Sylabus přednášky č.10 z ING3

Rozměr: px
Začít zobrazení ze stránky:

Download "Sylabus přednášky č.10 z ING3"

Transkript

1 Sylabus přednášky č.10 z ING3 Aplikace IG v průmyslu Doc. Ing. Jaromír Procházka, CSc. Praha

2 GEODÉZIE V PRŮMYSLU Rozdíl mezi měřením ve volné přírodě či na staveništi a v průmyslových objektech spočívá v prostředí, v němž měřické práce probíhají, v bezpečnosti práce, jíž musí měřická četa věnovat mimořádnou pozornost, v rozměrech objektů, které jsou relativně velmi malé a v požadované přesnosti, která je zpravidla o řád vyšší než u měření ve stavebnictví. Většina měření v průmyslu probíhá uvnitř budov, které bezprostředně slouží provozu, často za špatných světelných podmínek, při rozdílných teplotách, způsobujících průvan a s ním spojenou refrakci, mnohdy za vibrací způsobených provozem strojů a ovlivňujících funkčnost měřicích přístrojů, často i ve velmi hlučném prostředí. Z těchto důvodů je třeba dodržovat zásady k vyloučení nebo alespoň částečné eliminaci nepříznivých vlivů. Jak již bylo uvedeno výše, je nutno věnovat mimořádnou pozornost bezpečnosti práce a předcházet možným pracovním úrazům, které v tomto prostředí objektivně hrozí. Ať již je to vnitropodniková doprava (akumulátorové vozíky, otočné jeřáby apod.), práce ve výškách či práce v blízkosti elektrických vedení je třeba prostřednictvím bezpečnostního technika průmyslového zařízení seznámit pracovníky podniku s probíhajícími geodetickými pracemi a omezit naznačená rizika na minimum. Z výše uvedených důvodů je třeba počítat s prodloužením doby potřebné ke splnění stanoveného úkolu. Na druhou stranu však i se zvýšeným náporem na nervovou soustavu (neustále ve střehu) a tudíž s objektivním snižováním pozornosti s délkou měření. JEŘÁBY A JEŘÁBOVÉ DRÁHY (výtah z dizertační práce Ing. Petera Kyrinoviče z STU Bratislava a z bakalářské práce O. Kočího) Kategorizace jeřábů a jeřábových drah Jeřáby umožňují přesun břemena ve vymezeném prostoru ve vodorovném i ve svislém směru. Na základě počtu pracovních cyklů, poměrného zatížení a dynamických účinků, se jeřáby dělí do čtyř skupin: skupina I. jeřáby pro lehký provoz, skupina II. jeřáby pro střední provoz skupina III. jeřáby pro těžký provoz, skupina IV. jeřáby pro velmi těžký provoz. Podle nosné konstrukce, která udává zpravidla celkový tvar, se rozeznávají jeřáby (Dražan et al., 1968, Remta et al.,1974 a Remta et al., 1975): mostové, portálové a poloportálové, konzolové, věžové a sloupové, silniční (autojeřáby), speciální jeřáby. Z geodetického hlediska jsou zajímavé zejména tři typy, mostový, portálový a věžový jeřáb. 2

3 Mostové jeřáby Mostové jeřáby tvoří nejrozšířenější a nejčastější skupinu jeřábů v průmyslových halách a nádvořích průmyslových objektů. Konstrukce mostových jeřábů se skládá z mostu (nosná konstrukce), pohybujícího se po vyvýšené jeřábové dráze se dvěma větvemi a pojezdového zařízení včetně pojezdových kol (obr.1). Po mostě se pohybuje jeřábový vozík (tzv. kočka ), který nese zdvíhací zařízení a břemeno. Portálové a poloportálové jeřáby Nosnou konstrukci portálových jeřábů tvoří portál, který se skládá z jeřábového mostu a dvou podpěr (noh) s pojízdným zařízením, umístěným v úrovni pojezdu jeřábu (obr.2). Most může být bez převislých konců, případně s jedním, výjimečně dvěma převislými konci (Remta et al., 1975). Poloportálové jeřáby tvoří specifickou část portálových jeřábů, jejichž most se na jedné straně bezprostředně dotýká jeřábové dráhy a na druhé straně je dotyk zabezpečovaný pomocí podpěr (obr.3). Jedna větev jeřábové dráhy se tedy nachází ve zvýšené úrovni, nejčastěji ve výšce mostového jeřábu a je umístěná na nosné konstrukci budovy, nebo na samonosné opěrné zdi (obr.3). Mostové a portálové jeřáby se pohybují téměř výhradně po jeřábových drahách. Vzájemně se od sebe tyto typy liší jen v jednom aspektu. U portálového jeřábu se po jeřábové dráze pohybují podpěry nahoře pevně spojené s nosníky pro pojezd kočky. V případě mostového jeřábu je naopak jeřábová dráha umístěna na podpěrách a po ní se pohybují hlavní nosníky s pojezdy "kočky". 3

4 Konzolové jeřáby Konzolové jeřáby se pohybují zpravidla pod mostovými jeřáby podél jedné, nebo podél obou stěn haly po jeřábové dráze, která je upevněna k nosné konstrukci haly (obr.4). Svislé zatížení přenášejí pohonná kola na jedné větvi jeřábové dráhy. Stabilitu jeřábu (klopný moment) zajišťují nosníky, umístěné nad a pod rovinou jeřábové dráhy, o kterou se opírají horizontálně, případně vertikálně kladky. Konstrukce konzolového jeřábu se skládá ze svislého rámu jeřábu a ramene. Věžové a sloupové jeřáby Svislou konstrukci věžového jeřábu tvoří vysoká věžová příhradová konstrukce (obr.5) a v případě sloupového jeřábu poměrně krátký jednoduchý prut (sloup, obr.6). Věžové jeřáby se velmi často označují jako stavební. Věžové jeřáby se vyrábějí v mnoha provedeních, ale z geodetického hlediska je důležité rozlišení podle podvozku. Zde se dělí na podvozek bez pojezdu, nebo s pojezdem. U větších jeřábů se nezřídka používá pojezdu po jeřábových drahách o různých délkách i tvarech. Tyto jeřábové dráhy, zvláště větších délek a členitějších tvarů, se stávají předmětem geodetického monitoringu. Jeřábové dráhy se v případě mostových, portálových, poloportálových a věžových pojízdných jeřábů skládají ze dvou větví, jejichž vzájemná poloha je determinovaná typem a konstrukcí jeřábu. Jeřábové dráhy mohou mít charakter trvalých drah pro mostové, portálové, poloportálové a konzolové jeřáby nebo dočasných drah pro věžové, sloupové a portálové jeřáby na staveništi. 4

5 Termíny a definice pro jeřábové dráhy (ČSN ) Jeřábová dráha je nosná konstrukce určená pro pojezd jeřábu, kladkostroje nebo jeřábového vozíku ( kočky ). Jeřábová dráha se skládá: z nosníků, včetně nárazníků, příčných ztužovadel, výstužných nosníků, kolejnic a spojovacích součástí, z podpěr nosníků jeřábové dráhy (sloupy, brzdná ztužovadla) a základů, z doplňkových konstrukcí (lávky, zábradlí, výstupy, trolejové vedení). Větev jeřábové dráhy představuje souvislou část dráhy, po které se pohybuje jedna strana jeřábu, kladkostroj a nebo kočka. Pole jeřábové dráhy je část větve jeřábové dráhy mezi dvěma sousedními podpěrami. Pole může být krajní, vnitřní a nebo dilatační, přičemž krajní pole může mít přečnívající konce přes podpěrný sloup. Rozpětí pole jeřábové dráhy je definované vodorovnou osovou vzdáleností sousedních podpěr. Rozchod jeřábové dráhy je vodorovná vzdálenost mezi svislými osami (středy) jeřábových kolejnic obou větví jeřábové dráhy mostových, portálových a poloportálových jeřábů a vodorovná vzdálenost mezi svislými osami pojížděných nosníků u podvěsného jeřábu. Pro většinu jeřábů se rozchod dráhy volí násobkem 300 mm a v odůvodněných případech, kde není možno tento rozměr dodržet, se volí rozchod násobkem 100 mm. Výška jeřábové dráhy je svislá vzdálenost od úrovně země (podlahy) k úrovni hlavy kolejnice jeřábové dráhy (platí pro jeřáby mostové, portálové a poloportálové). Délka jeřábové dráhy je vzdálenost mezi čely nárazníků na obou koncích jeřábové dráhy. Kolejnice je styčný prvek mezi jeřábem a nosníkem jeřábové dráhy. Jedná se o nejexponovanější část jeřábové dráhy, protože je bezprostředně namáhána svislými tlaky kol a vodorovnými podélnými a bočními silami. Rozměr a tvar kolejnice se volí podle tlaku kol, pojezdové rychlosti a tvaru kol. Osa kolejnice je spojnice středových bodů (střednic) kolejnice, definovaných v úrovni jejího temena Pojezdová rychlost je definována jako rychlost jeřábu za ustáleného pohybu na vodorovné dráze s břemenem odpovídajícím maximální hmotnosti při rychlosti větru 3 m/s ve výšce 10 m.. Geometrické parametry jeřábové dráhy zahrnují parametry popisující směrový a výškový průběh obou kolejnic a jejich rozchod. Směrový průběh kolejnic jeřábové dráhy je definovaný směrovými odchylkami podélné střednice kolejnice od vztažné přímky (zpravidla záměrné přímky jako časti vztažné soustavy) ve stanovených příčných řezech. Zároveň se určuje příčná odchylka návaznosti kolejnic na stycích. 5

