ŠROUBOVÉ A ZÁVITOVÉ SPOJE

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "ŠROUBOVÉ A ZÁVITOVÉ SPOJE"

Transkript

1 ŠROUBOVÉ A ZÁVITOVÉ SPOJE Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice

2 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké škole technické a ekonomické v Českých Budějovicích" s registračním číslem CZ.1.07./2.2.00/ Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

3 ZÁKLADNÍ DEFINICE Šroubový spoj Šroubový spoj je velmi častý, jednoduchý, spolehlivý rozebíratelný spoj používaný pro spojování součástí. Používá se zejména pro spojení jedné nebo vícero součástí, na nastavení vzájemné polohy součástí, nebo na změnu kroutícího momentu v osovou sílu (pohyblivé šrouby).

4 ŠROUB

5 ZÁVIT Závit je technický prvek strojní součásti, jehož tvar je určen závitovou plochou. Ta vznikne navinutím profilu na válec podél šroubovice, v daném stoupání.

6 PROFIL METRICKÉHO ZÁVITU

7 NÁZVOSLOVÍ ZÁVITOVÉHO SPOJE Základní profil je teoretický profil závitu v osové rovině určený rozměry a úhly společnými vnitřnímu a vnějšímu závitu. Jmenovité profily závitu vnitřního a vnějšího se od sebe mohou lišit jsou určeny jmenovitými rozměry a jmenovitými úhly a vzniknout z teoretického profilu tzv. krácením profilu, tj. okosením nebo zaoblením hran). Rozteč P (S) je vzdálenost mezi stejnolehlými boky sousedních závitů ve směru osy závitu.

8 NÁZVOSLOVÍ ZÁVITOVÉHO SPOJE Velký průměr válcového závitu šroubu d, (u matice D) je průměr myšleného válce opsaného hřbetům vnějšího závitu, respektive vepsaného dnům vnitřního závitu. Malý průměr válcového závitu šroubu d 1 (u matice D 1 ) je průměr myšleného válce vepsaného dnům vnějšího závitu, respektive u matice opsaného hřbetům vnitřního závitu. Střední průměr válcového závitu šroubu d 2, (u matice D 2 ), je průměr myšleného válce souosého ze závitem, jehož každá tvořící přímka protíná profil závitu tak, aby se průsečnice tvořící (povrchové) přímky s vybráním závitu promítla do osy závitu jako úsečka o délce rovné polovině rozteče.

9 NÁZVOSLOVÍ ZÁVITOVÉHO SPOJE Jmenovitý průměr závitu je průměr, k němuž se vztahují úchylky. Obvykle se jedná o velký průměr vnějšího závitu (šroub) nebo velký průměr vnitřního závitu (matice). Ve všech případech se symbol D používá pro označení průměru vnitřního závitu v matici a symbol d pro označení průměrů vnějšího závitu šroubu. Úhel profilu závitu α je úhel, který svírají dva protilehlé boky profilu závitu v rovině procházející osou závitu. Úhel boku závitu je úhel, který svírá bok závitu s kolmicí k ose závitu v rovině procházející osou závitu. Menší z obou úhlů boku u nesouměrných profilů se označuje γ, větší úhel boku se označuje β. Součet obou úhlů závitů je roven úhlu profilu závitu. Pro souměrné profily závitu platí α = 2 β. Výška závitu je označuje h 3 u vnějšího a H 4 u vnitřního závitu. Je to vzdálenost mezi hřbetem a dnem závitu v rovině osového řezu ve směru kolmém k ose závitu.

