16 Změna obloukového napětí

Více

1 - hořák, 2 - svařovací drát 1 - elektroda, 2 - oblouk, 3 - svorka 1 - elektrody

1 - hořák, 2 - svařovací drát 1 - elektroda, 2 - oblouk, 3 - svorka 1 - elektrody 8. Svarové spoje Nerozebíratelné spoje s materiálovým stykem Svařování = spojování kovových materiálů roztavením spojovaného a přídavného materiálu - po pozvolném vychladnutí se vytvoří pevný jednolitý

Více

Klasifikace ochrann ch plynû

Klasifikace ochrann ch plynû Klasifikace ochrann ch plynû Nová ČSN EN ISO 14175, která byla zavedena do systému ČSN v únoru roku 2009, nahradila předchozí normu ČSN EN 439 a již sám název Plyny a jejich směsi pro tavné svařování a

Více

SVAŘOVÁNÍ TAVNÉ. Výroba polotovarů

SVAŘOVÁNÍ TAVNÉ. Výroba polotovarů Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV STROJÍRENSKÉ TECHNOLOGIE FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MANUFACTURING TECHNOLOGY SVAŘOVÁNÍ

Více

KONSTRUKCE SVAŘOVACÍHO PŘÍPRAVKU DESIGN OF WELDING JIG

KONSTRUKCE SVAŘOVACÍHO PŘÍPRAVKU DESIGN OF WELDING JIG VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV STROJÍRENSKÉ TECHNOLOGIE FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MANUFACTURING TECHNOLOGY KONSTRUKCE

Více

Podle čeho vybírat svářečku - základní návod

Podle čeho vybírat svářečku - základní návod Podle čeho vybírat svářečku - základní návod Průvodce názvů funkcí svářeček Doporučené hodnoty svářecího proudu pro obalované elektrody Vhodné druhy proudu pro svařování TIG pro různé svařované materiály

Více

Metoda TIG. Metoda TIG. Svařování TIG: Metoda & Graf výběru. Obloukové svařování metodou TIG. Svářečky pro metodu TIG. Graf výběru pro svařování TIG

Metoda TIG. Metoda TIG. Svařování TIG: Metoda & Graf výběru. Obloukové svařování metodou TIG. Svářečky pro metodu TIG. Graf výběru pro svařování TIG Svařování TIG: Metoda & Graf výběru Metoda TIG Metoda TIG Obloukové svařování metodou TIG Vstup vody (Studená) Vodič proudu TIG hořák Dýza plynu Vstup ochranného plynu Wolframová elektroda Oblouk Svařovací

Více

CITOLINE. Nová řada stupňově řízených svařovacích poloautomatů MIG/MAG. www.oerlikon-welding.com www.airliquidewelding.com

CITOLINE. Nová řada stupňově řízených svařovacích poloautomatů MIG/MAG. www.oerlikon-welding.com www.airliquidewelding.com CITOLINE Nová řada stupňově řízených svařovacích poloautomatů MIG/MAG www.oerlikonwelding.com www.airliquidewelding.com Zdroje CITOLINE: jednoduché a efektivní Připojení napájecího kabelu: Jednofázové

Více

ČSN EN 287-1 Zkoušky svářečů Tavné svařování Část 1: Oceli

ČSN EN 287-1 Zkoušky svářečů Tavné svařování Část 1: Oceli ČSN EN 287-1 Zkoušky svářečů Tavné svařování Část 1: Oceli Výtah z normy vysvětlující jednotlivé proměnné 1) Metoda svařování : metody svařování definované v normě ČSN EN ISO 857-1 a označení dle ČSN EN

Více

Vysokorychlostní TIG Svařování austenitické oceli metodou TIG

Vysokorychlostní TIG Svařování austenitické oceli metodou TIG Vysokorychlostní TIG Svařování austenitické oceli metodou TIG Vypracoval: Bc. Ondřej Slabý Vedoucí práce: Ing. Karel Kovanda, Ph.D Dne: 10.4.2016 1. Úvod Cílem této experimentální práce je vyzkoušet svařování

Více

Metoda MIG MIG. Svařování MIG. Svařování MIG. Svařování plněnou elektrodou s vlastní ochranou. MIG / MAG svářečky