6 Výškový průběh kolejnic představují výškové odchylky pojezdových ploch kolejnic od vztažné vodorovné roviny, jakož i výškové rozdíly těchto ploch ve stanovených příčných řezech. Vztažnou vodorovnou rovinou je zpravidla projektovaná úroveň pojezdových ploch kolejnic, případně rovina, procházející nejvyšším bodem jejich pojezdových ploch (Michalčák et al., Inženýrská geodézie 2, 1995). Průchozí lávka je lávka podél celé větve jeřábové dráhy určená zejména pro nouzový únik z kabiny nebo koše jeřábu. Revizní lávka je lávka v části větve jeřábové dráhy určená ke kontrole, údržbě a opravám jeřábu. Revizní plošina je plošina v příčném, popř. i podélném směru jeřábové dráhy určená ke kontrole, údržbě a opravám jeřábu Měření jeřábových drah V průmyslu a ve stavebnictví jsou jeřáby důležitým pracovním prostředkem, který ovšem v důsledku prakticky nepřetržitého provozu a vysokého zatížení podléhá značnému opotřebení. Při nadměrném opotřebování kolejnic nebo vlastního jeřábu, musí dojít z bezpečnostních důvodů k odstavení jeřábu z provozu. Aby se předešlo nežádoucímu opotřebení, resp. odstávce jeřábu, je nutné během provozu vykonávat v pravidelných intervalech kontrolní měření za účelem zjištění geometrických parametrů jeřábové dráhy a jeřábu. Správně postavená, resp. rektifikovaná jeřábová dráha musí splňovat následující základní podmínky (ČSN Jeřábové dráhy, ČSN ISO , Jeřáby Tolerance pro pojezdová kola a pro jeřábové a příčné dráhy, Michalčák et al., Inženýrská geodézie 2, 1990): osy kolejnic jsou navzájem rovnoběžné, pojezdové plochy kolejnic jsou ve stejné výšce, rozchod kolejnic je shodný s osovou vzdáleností kol jeřábu, spojnice nárazníkových čel je kolmá na osu kolejnic, osa kolejnic je kolmá na točnou osu kol jeřábu. Nesplnění hlavních podmínek pro bezporuchový provoz jeřábové dráhy a vlastního jeřábu vede k opotřebování materiálu kolejnic a kol jeřábu, nadměrnému zatížení pohonné části a převodovek jeřábu a k vyšší spotřebě elektrické energie. Dojde-li již k takovému stavu, vyžaduje to odstavení jeřábu z provozu (zpravidla na delší dobu), následné provedení kontroly, výměnu opotřebovaných součástí a rektifikaci jeřábové dráhy a jeřábu. Odstavení jeřábu z provozu může vést i k omezení výroby a s tím souvisejícím ekonomickým ztrátám. Tomu lze předejít pravidelnými kontrolami geometrických parametrů a včasnou případnou rektifikací částí jeřábové dráhy či jeřábu, které překračují povolené mezní odchylky. Realizace kontrolních měření vyžaduje z technických i bezpečnostních důvodů rovněž odstavení jeřábu z provozu, avšak na mnohem kratší dobu. Ta závisí na typu jeřábové dráhy, velikosti geometrických parametrů dráhy a jeřábu, požadované přesnosti a přístrojovém vybavení. Vzhledem k rozsahu a náročnosti měření se jedná zpravidla o několik hodin, přičemž z výše uvedených důvodů je snaha tuto dobu minimalizovat. Důležitou součástí při realizaci kontrolních měření je otázka zajištění bezpečnosti geodetů při měření. Zvláště u nadzemních jeřábových drah je geodet (měřič i figurant) vystaven nebezpečí spojenému s prací ve výškách. Jednou z možností jak zefektivnit proces měření, zvýšit bezpečnost pracovníků, eliminovat chyby měřiče a 6

7 především umožnit provoz jeřábu v době měření (resp. minimalizovat čas odstávky jeřábu), je využití automatizovaného měřícího systému. Metody měření Vzhledem k množství variací konstrukčního a geometrického uspořádání jeřábových drah není možné stanovit jednotně metodu měření. Při volbě metody měření je nutné brát ohled na poměrně velké množství aspektů. Především je nutné dbát všech bezpečnostních pravidel například pro práce ve výškách, práce u elektrických zařízení a podobně. První podmínkou je s dostatečnou přesností zjistit geometrický tvar tak, aby bylo možné určit odchylky od výrobních hodnot a zjistit vztah k tolerancím uvedeným v normě (ČSN ISO , Jeřáby Tolerance pro pojezdová kola a pro jeřábové a příčné dráhy). Dalším důležitým aspektem je tvarové rozložení a velikost jeřábové dráhy. Ideální umístění přístroje je přímo na ose kolejnice (obr.8). V tom případě je možné měřit příčné odchylky od přímosti metodou záměrné přímky úhlově nebo pomocí speciálních přípravků přímo. U menších rozchodů a dobře přístupných jeřábových drah je možné měřit rozchod přímo pásmem nebo laserovým dálkoměrem (např. Leica Disto). U větších jeřábových drah je nutné zjišťovat rozchod a ostatní geometrické parametry pouze nepřímo, například semipolární metodou nebo častěji prostorovou polární metodou. Metodika měření geometrických parametrů se skládá: (Michalčák et al., 1990 Lukáč, 2003) z návrhu vztažné soustavy, jejího zaměření a vyhodnocení, z měření směrového průběhu kolejnic jeřábové dráhy a rozchodu, z měření výškového průběhu kolejnic, z měření geometrických parametrů jeřábu. Při volbě vztažné soustavy je nutné zvažovat vícero aspektů, mezi které patří typ a délka jeřábové dráhy, přístrojové vybavení a vyžadovaná přesnost. Měření směrového i výškového průběhu a rozchodu kolejnic se může realizovat samostatně, nebo současně, v závislosti na zvolené metodě. Metoda záměrné přímky Základní metodou měření geometrických parametrů jeřábových drah je metoda záměrné přímky. Záměrná přímka, tvořící vztažnou soustavu, může být realizována několika způsoby, a to jako spojnice koncových bodů (střednic kolejnic), rovnoběžka se spojnicí koncových bodů, nebo jako přímka v obecné poloze ke spojnici koncových bodů. Záměrnou přímku může představovat záměrná osa teodolitu, nebo laserového přístroje. Měření směrového a výškového průběhu předcházejí přípravné práce, jejichž cílem je rozměření kolejnic a vyznačení bodů jejich střednice půlícími nůžkami s průbojníkem (obr.7). Vzdálenost jednotlivých bodů na kolejnici je volena v závislosti na typu jeřábové dráhy, s přihlédnutím k příslušným technickým normám. 7

8 Na vyznačených bodech se následně měří směrové a výškové odchylky kolejnice od záměrné přímky. Při realizaci záměrné přímky ve spojnici koncových bodů se trojnožka teodolitu (totální stanice) a koncového terče či hranolu (obr.9) našroubuje na upínací šroub úchytu, upevněného na kolejnici (obr.8). Uvedená problematika měření je rozpracovaná v knihách, skriptech a publikacích vícera autorů (např. Michalčák et al., 1990, Michalčák et al., 1995, Lukáč et al., 1986 nebo Lukáč, 2003). Rektifikační hodnoty směrové rektifikace jeřábové dráhy můžeme získat: grafickým způsobem, analyticko-grafickým způsobem, analytickým způsobem. První dva způsoby určení rektifikačních hodnot se v současnosti již nepoužívají. Vycházejí z grafického zobrazení obou záměrných přímek a vodorovných odchylek spolu s redukovaným rozchodem. Na základě omezujících podmínek, které dovolují největší posuny, se určí pásy, ve kterých je možné posouvat podél osy. Při uvedených způsobech nemusí být dodržena podmínka rovnoběžnosti kolejnicových pásů dráhy (Lukáč et al., 1986). Analytický způsob řešení je sice matematicky složitější a časově náročnější na výpočet, avšak poskytuje exaktní a jednoznačné řešení. Částečnou nevýhodu daného postupu zpracování je, že při výpočtu hodnot metodou nejmenších čtverců může nastat vzájemné stočení os kolejnic vzhledem k nosné konstrukci. Analytické zpracování údajů a postup výpočtu rektifikačních hodnot oprav probíhá ve třech krocích: výpočet parametrů (souřadnic) bodů vztažné sítě a pozorovaných bodů na kolejnici, výpočet hodnot pro směrovou rektifikaci a úpravu rozchodu, výpočet hodnot pro výškovou rektifikaci. Uvedené způsoby výpočtu rektifikačních oprav předpokládají všeobecnou polohu záměrných přímek, přičemž nevylučují možnost volby přímky jako spojnice začátečních a koncových bodů kolejnic. Při použití jedné záměrné přímky se uvažuje jeden souřadnicový systém pro oba kolejnicové pásy za podmínky minimální hodnoty sumy čtverců oprav. Postup výpočtu je v tomto případě jednodušší, avšak vyžaduje měřit geometrické parametry pouze na jednu záměrnou přímku, což může být u jeřábových drah s větším rozchodem nevýhodou. Druhý způsob vychází z použití dvou záměrných přímek, ze kterých každá má definovaný vlastní souřadnicový systém. Vzájemné propojení souřadnicových systémů se uskuteční na základě vodorovných úhlů ω a délek d mezi koncovými body soustavy. Výpočet parametrů vztažné soustavy se provede metodou nejmenších čtverců a sestaví se transformační funkce pro oba systémy. Na základě transformačních funkcí se vypočítají pravoúhlé souřadnice všech měřených bodů kolejnicových pásů JD a následně se postupuje jako při jedné záměrné přímce. Výpočet hodnot pro výškovou rektifikaci je podstatně jednodušší a sestává z výpočtu rozdílů mezi výškou pozorovaného bodu kolejnice v jednotlivých řezech a výškou relativně nejvyššího bodu na obou kolejnicích (Michalčák et al., 1995). 8