10 NÁZVOSLOVÍ ZÁVITOVÉHO SPOJE Stoupání P h je vzdálenost mezi stejnolehlými boky jednoho závitu ve směru osy, tedy vzdálenost, o kterou se matice posune ve směru osy šroubu při jednom jejím otočení o 360º. Jednoduchý závit je závit vytvořený jedním profilem, jeho stoupání je stejné jako rozteč. Vícechodý závit je vytvořený dvěma nebo více profily. Šroub má tedy dva nebo více profilů závitů vyřezaných vedle sebe. Úhel stoupání ψ je úhel svíraný tečnou k závitu na středním průměru a rovinou kolmou k ose závitu. Délka zašroubování je rozměr v osové rovině závitu, na kterém se stýká závit vnější se závitem vnitřním.

11 ROZDĚLENÍ ZÁVITŮ Podle směru pravý (obvykle) levý Podle tvaru hranaté kuželové Podle počtu závitů jednochodý vícechodý

12 ROZDĚLENÍ ZÁVITŮ Podle tvaru profilu trojúhelníkové lichoběžníkové oblé Podle navinutí vnitřní (matice) vnější (šroub)

13 MECHANICKÉ VLASTNOSTI ŠROUBŮ A MATIC

14 POHYBOVÉ ŠROUBY Pohybové šrouby slouží k proměně rotačního pohybu na posuvný, nebo na změnu kroutícího momentu v osovou sílu. Pro pohybové šrouby se nejčastěji volí lichoběžníkový závit rovnoramenný, který může přenášet obousměrné zatížení. Projednosměrně velmi zatížené šrouby se volí lichobežníkový závit nerovnoramenný. Kvůli snížení ztrát třením, opotřebením a zvětšením účinnosti šroubu se používají vícechodé závity.

15 POHYBOVÉ ŠROUBY Svěrák příklad pohybového šroubu

16 MOŽNÉ KONSTRUKČNÍ USPOŘÁDÁNÍ POHYBOVÉHO ŠROUBU A MATICE šroub se otáčí a posouvá v nehybné matici (šroubový zdvihák, ventily proudících médií). šroub se otáčí a neposouvá, posouvá se matice v axiálním směru (suport na ložích soustruhu) matice se otáčí a neposouvá, posouvá se šroub v axiálním směru

Rozebíratelné spojení dvou nebo více spojovaných částí pomocí spojovacích prvků (součástí) šroubu, matice, případně podloţky.

Rozebíratelné spojení dvou nebo více spojovaných částí pomocí spojovacích prvků (součástí) šroubu, matice, případně podloţky. 1 ŠROUBOVÉ SPOJE Rozebíratelné spojení dvou nebo více spojovaných částí pomocí spojovacích prvků (součástí) šroubu, matice, případně podloţky. Podstatou funkce šroubového spoje je silový styk mezi spojovanými

Více

Z Á V I T Y. základní tvarový prvek šroubů a matic. geometricky je určen závitovou plochou, vytvořenou pohybem profilu závitu po šroubovici.

Z Á V I T Y. základní tvarový prvek šroubů a matic. geometricky je určen závitovou plochou, vytvořenou pohybem profilu závitu po šroubovici. Z Á V I T Y základní tvarový prvek šroubů a matic tgψ = Ph π. d geometricky je určen závitovou plochou, vytvořenou pohybem profilu závitu po šroubovici. DRUHY ZÁVITŮ se rozdělují podle: polohy profilu

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2. 10 Základní části strojů Kapitola 4 Závity

Více

Fakulta strojní VŠB-TUO. Přednáška č.6 SPOJE

Fakulta strojní VŠB-TUO. Přednáška č.6 SPOJE Fakulta strojní VŠB-TUO Přednáška č.6 SPOJE SPOJE A SPOJOVACÍ ČÁSTI Pro spojení dvou součástí (popř. montážních jednotek), existují v technické praxi tyto možnosti: - spojení tvarovým stykem, kdy využíváme

Více

PŘEVODY S OZUBENÝMI KOLY

PŘEVODY S OZUBENÝMI KOLY PŘEVODY S OZUBENÝMI KOLY Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 1. Zobrazování závitů na součástech Obrázek 1 šroubový spoj v řezu 1.1. Názvosloví závitů Závit je nejdůležitější