Metoda MIG MIG. Svařování MIG. Svařování MIG. Svařování plněnou elektrodou s vlastní ochranou. MIG / MAG svářečky Svařování MIG Metoda MIG MIG Svařování MIG Hořák Hubice Směr svařování Ochranný plyn Oblouk Svarová lázeň Ztuhlý svarový kov Kontaktní průvlak (špička) Plný drát nebo Plněná elektroda Ochranná atmosféra

Více

Plazmové svařování (navařování) - 15

Plazmové svařování (navařování) - 15 Plazmové svařování (navařování) - 15 Aplikace plazmatu je ve světě značně rozšířena, zejména při navařování prášků a drátů. Metoda má základ v použití vysoce koncentrovaného proudu plazmy pro tavení navařovaného

Více

SVAŘOVÁNÍ ZA PŮSOBENÍ TEPLA A TLAKU

SVAŘOVÁNÍ ZA PŮSOBENÍ TEPLA A TLAKU Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.

Více

MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE

MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE BRNO 2008 PAVEL ROSENBERG Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav techniky a automobilové

Více

LAHVOVÉ REDUKČNÍ VENTILY

LAHVOVÉ REDUKČNÍ VENTILY LAHVOVÉ REDUKČNÍ VENTILY ŘADY vyrobeny dle EN ISO 2503 testovány a schváleny Federálním institutem pro výzkum a testování materiálů BAM certifikáty: Tgb.-Nr. II-242/200, Tgb.-Nr. II-4958/2000 Manometry

Více

Bakalářská práce ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ. Materiálové inženýrství a strojírenská metalurgie. Svařování metodou TIG

Bakalářská práce ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ. Materiálové inženýrství a strojírenská metalurgie. Svařování metodou TIG ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Studijní program: Studijní zaměření: B 2301 Strojní inženýrství Materiálové inženýrství a strojírenská metalurgie Bakalářská práce Svařování metodou TIG Autor:

Více

1 TECHNIKA SVAŘOVÁNÍ 1.1 DRUHY SVARŮ

1 TECHNIKA SVAŘOVÁNÍ 1.1 DRUHY SVARŮ 1 TECHNIKA SVAŘOVÁNÍ 1.1 DRUHY SVARŮ Při obloukovém svařování se používají tyto základní druhy svarů : svar lemový, svar tupý (I, V, X, U a poloviční V, X, U), svar koutový (rohový). 1.2 PŘÍPRAVA SVAROVÝCH

Více

1 Elektroplynové svařování - 73

1 Elektroplynové svařování - 73 1 Elektroplynové svařování - 73 V posledních letech byl zaznamenán zvýšený zájem v oblasti spojování součástí větších tloušťek (ocelové pláty s vyšší pevnosti). Tento trend vychází z poptávky po vyšší

Více

TECHNOLOGIE I. Autoři přednášky: prof. Ing. Iva NOVÁ, CSc. Ing. Jiří MACHUTA, Ph.D. Pracoviště: TUL FS, Katedra strojírenské technologie

TECHNOLOGIE I. Autoři přednášky: prof. Ing. Iva NOVÁ, CSc. Ing. Jiří MACHUTA, Ph.D. Pracoviště: TUL FS, Katedra strojírenské technologie TECHNOLOGIE I : Technologičnost konstrukce svařenců, rozdíl v konstrukci odlitku a svařence, materiály pro svařenec, materiály pro odlitky, vlastnosti materiálů pro svařenec. Autoři přednášky: prof. Ing.

Více

Převod mezi kelviny a Celsiovými stupni se počítá podle vztahu:

Převod mezi kelviny a Celsiovými stupni se počítá podle vztahu: 4 Elektrické teplo 4.1 Základní pojmy Při některých elektromagnetických jevech se část energie přeměňuje na teplo. Teplo je druh energie, má tedy stejnou jednotku jako mechanická práce a elektrická energie,

Více

ARCAL TM Prime. Čisté řešení. Primární řešení při široké škále použití:

ARCAL TM Prime. Čisté řešení. Primární řešení při široké škále použití: ARCAL TM Prime Čisté řešení Primární řešení při široké škále použití: TIG a plazmové svařování všech materiálů MIG svařování slitin hliníku a mědi Ochrana kořene svaru u všech materiálů ARCAL TM Prime