9 Vzhledem k tomu, že rektifikace jeřábové dráhy není jen záležitostí geodetů, ale podílejí se na ní i pracovníci jiných odvětví, je nutné poskytovat jednoznačnou interpretaci výsledků. Na základě zkušeností a praktických poznatků se doporučuje grafická interpretace měřených geometrických parametrů, která obsahuje zobrazení rozchodu v jednotlivých řezech, nepřímost a výškové změny pravé a levé kolejnice, naklonění a nerovnoběžnost dráhy (obr.10). Semipolární metoda (měření teodolitem) Nejdříve je vytvořena krátká základna přibližně kolmá na dráhu. Tato základna je tvořená body A a B umístěnými poblíž obou kolejnic. Body A a B je nutné zvolit tak, aby mezi nimi byla přímá viditelnost a možnost změřit vzdálenost. Pro současné výškové měření je samozřejmě nutné znát, nebo určit, výšku bodů základny. Na obou stanoviskách se měří: vodorovné směry, ideální je měřit směry i křížem pro lepší určení polohy kolejnic vůči sobě zenitové úhly délka základny (pásmem či paralakticky) délky od stanoviska k prvnímu bodu kolejnice, délky mezi body na kolejnici (pásmem) rozchody kolejnic (pásmem) Měření úhlových veličin se provádí ve 2 skupinách s uzávěrem (na protější bod základny nebo na nejvzdálenější bod kolejnice). Pro omezení chyb z nepřesného umístění cíle na měřených bodech se při měření druhé skupiny zaměňuje cílové zařízení použité na levé a pravé kolejnici. Délková měření se provádějí kalibrovaným pásmem napínaným siloměrem vždy nejméně dvakrát. Délka základny se měří se čtením pásma pod optickým centrovačem. V případě paralaktického měření délky se měří dvě poloviční laboratorní jednotky z každého konce základny. Prostorová polární metoda (měření totální stanicí) V současnosti je metoda záměrné přímky stále častěji nahrazována prostorovou polární metodou. Jedním z důvodů je narůstající přesnost a efektivnost totálních 9

10 stanic (TS), která se projevuje vyšší přesností měřených hodnot (vodorovného směru, zenitového úhlu a délky), umožňující určit hodnocené geometrické parametry jeřábové dráhy s požadovanou přesností. Na realizaci kontrolních měření je vhodné používat TS, jejichž směrodatná odchylka měření vodorovného a zenitového úhlu je charakterizovaná hodnotou do 0,5 mgon a směrodatná odchylka měřené délky 1 až 3 mm (Hánek et al., 1993). Charakteristiky přesnosti použitých přístrojů je nutné před měřením ověřit podle metodiky uváděné v mezinárodních normách pro testování úhloměrných a dálkoměrných častí totálních stanic (ISO a ISO ). Dalším, neméně významným důvodem, proč se kontrolní měření vykonávají prostorovou polární metodou, je absence potřebného materiálového vybavení, t.j. speciální soupravy na měření JD. Kvalitativní nárůst charakteristik přesnosti měřených parametrů pomocí TS se následně odráží ve zvyšující se přesnosti určení prostorové polohy pozorovaného bodu na kolejnici. Uvedený postup určení parametrů JD sice zkracuje dobu měření, avšak i nadále vyžaduje odstavení jeřábu z provozu a pohyb měřického personálu po jeřábové dráze. Princip metody pozůstává z určení prostorové polohy bodu na kolejnici pomocí TS vyšší třídy přesnosti a odrazného hranolu. Přístroj je na rozdíl od metody záměrné přímky upevněný na stativu, přičemž stanovisko přístroje se i při nadzemních drahách volí na zemi, přibližně uprostřed podélné osy kolejnic. Počet a umístění stanovisek závisí zejména na délce dráhy. Dosah měřické soupravy s vyhovující přesností je přibližně 80 m až 90 m (Hánek et al., 2000). V případě kratší dráhy než dvojnásobek uvedené hodnoty se stanovisko přístroje volí přibližně uprostřed délky jeřábové dráhy a zároveň tak, aby bylo v její ose. U drah delších než 180 m se volí dvě navzájem propojená stanoviska, umístěná přibližně ve čtvrtině délky dráhy od obou konců. Z uvedených stanovisek může být měřena celá dráha, případně z každého stanoviska jen bližší polovina dráhy. Realizace měření v jedné souřadnicové soustavě se zabezpečí měřením na identické body a následnou transformací souřadnic, určených z jednotlivých stanovisek. Vzájemné propojení stanovisek se může uskutečnit i měřením na totožné orientační body. Stabilita přístroje se ověřuje měřením směru a délky na orientační body, minimálně na začátku a konci měření jedné větve jeřábové dráhy. Poloha bodu uprostřed kolejnice se určuje měřením na odrazný hranol, který je odsazený dovnitř dráhy (v příčném směru směrem k přístroji) pomocí speciálního přípravku. Hodnota odsazení hranolu od střednice kolejnice je podmíněná viditelností hranolu a závisí na strmosti záměr a nosné konstrukci jeřábové dráhy. Praktické zkušenosti prokázaly, že vliv nesprávného nastavení přípravku nepřesáhne 0,2 mm (Hánek et al., 1993). V případě menšího převýšení horizontu přístroje a kolejnice, je možné použít klasický minihranol, který se postaví přímo na pozorovaný bod. Na základě souboru měření na 18-ti jeřábových drahách, s průměrnou délkou 111 m bylo prokázáno, že při rozchodu dráhy do 10 m a maximální délce záměry do 80 m jsou hodnoty odchylek v rámci mezních odchylek daných normou (ČSN ISO , Jeřáby Tolerance pro pojezdová kola a pro jeřábové a příčné dráhy). U jeřábových drah s rozchodem větším než 10 m se hodnota maximální délky záměry, při dodržení normou stanovených odchylek, může prodloužit až na 90 m (Hánek et al., 2000). Automatizovaný měřící systém Navzdory uvedené změně a modernizaci přístrojového vybavení sehrává hlavní úlohu při měření lidský faktor. Stejně jako v případě metody záměrné přímky, není eliminována nutnost pohybu měřického a technického personálu po jeřábové dráze, 10

11 což v případě nadzemní dráhy představuje bezpečnostní riziko, spojené s prací ve výškách. Jednou z možností, jak zefektivnit proces měření, zvýšit bezpečnost měřického personálu, eliminovat chyby měřiče v procesu měření a především umožnit provoz jeřábu v době měření, resp. minimalizovat čas potřebný pro odstavení jeřábu, je využití automatizovaného měřícího systému. Automatizovaný systém, sestávající z robotizované totální stanice a elektronických měřících snímačů, umožňuje realizovat měření kinematickými metodami s následnou on-line registrací všech měřených údajů a automatizovaným výpočtem polohy bodu na kolejnici. Automatizovaný měřící systém se skládá z: robotizované totální stanice, nosné konstrukce měřícího systému, vodících koleček s mechanickým přítlačným systémem, jednoho, případně vícera standardních odrazných hranolů na ověření stability vztažného bodu a orientaci osnovy vodorovných směrů, 360 odrazného hranolu, přenosného řídícího a registračního zařízení počítače (notebook), měřícího zesilovače Spider8, indukčních snímačů na měření krátkých délek a snímače náklonu, DC/AC měniče napětí a autobaterie, propojovacích a napájecích kabelů. Schéma zapojení a vzájemného konstrukčního uspořádání komponent měřícího systému navrženého Ing. Kyrynovičem je znázorněno na obrázku 11, 12 a 13. Požadavky na přesnost Tolerance stanovené v (ČSN ISO , Jeřáby Tolerance pro pojezdová kola a pro jeřábové a příčné dráhy, odst. A1.1.1), platí pro nové jeřábové dráhy. Jsou stanoveny pro standardní teplotu 20 C. Jsou-li za provozu tyto tolerance překročeny o 20%, musí se jeřábová dráha vyrovnat. Dráhu je možné vyrovnat i po citelném zhoršení jízdních vlastností, aniž by byly tolerance překročeny o 20%. Největší tolerance Δs rozchodu jeřábové dráhy s v metrech jsou pro: s 10m Δs = ±3mm s > 10m Δs = ±3 + 0, 25 (s 10)mm, maximálně však ±15mm 11

12 Metodické požadavky Příčné a výškové úchylky polohy kolejnice, úchylky rozchodu jeřábové dráhy a rozdíl výškových úrovní obou kolejnic se musí zjišťovat v místech všech podpor dráhy (kromě jeřábových drah na podloží) a na převislých koncích nosníků delších než 3m. Jsou-li pole dráhy delší než 18m, informativně se měří úchylky v mezilehlých místech, vzdálených nejvýše 12m. Mezi sousedními měřenými body se předpokládá lineární průběh velikosti úchylek. Má-li jedna větev jeřábové dráhy poloviční rozpětí polí proti druhé větvi a nepřesáhne-li rozpětí většího pole 18m, může se měřit rozdíl výškových úrovní obou kolejnic jen v místě podpor větví s větším rozpětím polí. Rozdíl výškových úrovní obou kolejnic na větvích o různém rozpětí polí jeřábové dráhy, měřený v místě mezilehlých podpor nemá být větší, než velikost průhybu delšího protilehlého nosníku (bez nadvýšení) od stálého a polovičního nahodilého zatížení. Jsou-li na jeřábové dráze v době měření jeřáby, musí být odstraněny do krajní polohy jeřábové dráhy a být mimo provoz. Měření nesmí být ovlivněno pojezdem jeřábů v sousedních lodích. Po montáži, generální opravě nebo rekonstrukci jeřábové dráhy se musí provést kontrola jejího geometrického tvaru. Výsledky měření jeřábové dráhy po její montáži, generální opravě nebo rekonstrukci a při kontrolní prohlídce se uvedou v protokolu, který obsahuje technickou zprávu a grafické znázornění výsledků měření. 12

13 ROTAČNÍ PECE (Michalčák,O. a kol.: Inženýrská geodézie II) Určování prostorových vztahů rotačních pecí Rotační pec je strojní zařízení s uzavřeným, od okolního prostředí tepelně izolovaným pracovním prostorem, v němž prostupuje teplo ze zdroje na vsádku (obr.15). Pece se používají k sušení, pražení (např. lupku), k hrudkování, ke spékání sypkých surovin, k pálení vápna, bauxitu, síry apod. Sypká vsádka prochází obvykle mírně skloněným, otáčejícím se, žáruvzdorně vyzděným válcovým pláštěm pece z ocelového plechu, uloženým na několika dvojicích nosných radiálních kladek (obr.16-19). Otáčení válce zprostředkují nosné prstence a plášť se otáčí působením motoru (obr.18). Ložiska kladek leží na základových rámech osazených na betonových základech. Polohu radiálních kladek lze rektifikovat ve vodorovném směru posuvem kladek prostřednictvím dvou rektifikačních šroubů, kolmo na osu kladky. Výšku a sklon kladek lze výjimečně seřídit podkládáním. Správnou polohu pláště v podélném směru zajišťují vodicí axiální kladky (obr.18), které jsou obvykle na témže základovém rámu jako pohonné zařízení. Z hlediska prostorových vztahů jsou hlavními částmi pohonného zařízení ozubený věnec na plášti a pastorek, které jsou vzájemně v záběru (obr.18, 19). 13

14 Pece dosahují délky až 200 m a průměru pláště až 5 m. Průměry radiálních kladek bývají v rozmezí 1 až 1,4 m, sklon pece od 0% až do 6%. Správnou funkci pece zajistí dodržení těchto podmínek: a) podélná osa pláště a osy nosných prstenců mají být za provozu v téže přímce s daným sklonem (v teoretické ose pece), b) osy radiálních kladek mají být rovnoběžné s podélnou osou pláště a mají být vzhledem k ní položeny symetricky, c) mezi axiálními kladkami a bočními stěnami prstence má být správná konstrukční (projektová) vůle vzhledem k tepelné kompenzaci v podélném směru, d) radiální vůle ozubených kol pastorku a ozubeného věnce má být taková, aby zajistila správný záběr zubů (1/4 až 1/6 modulu ozubení). Uvedené podmínky se geodeticky kontrolují: při stavbě a montáži nové pece nebo při generální opravě, při středních a běžných opravách pece, je-li tato mimo provoz, při zjišťování prostorové polohy pece za provozu (za tepla). Pro měření prostorových vztahů se volí a trvale zajišťuje místní pozorovací soustava. Polohová měření se vztahují ke svislé záměrné rovině, odsazené rovnoběžně od podélné osy pece. Do všech základů se osadí destičky z nerezavějícího kovu, na které se vytyčí a otvorem vyznačí body odsazené osy (obr.16). Mezní vytyčovací odchylky se pohybují řádově v milimetrech. Měření výšek se vztahuje k místnímu horizontu, popř. k bodům ČSNS. Výšková síť se skládá z bodů osazených nýty (hřebovými značkami) na horních plochách základů a z nivelačních značek stabilizovaných na okolních budovách. Výška radiálních kladek se určuje postupem znázorněným v obr.17. Osy radiálních kladek se za chodu pece určují tzv. kroužkováním, kdy se na hřídel rotoru nalepí papír a přidržením hrotu tužky se otáčením hřídele vykreslí kroužky, v jejichž středu je osa kladky. Průměr kladky se určí buď přímým měřením při použití vhodných strojírenských měřidel, nebo častěji nepřímo. Sem patří metoda opásání, kde se průměr kladky určuje z délky jejího obvodu, změřeného pásmem. Jinou metodou je určení průměru kladky přesným úhlovým měřením k povrchovým přímkám válce (záměrná přímka je tečnou k povrchu válce) z jednoho či ze dvou stanovisek a změřením délky k ose kladky, k přední straně kladky nebo vzájemné vzdálenosti dvou stanovisek zvolených na radiále. Vztahy mezi osami radiálních kladek a osou pece vyplývají ze středového trojúhelníka (obr.16). Průměry nosných prstenců se nejčastěji měří opásáním. Měření prostorové deformace pláště se měří promítáním z boku na předem signalizované body, nivelací bodů ve spodní poloze pece, fotogrammetricky, protínáním vpřed 14

15 apod. Ze zjištěných hodnot se vypočítají prostorové souřadnice sledovaných bodů a porovnají se s danými geometrickými parametry rotační pece. Z rozdílů se určí rektifikační hodnoty. VÁLCOVACÍ STOLICE A TRATĚ (Michalčák,O. a kol.: Inženýrská geodézie II) Válcovací stolice je stroj na zpracování železa za tepla válcováním na plocho nebo do profilů. Přitom může válcovaný materiál procházet při zpracování několika válcovacími stolicemi, seřazenými ve válcovací trať. Pro správnou funkci tratě, musí být splněno: osa pohonu musí být kolmá k ose válcovací stolice, všechny osy válcování musí být kolmé k ose válcovací stolice. Nesplnění uvedených podmínek má za následek rychlé opotřebení válců, nepřípustné tlaky v ložiskách a prudké zhoršování kvality výrobků. Geodetická spolupráce spočívá: ve vytyčení a zajištění všech os a vybudování výškové sítě, montáži soustrojí do vytyčených os a daných výškových úrovní, v kontrolním měření po skončení montáže a za provozu, ve sledování posunů a přetvoření základů a strojů. Osy se vytyčují v odsazené poloze a stabilizují obvykle kovovými destičkami, do nichž se poloha bodu vyznačí důlčíkem. Od těchto bodů se kontroluje montáž hřídelů pohonu a stolic. Po směrovém vyrovnání se jednotlivé díly soustrojí uloží do vodorovné a nakonec se vyrovnají i výškově. Mezní odchylka je ve všech třech osách ±1 mm. Při směrovém a výškovém urovnání soustrojí za provozu lze s výhodou vytvořit mechanickou záměrnou přímku tenkým ocelovým drátem o průměru 0,3 mm. Drát je veden přes kladky s osami kolmými k ose soustrojí a napnut závažím o hmotnosti 100N. Výškové vyrovnání je třeba provést ve zdánlivém horizontu. Opomenutí tohoto požadavku může způsobit u dlouhých válcovacích tratí nezanedbatelnou odchylku (při délce tratě 500 m činí vliv zakřivení Země 20 mm). PŘÍHRADOVÉ STOŽÁRY A VYSÍLAČE TELEKOMUNIKACÍ (Michalčák,O. a kol.: Inženýrská geodézie II) U tohoto typu staveb, jejichž výška dosahuje 300m i více, geodet zabezpečuje zejména: podklady pro projekt, vybudování vytyčovací sítě a vytyčení tvaru a rozměru (zejména svislosti), kontrolu geometrických parametrů v průběhu výstavby. Stožáry (věže) jsou buď volně kotvené do základové betonové patky, nebo jsou kotveny (i v několika úrovních) lany, a to minimálně ve třech směrech do kotevních roštů. Vytyčují se tedy nejprve betonové základy stožárů a poté základy kotevních bloků. Během výstavby, resp. montáže stožárů se vytyčuje a kontroluje jejich svislost a v případě kotvených stožárů i průvěs kotevních lan Měření svislosti lze uskutečnit ze dvou přibližně kolmých směrů teodolitem úhlovým měřením nebo odečtením odchylek na vodorovně umístěném měřítku (lati), nebo protínáním vpřed ze dvou základen, popř. optickým či laserovým provažovačem uvnitř věže. 15

Sylabus přednášky č.6 z ING3

Sylabus přednášky č.6 z ING3 Sylabus přednášky č.6 z ING3 Přesnost vytyčování staveb (objekty s prostorovou skladbou) Doc. Ing. Jaromír Procházka, CSc. Výtah z ČSN 73 0420-2 Praha 2014 1 PŘESNOST VYTYČOVÁNÍ STAVEB (Výtah z ČSN 73

Více

7. Určování výšek II.

7. Určování výšek II. 7. Určování výšek II. 7.1 Geometrická nivelace ze středu. 7.1.1 Princip geometrické nivelace. 7.1.2 Výhody geometrické nivelace ze středu. 7.1.3 Dělení nivelace dle přesnosti. 7.1.4 Nivelační přístroje.