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV STROJÍRENSKÉ TECNOLOGIE FACULTY OF MECHANICAL ENGINEERING

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV STROJÍRENSKÉ TECNOLOGIE FACULTY OF MECHANICAL ENGINEERING VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV STROJÍRENSKÉ TECNOLOGIE FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MANUFACTURING TECHNOLOGY NOVÉ ASPEKTY

Více

CITOTIG II DC Průmyslové zdroje

CITOTIG II DC Průmyslové zdroje CITOTIG II DC Průmyslové zdroje Jedno nebo třífázově napájené přenosné invertory pro vysoce kvalitní svařování metodou MMA a TIG DC nelegovaných nebo nerezavějících ocelí. 2570-21 CITOTIG II 200 DC, 300

Více

MODELOVÁ ŘADA NEJEN NOVÝ VZHLED 1-2007. www.omc.cz ČESKÝ VÝROBCE SVÁŘECÍ TECHNIKY

MODELOVÁ ŘADA NEJEN NOVÝ VZHLED 1-2007. www.omc.cz ČESKÝ VÝROBCE SVÁŘECÍ TECHNIKY MODELOVÁ ŘADA NEJEN NOVÝ VZHLED 1-2007 ČESKÝ VÝROBCE SVÁŘECÍ TECHNIKY INOVACE ŘADY GAMA INVERTOROVÝ SVÁŘECÍ ZDROJ PRO MMA/TIG GAMA 151 Invertorový svářecí stroj GAMA 151 je určen především pro svařování:

Více

Mgr. Ladislav Blahuta

Mgr. Ladislav Blahuta Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám - OP VK 1.5. Výuková sada ZÁKLADNÍ

Více

Expert na svařování MMA

Expert na svařování MMA Expert na svařování MMA Invertor, tyristor i usměrňovač, kompletní nabídka zařízení Oerlikon na svařování obalenými elektrodami. www.oerlikon-welding.com www.airliquidewelding.com Svařování MMA Při svařování

Více

TECHNOLOGIE II ČÁST SVAŘOVÁNÍ -1

TECHNOLOGIE II ČÁST SVAŘOVÁNÍ -1 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŢENÝRSTVÍ Odbor svařování a povrchových úprav Sylabus přednášek TECHNOLOGIE II ČÁST SVAŘOVÁNÍ -1 Autor: Jaroslav KUBÍČEK TEORIE VZNIKU SVAROVÉHO SPOJE

Více

DRÁTY PRO SVAŘOVÁNÍ V OCHRANNÝCH ATMOSFÉRÁCH

DRÁTY PRO SVAŘOVÁNÍ V OCHRANNÝCH ATMOSFÉRÁCH DRÁTY PRO SVAŘOVÁNÍ V OCHRANNÝCH ATMOSFÉRÁCH Základní doporučení pro svařování v ochranných atmosférách, výběr plynu... C1 Přehled platných norem pro přídavné materiály pro metody MIG/MAG/WIG... C2 Celkový

Více

TAVNÉ SVAŘOVÁNÍ - SVAŘOVÁNÍ PLAMENEM. Vypracoval: Ing. Petra Janíčková Kód prezentace: OPVK-TBdV-METALO-STRS-2-STE-PJA-001

TAVNÉ SVAŘOVÁNÍ - SVAŘOVÁNÍ PLAMENEM. Vypracoval: Ing. Petra Janíčková Kód prezentace: OPVK-TBdV-METALO-STRS-2-STE-PJA-001 TAVNÉ SVAŘOVÁNÍ - SVAŘOVÁNÍ PLAMENEM Vypracoval: Ing. Petra Janíčková Kód prezentace: OPVK-TBdV-METALO-STRS-2-STE-PJA-001 Technologie budoucnosti do výuky CZ.1.07/1.1.38/02.0032 Svařování plamenem tavné

Více

Svařování. Rozdělení svařování

Svařování. Rozdělení svařování Svařování Rozdělení svařování Definice svařování: svařování je technologický proces, při kterém dochází k vytvoření nerozebíratelného spojení strojních součástí i celých konstrukcí ze součástí jednoduchých

Více

Střední průmyslová škola a Vyšší odborná škola Příbram, Hrabákova 271. Příbram II Ing. Jaroslav Dražan. Svařování - 2. část (svařování el.

Střední průmyslová škola a Vyšší odborná škola Příbram, Hrabákova 271. Příbram II Ing. Jaroslav Dražan. Svařování - 2. část (svařování el. Číslo projektu Číslo materiálu Název školy Autor Tématická oblast Ročník CZ.1.07/1.5.00/34.0556 VY_32_INOVACE_DR_STR_18 Střední průmyslová škola a Vyšší odborná škola Příbram, Hrabákova 271. Příbram II

Více

MIG/MAG/MMA Kompaktní zdroje / Invertory. Origo TM Mig C3000i panel MA23, MA23A

MIG/MAG/MMA Kompaktní zdroje / Invertory. Origo TM Mig C3000i panel MA23, MA23A MIG/MAG/MMA Kompaktní zdroje / Invertory Origo TM Mig C3000i panel MA23, MA23A Profesionální invertorové zdroje pro svařování MIG/MAG/ MMA a drážkování uhlíkovou elektrodou. Nastavení proudu v rozsahu

Více

Úvod do svařování Průmyslový design Ing. Karel Kovanda, Ph.D.

Úvod do svařování Průmyslový design Ing. Karel Kovanda, Ph.D. Úvod do svařování Průmyslový design Ing. Karel Kovanda, Ph.D. ČVUT v Praze, Fakulta strojní Ústav strojírenské technologie Metody spojování materiálů Rozebíratelná a) mechanické spoje, b) šroubová spojení,

Více

NOVINKY VE SVAŘOVACÍ TECHNICE OERLIKON

NOVINKY VE SVAŘOVACÍ TECHNICE OERLIKON NOVINKY VE SVAŘOVACÍ TECHNICE OERLIKON Ing.Jan Veverka, OMNITECH spol s.r.o. Oerlikon kompletní řada zdrojů pro svařování a dělení materiálů Kompletní řada zahrnují zdroje pro svařování metodou MMA, MIG/MAG,

Více

MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE

MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE BRNO 2014 OLDŘICH ČERNÝ Mendelova univerzita v Brně Agronomická fakulta Ústav techniky a automobilové dopravy Využití metody svařování v

Více

Svařování plazmovým obloukem

Svařování plazmovým obloukem Svařování plazmovým obloukem doc. Ing. Drahomír Schwarz, CSc. ČSÚ, s.r.o., Ostrava doc. Ing. Ivo Hlavatý, CSc. VŠB TU Ostrava, www.csuostrava.eu technologie svařování 1. Úvod Svařování plazmou (PAW Plasma

Více

Problémy při obloukovém svařování Příčiny vad a jejich odstranění

Problémy při obloukovém svařování Příčiny vad a jejich odstranění Problémy při obloukovém svařování vad a jejich odstranění Vady svarů mohou být způsobeny jednou nebo více uvedenými příčinami ESAB VAMBERK, s.r.o. Smetanovo nábřeží 334 517 54 VAMBERK ČESKÁ REPUBLIKA Tel.:

Více

1.1 VLIVY NA JAKOST SVAROVÉHO SPOJE svařitelnost materiálu, správná konstrukce, tvar svarku, volba přídavného materiálu, kvalifikace svářeče.

1.1 VLIVY NA JAKOST SVAROVÉHO SPOJE svařitelnost materiálu, správná konstrukce, tvar svarku, volba přídavného materiálu, kvalifikace svářeče. 1 SVARY A SVAŘOVANÉ KONSTRUKCE SVAŘOVÁNÍ = pevné nerozebíratelné spojení kovových, případně nekovových materiálů účinkem tepla a tlaku nebo jejich kombinací, s použitím přídavného materiálu. 1.1 VLIVY

Více

Svařování pod tavidlem

Svařování pod tavidlem Svařování pod tavidlem Metoda svařování svařování pod pod tavidlem tavidlem Směr svařování Kontaktní průvlak Drát (drátová elektroda) Tavidlo Elektrický oblouk Ochranná atmosféra Tavná lázeň Roztavená

Více

Katalog náhradních, spotřebních dílů a příslušenství pro svařování

Katalog náhradních, spotřebních dílů a příslušenství pro svařování Katalog náhradních, spotřebních dílů a příslušenství pro svařování 2013 MIG/MAG svařování FE svařovací hořáky MMT svařovací hořáky PMT svařovací hořáky WELDSNAKE svařovací hořáky MMG svařovací hořáky MMG