Více

Sada 2 Geodezie II. 16. Měření posunů a přetvoření

Sada 2 Geodezie II. 16. Měření posunů a přetvoření S třední škola stavební Jihlava Sada 2 Geodezie II 16. Měření posunů a přetvoření Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2

Více

7. Určování výšek II.

7. Určování výšek II. 7. Určování výšek II. 7.1 Geometrická nivelace ze středu. 7.1.1 Princip geometrické nivelace. 7.1.2 Výhody geometrické nivelace ze středu. 7.1.3 Dělení nivelace dle přesnosti. 7.1.4 Nivelační přístroje.

Více

Úloha č. 1 : TROJÚHELNÍK. Určení prostorových posunů stavebního objektu

Úloha č. 1 : TROJÚHELNÍK. Určení prostorových posunů stavebního objektu Václav Čech, ČVUT v Praze, Fakulta stavební, 008 Úloha č. 1 : TROJÚHELNÍK Určení prostorových posunů stavebního objektu Zadání : Zjistěte posun bodu P do P, umístěného na horní terase Stavební fakulty.

Více

Kontrola svislosti montované budovy

Kontrola svislosti montované budovy 1. Zadání Kontrola svislosti montované budovy Určete skutečné odchylky svislosti panelů na budově ČVUT. Objednatel požaduje kontrolu svislosti štítové stěny objektu. Při konstrukční výšce jednoho podlaží

Více

Vytyčování pozemních stavebních objektů s prostorovou skladbou

Vytyčování pozemních stavebních objektů s prostorovou skladbou Vytyčování pozemních stavebních objektů s prostorovou skladbou ZÁPADOČESKÁ UNIVERZITA V PLZNI Ing. Martina Vichrová, Ph.D. Fakulta aplikovaných věd - KMA oddělení geomatiky vichrova@kma.zcu.cz Vytvoření

Více

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ. VOŠ a SŠS Vysoké Mýto leden 2008

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ. VOŠ a SŠS Vysoké Mýto leden 2008 Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ VOŠ a SŠS Vysoké Mýto leden 2008 METODY MĚŘENÍ DÉLEK PŘÍMÉ (měřidlo klademe přímo do měřené

Více

6.1 Základní pojmy - zákonné měřící jednotky

6.1 Základní pojmy - zákonné měřící jednotky 6. Měření úhlů 6.1 Základní pojmy 6.2 Teodolity 6.3 Totální stanice 6.4 Osové podmínky, konstrukční chyby a chyby při měření 6.5 Měření úhlů 6.6 Postup při měření vodorovného úhlu 6.7 Postup při měření

Více

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec

Více

JEŘÁBY. Dílenský mobilní hydraulický jeřábek. Sloupový otočný jeřáb. Konzolové jeřáby otočné a pojízdné

JEŘÁBY. Dílenský mobilní hydraulický jeřábek. Sloupový otočný jeřáb. Konzolové jeřáby otočné a pojízdné JEŘÁBY Dílenský mobilní hydraulický jeřábek Pro dílny a opravárenské provozy. Rameno zvedáno hydraulicky ručním čerpáním hydraulické kapaliny. Sloupový otočný jeřáb OTOČNÉ RAMENO SLOUP Sloupový jeřáb je

Více

Průmyslové haly. Halové objekty. překlenutí velkého rozponu snížení vlastní tíhy konstrukce. jednolodní haly vícelodní haly

Průmyslové haly. Halové objekty. překlenutí velkého rozponu snížení vlastní tíhy konstrukce. jednolodní haly vícelodní haly Průmyslové haly Halové objekty překlenutí velkého rozponu snížení vlastní tíhy konstrukce průmyslové haly do 30 m rozpětí haly velkých rozpětí jednolodní haly vícelodní haly bez jeřábové dráhy jeřáby mostové

Více

Úvod do inženýrské geodézie

Úvod do inženýrské geodézie Úvod do inženýrské geodézie Úvod do inženýrské geodézie Rozbory přesnosti Vytyčování Čerpáno ze Sylabů přednášek z inženýrské geodézie doc. ing. Jaromíra Procházky, CSc. Úvod do inženýrské geodézie Pod

Více

LOGISTIKA. Ing. Eva Skalická. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

LOGISTIKA. Ing. Eva Skalická. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou LOGISTIKA Ing. Eva Skalická Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou AKTIVNÍ PRVKY LOGISTIKY VY_32_INOVACE_07_2_18_EK Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VYMEZENÍ AKTIVNÍCH PRVKŮ Posláním aktivních prvků

Více

OVMT Úchylky tvaru a polohy Kontrola polohy, směru a házení

OVMT Úchylky tvaru a polohy Kontrola polohy, směru a házení Úchylky tvaru a polohy Kontrola polohy, směru a házení Potřeba jednotného definování a předepisování tolerancí tvaru, směru, polohy a házení souhrnně zvaných geometrické tolerance byla vyvolána zejména

Více

Vytyčovací sítě. Výhody: Přizpůsobení terénu

Vytyčovací sítě. Výhody: Přizpůsobení terénu Typ liniové sítě záleží na požadavcích na přesnost. Mezi tyto sítě patří: polygonové sítě -> polygonový pořad vedený souběžně s liniovou stavbou troj a čtyřúhelníkové řetězce -> zdvojený polygonový pořad

Více

BO004 KOVOVÉ KONSTRUKCE I

BO004 KOVOVÉ KONSTRUKCE I BO004 KOVOVÉ KONSTRUKCE I PODKLADY DO CVIČENÍ VYPRACOVAL: Ing. MARTIN HORÁČEK, Ph.D. AKADEMICKÝ ROK: 2018/2019 Obsah Dispoziční řešení... - 3 - Příhradová vaznice... - 4 - Příhradový vazník... - 6 - Spoje

Více

GEODÉZIE II. Metody určov. Geometrická nivelace ze středu. vzdálenost

GEODÉZIE II. Metody určov. Geometrická nivelace ze středu. vzdálenost Vysoká škola báňská technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II 1. URČOV OVÁNÍ VÝŠEK Metody určov ování převýšení Geometrická nivelace Ing.

Více

METRO Doc. Ing. Pavel Hánek, CSc. Uvedené materiály jsou pouze podkladem přednášek předmětu 154IG4. OCHRANNÉ PÁSMO METRA

METRO Doc. Ing. Pavel Hánek, CSc. Uvedené materiály jsou pouze podkladem přednášek předmětu 154IG4. OCHRANNÉ PÁSMO METRA METRO Doc. Ing. Pavel Hánek, CSc. Uvedené materiály jsou pouze podkladem přednášek předmětu 154IG4. 2015 OCHRANNÉ PÁSMO METRA Ochranné pásmo 30 m na obě strany nebo vně od osy tunelu Obvod dráhy 1,5 m

Více

1. ÚVOD DO PROBLEMATIKY ZDVIHACÍCH ZAŘÍZENÍ 2. VŠEOBECNÝ PŘEHLED, ROZDĚLENÍ. 3. Právní předpisy

1. ÚVOD DO PROBLEMATIKY ZDVIHACÍCH ZAŘÍZENÍ 2. VŠEOBECNÝ PŘEHLED, ROZDĚLENÍ. 3. Právní předpisy 1. přednáška 1. ÚVOD DO PROBLEMATIKY ZDVIHACÍCH ZAŘÍZENÍ 2. VŠEOBECNÝ PŘEHLED, ROZDĚLENÍ 3. Právní předpisy 1. ÚVOD DO PROBLEMATIKY ZDVIHACÍCH ZAŘÍZENÍ a) Základní pojmy z oblasti zdvihacích zařízení jednoduchá

Více

Určení svislosti. Ing. Zuzana Matochová

Určení svislosti. Ing. Zuzana Matochová Určení svislosti Ing. Zuzana Matochová Svislost stěn Jedná se o jeden z geometrických parametrů, který udává orientaci části konstrukce vzhledem ke stanovenému směru. Geometrické parametry jsou kontrolovány

Více

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence

2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence 2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.7 Vytyčování, souřadnicové výpočty, podélné a příčné profily Vytyčování Geodetická činnost uskutečněná odborně a nestranně na

Více

Přednáška č.8 Hřídele, osy, pera, klíny

Přednáška č.8 Hřídele, osy, pera, klíny Fakulta strojní VŠB-TUO Přednáška č.8 Hřídele, osy, pera, klíny HŘÍDELE A OSY Hřídele jsou obvykle válcové strojní součásti umožňující a přenášející rotační pohyb. Rozdělujeme je podle: 1) typu namáhání

Více

METRO. Doc. Ing. Pavel Hánek, CSc. Uvedené materiály jsou pouze podkladem přednášek předmětu 154GP10.