Více

PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE

PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/02.0010 PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE Obor: Ročník: Zpracoval: Elektrikář - silnoproud Třetí Bc. Miroslav Navrátil PROJEKT ŘEMESLO

Více

Opravy odlitkû ze edé litiny

Opravy odlitkû ze edé litiny Opravy odlitkû ze edé litiny Šedá litina je obtížně svařitelná. Byla vypracována celá řada více či měně úspěšných metod, technologických postupů svařování a pájení. Základním předpokladem úspěšnosti opravy

Více

Svařování netavící se elektrodou v inertní atmosféře metoda TIG

Svařování netavící se elektrodou v inertní atmosféře metoda TIG KURZY SVÁŘEČSKÝCH TECHNOLOGŮ A INŽENÝRŮ IWT / IWE Svařování netavící se elektrodou v inertní atmosféře metoda TIG doc. Ing. Jaromír MORAVEC, Ph.D., EWE Princip svařování metodou WIG/TIG Při svařování metodou

Více

Optimalizace montážní linky pro výrobu pólů. Jiří Kuběja

Optimalizace montážní linky pro výrobu pólů. Jiří Kuběja Optimalizace montážní linky pro výrobu pólů Jiří Kuběja Bakalářská práce 2013 Příjmení a jméno:kuběja Jiří Obor: Technologická zařízení P R O H L Á Š E N Í Prohlašuji, že beru na vědomí, že odevzdáním

Více

MATERIÁLOVÉ SPOJE SVÁŘENÉ, PÁJENÉ, LEPENÉ

MATERIÁLOVÉ SPOJE SVÁŘENÉ, PÁJENÉ, LEPENÉ MATERIÁLOVÉ SPOJE SVÁŘENÉ, PÁJENÉ, LEPENÉ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu

Více

OVÁNÍ AUTOMATEM POD TAVIDLEM (121)

OVÁNÍ AUTOMATEM POD TAVIDLEM (121) VŠB Technická univerzita Ostrava Fakulta strojní SVAŘOV OVÁNÍ AUTOMATEM POD TAVIDLEM (121) doc. Ing. Ivo Hlavatý, Ph.D. místnost A405 ivo.hlavaty hlavaty@vsb.cz http://fs1.vsb vsb.cz/~hla80 Svařov ování

Více

Svařování hliníkových slitin wolframovou elektrodou Bakalářská práce

Svařování hliníkových slitin wolframovou elektrodou Bakalářská práce Mendelova univerzita v Brně Agronomická fakulta Ústav techniky a automobilové dopravy Svařování hliníkových slitin wolframovou elektrodou Bakalářská práce Vedoucí práce: Ing. Jiří Votava, Ph.D. Vypracoval:

Více

OK TUBRODUR Typ náplně: speciální rutilová. Ochranný plyn: s vlastní ochranou. Svařovací proud:

OK TUBRODUR Typ náplně: speciální rutilová. Ochranný plyn: s vlastní ochranou. Svařovací proud: OK TUBRODUR 14.70 EN 14700: T Z Fe14 Plněná elektroda pro tvrdé návary s velmi vysokou odolností proti opotřebení tvrdými a zrnitými minerály jako pískem, rudou, kamenivem, půdou apod. Otěruvzdornost je

Více

rutil-celulózové rutil-kyselý rutil-bazický rutilový tlustostěnný

rutil-celulózové rutil-kyselý rutil-bazický rutilový tlustostěnný 1 ELEKTRODY PRO RUČNÍ OBLOUKOVÉ SVAŘOVÁNÍ Používají se obalené elektrody, skládající se z : jádra obalu tvořeno kovem, taven v elektrickém oblouku a následně přenášen obloukem do svaru, s nataveným základním

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.8 Realizace klempířských prací a dovedností

Více

5. Spojování prvků z nerezových ocelí Mechanické spoje, svařování, materiály na spoje. Návrh spojů. Provádění spojů.

5. Spojování prvků z nerezových ocelí Mechanické spoje, svařování, materiály na spoje. Návrh spojů. Provádění spojů. 5. Spojování prvků z nerezových ocelí Mechanické spoje, svařování, materiály na spoje. Návrh spojů. Provádění spojů. Šroubové spoje Materiály nerezové šrouby a matice (podle ČSN EN ISO 3506), použít stejnou

Více