METRO. Doc. Ing. Pavel Hánek, CSc. Uvedené materiály jsou pouze podkladem přednášek předmětu 154GP10. METRO Doc. Ing. Pavel Hánek, CSc. Uvedené materiály jsou pouze podkladem přednášek předmětu 154GP10. 2014 OCHRANNÉ PÁSMO METRA Ochranné pásmo 30 m na obě strany nebo vně od osy tunelu Obvod dráhy 1,5 m

Více

SPŠ STAVEBNÍ České Budějovice GEODÉZIE. Teodolit a měření úhlů

SPŠ STAVEBNÍ České Budějovice GEODÉZIE. Teodolit a měření úhlů SPŠ STAVEBNÍ České Budějovice GEODÉZIE Teodolit a měření úhlů ještě doplnění k výškovému systému jadranský systém udává pro stejný bod hodnotu výšky o cca 0,40 m větší než systém Bpv Potřebujeme vědět

Více

14. JEŘÁBY 14. CRANES

14. JEŘÁBY 14. CRANES 14. JEŘÁBY 14. CRANES slouží k svislé a vodorovné přepravě břemen a jejich držení v požadované výšce Hlavní parametry jeřábů: 1. jmenovitá nosnost největší hmotnost dovoleného břemene (zkušební břemeno

Více

Trigonometrické určení výšek nepřístupných bodů na stavebním objektu

Trigonometrické určení výšek nepřístupných bodů na stavebním objektu Trigonometrické určení výšek nepřístupných bodů na stavebním objektu Prof. Ing. Jiří Pospíšil, CSc., 2010 V urbanismu a pozemním stavitelství lze trigonometrického určování výšek užít při zjišťování relativních

Více

jeřáby Sloupové otočné jeřáby Nástěnná otočná jeřábová ramena Alu - Portálové jeřáby Jeřáby

jeřáby Sloupové otočné jeřáby Nástěnná otočná jeřábová ramena Alu - Portálové jeřáby Jeřáby jeřáby Jsou zařízení s vodorovným otáčením výložníku pro přepravu břemene vhodné na jakékoliv pracoviště, kde optimálně doplňují další zařízení manipulační techniky Usnadňují a zefektivňují práci, nahrazují

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Protokol měření. Kontrola a měření závitů

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Protokol měření. Kontrola a měření závitů Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Protokol měření Tolerování závitů Kontrola a měření závitů Řetězec norem, které se zabývají závity, zahrnuje

Více

Sloupové otočné jeřáby. Nástěnná otočná jeřábová ramena. Portálové jeřáby

Sloupové otočné jeřáby. Nástěnná otočná jeřábová ramena. Portálové jeřáby jeřáby Jsou zařízení s vodorovným otáčením výložníku pro přepravu břemene vhodné na jakékoliv pracoviště, kde optimálně doplňují další zařízení manipulační techniky Usnadňují a zefektivňují práci, nahrazují

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.1.Hřídele a čepy HŘÍDELE A ČEPY Hřídele jsou základní strojní součástí válcovitého tvaru, která slouží k

Více

Průmyslové haly. překlenutí velkého rozponu snížení vlastní tíhy konstrukce. průmyslové haly do 30 m rozpětí haly velkých rozpětí

Průmyslové haly. překlenutí velkého rozponu snížení vlastní tíhy konstrukce. průmyslové haly do 30 m rozpětí haly velkých rozpětí Průmyslové haly Halové objekty překlenutí velkého rozponu snížení vlastní tíhy konstrukce průmyslové haly do 30 m rozpětí haly velkých rozpětí jednolodní haly vícelodní haly bez jeřábové dráhy jeřáby mostové

Více

7.1 Definice délky. kilo- km 10 3 hekto- hm mili- mm 10-3 deka- dam 10 1 mikro- μm 10-6 deci- dm nano- nm 10-9 centi- cm 10-2

7.1 Definice délky. kilo- km 10 3 hekto- hm mili- mm 10-3 deka- dam 10 1 mikro- μm 10-6 deci- dm nano- nm 10-9 centi- cm 10-2 7. Měření délek 7.1 Definice délky, zákonné měřící jednotky 7.2 Měření délek pásmem 7.3 Optické měření délek 7.3.1 Paralaktické měření délek 7.3.2 Ryskový dálkoměr 7.4 Elektrooptické měření délek 7.5 Fyzikální

Více

Kolejový jeřáb GOTTWALD GS TR

Kolejový jeřáb GOTTWALD GS TR Kolejový jeřáb GOTTWALD GS 150.14 TR 1. POPIS STROJE Kolejový jeřáb GOTTWALD GS 150.14 TR je symetrické konstrukce s kabinami pro obsluhu na obou koncích, což mu umožňuje práci i přepravu v obou směrech.

Více

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Výšky relativní a absolutní

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Výšky relativní a absolutní Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství MĚŘENÍ VÝŠEK Ing. Bc. Pavel Voříšek (úředně oprávněný zeměměřický inženýr). Vysoké Mýto leden 2017 Výšky relativní a absolutní

Více

Sylabus přednášky č.7 z ING3

Sylabus přednášky č.7 z ING3 Sylabus přednášky č.7 z ING3 Přesnost vytyčování staveb (objekty liniové a plošné) Doc. Ing. Jaromír Procházka, CSc. Výtah z ČSN 73 0420-2 Praha 2014 1 PŘESNOST VYTYČOVÁNÍ STAVEB (Výtah z ČSN 73 0420-2,

Více

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Řešení kruţnicových oblouků v souřadnicích) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec 2015

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu Geodézie v podzemních prostorách 10 úloha/zadání H/190-4 název úlohy Hloubkové

Více

1 ŘÍZENÍ AUTOMOBILŮ. Z hlediska bezpečnosti silničního provozu stejně důležité jako brzdy.

1 ŘÍZENÍ AUTOMOBILŮ. Z hlediska bezpečnosti silničního provozu stejně důležité jako brzdy. 1 ŘÍZENÍ AUTOMOBILŮ Z hlediska bezpečnosti silničního provozu stejně důležité jako brzdy. ÚČEL ŘÍZENÍ natočením kol do rejdu udržovat nebo měnit směr jízdy, umožnit rozdílný úhel rejdu rejdových kol při

Více

Úvod. Rozdělení podle toku energie: Rozdělení podle počtu fází: Rozdělení podle konstrukce rotoru: Rozdělení podle pohybu motoru:

Úvod. Rozdělení podle toku energie: Rozdělení podle počtu fází: Rozdělení podle konstrukce rotoru: Rozdělení podle pohybu motoru: Indukční stroje 1 konstrukce Úvod Indukční stroj je nejpoužívanější a nejrozšířenější elektrický točivý stroj a jeho význam neustále roste (postupná náhrada stejnosměrných strojů). Rozdělení podle toku

Více

Vytyčování staveb a hranic pozemků

Vytyčování staveb a hranic pozemků Vytyčování staveb a hranic pozemků Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MATEMATICKÉ (OPTICKÉ) ZÁKLADY FOTOGRAMMETRIE

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MATEMATICKÉ (OPTICKÉ) ZÁKLADY FOTOGRAMMETRIE SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MATEMATICKÉ (OPTICKÉ) ZÁKLADY FOTOGRAMMETRIE MATEMATICKÉ ZÁKLADY FOTOGRAMMETRIE fotogrammetrie využívá ke své práci fotografické snímky, které

Více

SYLABUS PŘEDNÁŠKY 6a Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě) 4. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 6a Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě) 4. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 6a Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčovací sítě) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 7. POLOHOVÉ VYTYČOVACÍ SÍTĚ Vytyčení je součástí realizace

Více

Seminář z geoinformatiky

Seminář z geoinformatiky Seminář z geoinformatiky Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Délka je definována jako vzdálenost dvou bodů ve smyslu definované metriky. Délka je tedy popsána v jednotkách, tj. v násobcích

Více

Určeno posluchačům Fakulty stavební ČVUT v Praze

Určeno posluchačům Fakulty stavební ČVUT v Praze Strana 1 HALOVÉ KONSTRUKCE Halové konstrukce slouží nejčastěji jako objekty pro různé typy průmyslových činností nebo jako prostory pro skladování. Jsou také velice často stavěny pro provozování rozmanitých

Více

a už nikdy žádná porucha!

a už nikdy žádná porucha! a už nikdy žádná porucha! Optická měření průhyby jeřábů Naše nabídka č.: N_08021 Naše zakázka č.: Z_08021 Vaše objednávka č.: Práce provedl: Radim Falc,Václav Slabý Datum realizace: 7.3.2008 Datum vyhodnocení:

Více

Vytyčování staveb a hranic pozemků (1)

Vytyčování staveb a hranic pozemků (1) Vytyčování staveb a hranic pozemků (1) Vytyčování staveb a hranic pozemků Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115

Více

4 Halové objekty a zastřešení na velká rozpětí

4 Halové objekty a zastřešení na velká rozpětí 4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické

Více

STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA

STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA SADA 3 NAVRHOVÁNÍ ŽELEZOBETONOVÝCH PRVKŮ 04. VYZTUŽOVÁNÍ - TRÁMY DIGITÁLNÍ UČEBNÍ MATERIÁL PROJEKTU: SŠS JIHLAVA ŠABLONY REGISTRAČNÍ ČÍSLO PROJEKTU:CZ.1.09/1.5.00/34.0284

Více

ÚHLŮ METODY MĚŘENÍ ÚHLŮ A SMĚRŮ CHYBY PŘI MĚŘENÍ ÚHLŮ A SMĚRŮ

ÚHLŮ METODY MĚŘENÍ ÚHLŮ A SMĚRŮ CHYBY PŘI MĚŘENÍ ÚHLŮ A SMĚRŮ 5. PŘEDNÁŠKA LETNÍ 00 ING. HANA STAŇKOVÁ, Ph.D. MĚŘENÍ ÚHLŮ METODY MĚŘENÍ ÚHLŮ A SMĚRŮ CHYBY PŘI MĚŘENÍ ÚHLŮ A SMĚRŮ GEODÉZIE 5. PŘEDNÁŠKA LETNÍ 00 METODY MĚŘENÍ ÚHLŮ. měření úhlů v jedné poloze dalekohledu.

Více

2. Bodové pole a souřadnicové výpočty

2. Bodové pole a souřadnicové výpočty 2. Bodové pole a souřadnicové výpočty 2.1 Body 2.2 Bodová pole 2.3 Polohové bodové pole. 2.3.1 Rozdělení polohového bodového pole. 2.3.2 Dokumentace geodetického bodu. 2.3.3 Stabilizace a signalizace bodů.

Více

PŘEVODY S OZUBENÝMI KOLY

PŘEVODY S OZUBENÝMI KOLY PŘEVODY S OZUBENÝMI KOLY Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

ŠROUBOVÉ A ZÁVITOVÉ SPOJE

ŠROUBOVÉ A ZÁVITOVÉ SPOJE ŠROUBOVÉ A ZÁVITOVÉ SPOJE Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU MĚŘICKÝ SNÍMEK Základem měření je fotografický snímek, který je v ideálním případě

Více

4.1 Základní pojmy Zákonné měřicí jednotky.

4.1 Základní pojmy Zákonné měřicí jednotky. 4. Měření úhlů. 4.1 Základní pojmy 4.1.1 Zákonné měřicí jednotky. 4.1.2 Vodorovný úhel, směr. 4.1.3 Svislý úhel, zenitový úhel. 4.2 Teodolity 4.2.1 Součásti. 4.2.2 Čtecí pomůcky optickomechanických teodolitů.

Více

23. Kladkostroje Použití přenosná zdvihadla pro zvedání zavěšených břemen jednoduchý stroj = kolo s (pro lano) Kladka kladka - F=G, #2 #3

23. Kladkostroje Použití přenosná zdvihadla pro zvedání zavěšených břemen jednoduchý stroj = kolo s (pro lano) Kladka kladka - F=G, #2 #3 zapis_dopravni_stroje_jeraby08/2012 STR Fb 1 z 5 23. Kladkostroje Použití přenosná zdvihadla pro zvedání zavěšených břemen jednoduchý stroj = kolo s (pro lano) #1 Kladka kladka - F=G, #2 #3 kladka - F=G/2

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ BAKALÁŘSKÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ BAKALÁŘSKÁ PRÁCE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ BAKALÁŘSKÁ PRÁCE PRAHA 2010 Ondřej KOČÍ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE BAKALÁŘSKÁ PRÁCE POSOUZENÍ

Více

Popis teodolitu Podmínky správnosti teodolitu Metody měření úhlů

Popis teodolitu Podmínky správnosti teodolitu Metody měření úhlů 5. PŘEDNÁŠKA LETNÍ 00 Ing. Hana Staňková, Ph.D. Měření úhlů Popis teodolitu Podmínky správnosti teodolitu Metody měření úhlů GEODÉZIE 5. PŘEDNÁŠKA LETNÍ 00 POPIS TEODOLITU THEO 00 THEO 00 kolimátor dalekohled

Více

Podrobné polohové bodové pole (1)

Podrobné polohové bodové pole (1) Podrobné polohové bodové pole (1) BUDOVÁNÍ NEBO REVIZE A DOPLNĚNÍ PODROBNÉHO POLOHOVÉHO BODOVÉHO POLE Prohloubení nabídky dalšího vzdělávání v oblasti Prohloubení nabídky zeměměřictví dalšího vzdělávání

Více

5.1 Definice, zákonné měřící jednotky.

5.1 Definice, zákonné měřící jednotky. 5. Měření délek. 5.1 Definice, zákonné měřící jednotky. 5.2 Měření délek pásmem. 5.3 Optické měření délek. 5.3.1 Paralaktické měření délek. 5.3.2 Ryskový dálkoměr. 5.4 Elektrooptické měření délek. 5.4.1

Více

Obsah. Opakování. Sylabus přednášek OCELOVÉ KONSTRUKCE. Kontaktní přípoje. Opakování Dělení hal Zatížení. Návrh prostorově tuhé konstrukce Prvky

Obsah. Opakování. Sylabus přednášek OCELOVÉ KONSTRUKCE. Kontaktní přípoje. Opakování Dělení hal Zatížení. Návrh prostorově tuhé konstrukce Prvky Sylabus přednášek OCELOVÉ KONSTRUKCE Studijní program: STAVEBNÍ INŽENÝRSTVÍ pro bakalářské studium Kód předmětu: K134OK1 4 kredity (2 + 2), zápočet, zkouška Prof. Ing. František Wald, CSc., místnost B

Více

SPŠ STAVEBNÍ České Budějovice GEODÉZIE STA NIVELACE VÝŠKOVÉ MĚŘENÍ A VÝŠKOVÉ BODOVÉ POLE JS

SPŠ STAVEBNÍ České Budějovice GEODÉZIE STA NIVELACE VÝŠKOVÉ MĚŘENÍ A VÝŠKOVÉ BODOVÉ POLE JS SPŠ STAVEBNÍ České Budějovice GEODÉZIE STA NIVELACE VÝŠKOVÉ MĚŘENÍ A VÝŠKOVÉ BODOVÉ POLE JS NIVELACE - úvod NIVELACE je měření výškového rozdílu od realizované (vytyčené) vodorovné roviny Provádí se pomocí

Více

1. Základní charakteristika korečkových rypadel

1. Základní charakteristika korečkových rypadel 1. Základní charakteristika korečkových rypadel Korečkové rypadlo na kolejích nebo na pásech pojíždí podél skrývkového svahu a přitom korečky opatřené nožem, tažené vzhůru, odřezávají úzký pruh zeminy

Více

OVMT Kontrola úchylky tvaru a polohy Tolerance tvaru

OVMT Kontrola úchylky tvaru a polohy Tolerance tvaru Kontrola úchylky tvaru a polohy Tolerance tvaru Potřeba jednotného definování a předepisování tolerancí tvaru, směru, polohy a házení souhrnně zvaných geometrické tolerance byla vyvolána zejména v poválečných

Více

Geodézie a pozemková evidence

Geodézie a pozemková evidence 2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.5 Metody výškového měření, měření vzdáleností, měřické přístroje Podpořeno projektem Průřezová inovace studijních programů Lesnické

Více

MILLAU VIADUCT FOSTER AND PARTNERS Koncepce projektu Vícenásobné zavěšení do 8 polí, 204 m + 6x342 m + 204 m Celková délka mostu 2 460 m Zakřivení v mírném směrovém oblouku poloměru 20 000 m Konstantní

Více

16.2.2015. Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz

16.2.2015. Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz Výškový referenční systém je definován v nařízení vlády 430/2006 Sb. Výškový systém baltský - po vyrovnání je určen a) výchozím výškovým bodem, kterým je nula

Více

Dokumentace funkčního vzorku Nástavce pro měření laserovým dálkoměrem na kotevních bodech liniových instalací BOTDA

Dokumentace funkčního vzorku Nástavce pro měření laserovým dálkoměrem na kotevních bodech liniových instalací BOTDA Dokumentace funkčního vzorku Nástavce pro měření laserovým dálkoměrem na kotevních bodech liniových instalací BOTDA vyvinutého v rámci řešení projektu FR-TI3/609 Výzkum a vývoj detekce a kontrolního sledování

Více

SPŠ STAVEBNÍ České Budějovice GEODÉZIE STA

SPŠ STAVEBNÍ České Budějovice GEODÉZIE STA SPŠ STAVEBNÍ České Budějovice GEODÉZIE STA JS GEODÉZIE Význam slova: dělení Země Vědní obor zabývající se měřením, výpočty a zobrazením Země. Vědní obor zabývající se zkoumáním tvaru, rozměru a fyzikálních

Více

Tvorba technické dokumentace

Tvorba technické dokumentace Tvorba technické dokumentace Požadavky na ozubená kola Rovnoměrný přenos otáček, požadavek stálosti převodového poměru. Minimalizace ztrát. Volba profilu boku zubu. Materiály ozubených kol Šedá a tvárná

Více

3. Souřadnicové výpočty

3. Souřadnicové výpočty 3. Souřadnicové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnic. 3.9 Volné

Více

STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA

STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA STŘEDNÍ ŠKOLA STAVEBNÍ JIHLAVA SADA 3 NAVRHOVÁNÍ ŽELEZOBETONOVÝCH PRVKŮ 03. VYZTUŽOVÁNÍ - DESKOVÉ PRVKY DIGITÁLNÍ UČEBNÍ MATERIÁL PROJEKTU: SŠS JIHLAVA ŠABLONY REGISTRAČNÍ ČÍSLO PROJEKTU:CZ.1.09/1.5.00/34.0284

Více

Diplomová práce OBSAH:

Diplomová práce OBSAH: OBSAH: Obsah 1 1. Zadání....2 2. Varianty řešení..3 2.1. Varianta 1..3 2.2. Varianta 2..4 2.3. Varianta 3..5 2.4. Vyhodnocení variant.6 2.4.1. Kritéria hodnocení...6 2.4.2. Výsledek hodnocení.7 3. Popis

Více

Sada 2 Geodezie II. 12. Výpočet kubatur

Sada 2 Geodezie II. 12. Výpočet kubatur S třední škola stavební Jihlava Sada 2 Geodezie II 12. Výpočet kubatur Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace

Více

SYLABUS PŘEDNÁŠKY 4 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 4 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 4 Z GEODÉZIE 1 (Měření svislých úhlů Chyby ovlivňující úhlová měření a jejich eliminace) 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc

Více

14.11 Čelní válcová soukolí se šikmými zuby

14.11 Čelní válcová soukolí se šikmými zuby Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

je tvořen nosníkem (pro malé nosnosti z tyče průřezu I, pro větší nosnosti ze dvou tyčí téhož průřezu, pro velké nosnosti z příhradové konstrukce.

je tvořen nosníkem (pro malé nosnosti z tyče průřezu I, pro větší nosnosti ze dvou tyčí téhož průřezu, pro velké nosnosti z příhradové konstrukce. 1 JEŘÁBY Dopravní zařízení, která zdvihají, spouštějí a dopravují břemena na určitou vzdálenost. Na nosné konstrukci je uloženo pojíždějící, zdvihající, případně jiné pohybové ústrojí. 1.1 MOSTOVÉ JEŘÁBY

Více

Statické tabulky profilů Z, C a Σ

Statické tabulky profilů Z, C a Σ Statické tabulky profilů Z, C a Σ www.satjam.cz STATICKÉ TABULKY PROFILŮ Z, C A OBSAH PROFIL PRODUKCE..................................................................................... 3 Profi ly Z,

Více

Sada 1 Geodezie I. 03. Drobné geodetické pomůcky

Sada 1 Geodezie I. 03. Drobné geodetické pomůcky S třední škola stavební Jihlava Sada 1 Geodezie I 03. Drobné geodetické pomůcky Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ KONSTRUKČNÍ ZÁSADY, kotvení výztuže Minimální vnitřní průměr zakřivení prutu Průměr prutu Minimální průměr pro ohyby, háky a smyčky (pro pruty a dráty) φ 16 mm 4 φ φ > 16 mm 7 φ Minimální vnitřní průměr

Více

OBSAH. Úvod... str.3. Základní popis trekru TRS-05 str.4. Základní technické požadavky... str.5. Technická data trekru TRS-05... str.

OBSAH. Úvod... str.3. Základní popis trekru TRS-05 str.4. Základní technické požadavky... str.5. Technická data trekru TRS-05... str. 1 TRS-05 2 OBSAH Úvod... str.3 Základní popis trekru TRS-05 str.4 Základní technické požadavky... str.5 Technická data trekru TRS-05... str.6 Návod k obsluze str.8 Záruka.. str.10 Servis str.10 3 Úvod.

Více

Zaměření vybraných typů nerovností vozovek metodou laserového skenování

Zaměření vybraných typů nerovností vozovek metodou laserového skenování Zaměření vybraných typů nerovností vozovek metodou laserového skenování 1. Účel experimentů V normě ČSN 73 6175 (736175) Měření a hodnocení nerovnosti povrchů vozovek je uvedena řada metod k určování podélných

Více

ZÁKLADNÍ POJMY A METODY ZEMĚMĚŘICKÝ ZÁKON

ZÁKLADNÍ POJMY A METODY ZEMĚMĚŘICKÝ ZÁKON Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství VYTYČOVÁNÍ STAVEB Ing. Bc. Pavel Voříšek (úředně oprávněný zeměměřický inženýr). Vysoké Mýto 19. 2. 2018 ZÁKLADNÍ POJMY A METODY

Více

SYLABUS PŘEDNÁŠKY 8 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 8 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 8 Z GEODÉZIE 1 Souřadnicové výpočty 2 1 ročník bakalářského studia studijní program G studijní obor G doc Ing Jaromír Procházka CSc listopad 2015 1 Geodézie 1 přednáška č8 VÝPOČET SOUŘADNIC

Více

Pevnostní výpočty náprav pro běžný a hnací podvozek vozu M 27.0

Pevnostní výpočty náprav pro běžný a hnací podvozek vozu M 27.0 Strana: 1 /8 Výtisk č.:.../... ZKV s.r.o. Zkušebna kolejových vozidel a strojů Wolkerova 2766, 272 01 Kladno ZPRÁVA č. : Z11-065-12 Pevnostní výpočty náprav pro běžný a hnací podvozek vozu M 27.0 Vypracoval:

Více

Spoje pery a klíny. Charakteristika (konstrukční znaky)

Spoje pery a klíny. Charakteristika (konstrukční znaky) Spoje pery a klíny Charakteristika (konstrukční znaky) Jednoduše rozebíratelná spojení pomocí per, příp. klínů hranolového tvaru (u klínů se skosením na jedné z ploch) vložených do podélných vybrání nebo

Více

ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI

ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI ZÁKLADNÍ KONSTRUKČNÍ SYSTÉMY POZEMNÍCH A INŽENÝRSKÝCH STAVEB Z OCELI KONSTRUKČNÍ SYSTÉMY POZEMNÍCH STAVEB Halové stavby Konstrukční

Více

Ing. Pavel Hánek, Ph.D.

Ing. Pavel Hánek, Ph.D. Ing. Pavel Hánek, Ph.D. hanek00@zf.jcu.cz Výškový referenční systém je definován v nařízení vlády 430/2006 Sb. Výškový systém baltský - po vyrovnání je určen a) výchozím výškovým bodem, kterým je nula

Více

TVAROVÉ SPOJE HŘÍDELE S NÁBOJEM POMOCÍ PER, KLÍNŮ A DRÁŽKOVÁNÍ

TVAROVÉ SPOJE HŘÍDELE S NÁBOJEM POMOCÍ PER, KLÍNŮ A DRÁŽKOVÁNÍ TVAROVÉ SPOJE HŘÍDELE S NÁBOJEM POMOCÍ PER, KLÍNŮ A DRÁŽKOVÁNÍ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál

Více

Lineární osa AD...M pro pohon motorem Oboustranné kolejnice D10/D20

Lineární osa AD...M pro pohon motorem Oboustranné kolejnice D10/D20 Lineární osa AD...M Oboustranné kolejnice D10/D20 Axiální zatížení Radiální zatížení Připojovací rozměry pro šnekové převodovky A B C D 1 E H F d H7 G Typ AD210M 150 120 64 36 24,0 20 134,0 AD312M 180

Více

Czech Raildays 2010 MODIFIKACE OZUBENÍ

Czech Raildays 2010 MODIFIKACE OZUBENÍ MODIFIKACE OZUBENÍ Milan Doležal Martin Sychrovský - DŮVODY KE STANOVENÍ MODIFIKACÍ OZUBENÍ - VÝHODY MODIFIKACÍ - PROVEDENÍ MODIFIKACÍ OZUBENÍ - VÝPOČET MODIFIKACÍ OZUBENÍ - EXPERIMENTÁLNÍ OVĚŘOVÁNÍ PARAMETRŮ

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE DIPLOMOVÁ PRÁCE URČOVÁNÍ PROSTOROVÝCH VZTAHŮ JEŘÁBOVÝCH DRAH 2012/2013 Romana ČERNÁ Prohlášení: Čestně prohlašuji, že

Více

Zkoušky digitální nivelační soupravy Sokkia SDL2

Zkoušky digitální nivelační soupravy Sokkia SDL2 Zkoušky digitální nivelační soupravy Sokkia SDL2 Úvodní poznámka V úlohách inženýrské a stavební geodezie by často mohly být výsledky zkresleny nepřesnostmi použité technologie nebo přístrojového vybavení,

Více

STATICKÝ VÝPOČET D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ REKONSTRUKCE 2. VÝROBNÍ HALY V AREÁLU SPOL. BRUKOV, SMIŘICE

STATICKÝ VÝPOČET D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ REKONSTRUKCE 2. VÝROBNÍ HALY V AREÁLU SPOL. BRUKOV, SMIŘICE STATICKÝ VÝPOČET D.1.2 STAVEBNĚ KONSTRUKČNÍ ŘEŠENÍ REKONSTRUKCE 2. VÝROBNÍ HALY V AREÁLU SPOL. BRUKOV, SMIŘICE Datum: 01/2016 Stupeň dokumentace: Dokumentace pro stavební povolení Zpracovatel: Ing. Karel

Více

Návod pro montáž lineární osy a nosné desky

Návod pro montáž lineární osy a nosné desky Lineární osa Návod pro montáž lineární osy a nosné desky 1. Oboustranná vodící kolejnice se připevní šrouby M8 na nosný profil. 2. Nosná deska s 2 excentrickými a 2 centrickými vodícími rolnami se namontuje

Více

Navíjedla. Navíjedla jsou obecně charakterizována tím, že zdvíhací, resp. tažná síla se vyvozuje lanem, které dostává pohyb od bubnu, jejž opásává.

Navíjedla. Navíjedla jsou obecně charakterizována tím, že zdvíhací, resp. tažná síla se vyvozuje lanem, které dostává pohyb od bubnu, jejž opásává. Zdvihadla Pojmem zdvihadla (nebo poněkud přesněji jednoduchá zdvihadla ) rozumíme zdvihací zařízení, členěná dále do těchto tří skupin: zvedáky, kladkostroje, navíjedla. Zdvihadla jsou všeobecně charakterizována

Více

Geometrická přesnost Schlesingerova metoda

Geometrická přesnost Schlesingerova metoda TECHNIKU A TECHNOLOGII České vysoké učení technické v Praze, fakulta strojní Horská 3, 128 00 Praha 2, tel.: +420 221 990 900, fax: +420 221 990 999 www.rcmt.cvut.cz metoda Pavel Bach 2009 2 Příklad měření

Více