Více

TVAROVÉ SPOJE HŘÍDELE S NÁBOJEM POMOCÍ PER, KLÍNŮ A DRÁŽKOVÁNÍ

TVAROVÉ SPOJE HŘÍDELE S NÁBOJEM POMOCÍ PER, KLÍNŮ A DRÁŽKOVÁNÍ TVAROVÉ SPOJE HŘÍDELE S NÁBOJEM POMOCÍ PER, KLÍNŮ A DRÁŽKOVÁNÍ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Spoje a spojovací součásti Druhy a označování závitů

Více

Měření závitů - kontrola profilu -

Měření závitů - kontrola profilu - Měření závitů - kontrola profilu - Studijní text Normalizované profily závitů Závit METRICKÝ - M α - vrcholový úhel 60 d - velký průměr závitu šroubu (= D) d 2 - střední průměr závitu šroubu (= D 2 ) d

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Řezání závitů

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Řezání závitů Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Řezání závitů Závit šroubu vznikne, navineme-li těleso závitového profilu na válec (popř. kužel) pod určitým

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ KRESLENÍ SOUČÁSTÍ A SPOJŮ 1 Čepy,

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

Přednáška č.8 Hřídele, osy, pera, klíny

Přednáška č.8 Hřídele, osy, pera, klíny Fakulta strojní VŠB-TUO Přednáška č.8 Hřídele, osy, pera, klíny HŘÍDELE A OSY Hřídele jsou obvykle válcové strojní součásti umožňující a přenášející rotační pohyb. Rozdělujeme je podle: 1) typu namáhání

Více

metodika Základní pojmy závitů. sešit formátu A4, rýsovací potřeby 17. 9. 2013, 2. B

metodika Základní pojmy závitů. sešit formátu A4, rýsovací potřeby 17. 9. 2013, 2. B Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

Další plochy technické praxe

Další plochy technické praxe Další plochy technické praxe Dosud studované plochy mají široké využití jak ve stavební tak ve strojnické praxi. Studovali jsme možnosti jejich konstrukcí, vlastností i využití v praxi. Kromě těchto ploch

Více

DUM 14 téma: Rozd lení a zobrazení závit

DUM 14 téma: Rozd lení a zobrazení závit DUM 14 téma: Rozd lení a zobrazení závit ze sady: 03 tematický okruh sady: Kreslení výrobních výkres ze šablony: 04_Technická dokumentace Ur eno pro :1. ro ník vzd lávací obor: 26-41-M/01 Elektrotechnika

Více

PŘEVODY S OZUBENÝMI KOLY KUŽELOVÝMI A ŠROUBOVÝMI PLANETOVÝ PŘEVOD

PŘEVODY S OZUBENÝMI KOLY KUŽELOVÝMI A ŠROUBOVÝMI PLANETOVÝ PŘEVOD PŘEVODY S OZUBENÝMI KOLY KUŽELOVÝMI A ŠROUBOVÝMI PLANETOVÝ PŘEVOD Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál

Více

Řezání závitů na soustruhu

Řezání závitů na soustruhu Řezání závitů na soustruhu Závit šroubu vznikne, navineme-li těleso závitového profilu na válec, popřípadě kužel, pod určitým úhlem. Šroubovitě vinutá drážka daného profilu vzniká tak, že každý její bod

Více

Výukový materiál zpracován v rámci projektu EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/

Výukový materiál zpracován v rámci projektu EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/ Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0767 Šablona: III/2 3. č. materiálu: VY_ 32_INOVACE_106 Jméno autora: Václav Hasman Třída/ročník:

Více

Pracovní listy MONGEOVO PROMÍTÁNÍ

Pracovní listy MONGEOVO PROMÍTÁNÍ Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich

Více

11. Měření závitů. Profil metrického závitu je určen jmenovitými rozměry:

11. Měření závitů. Profil metrického závitu je určen jmenovitými rozměry: 11. Měření závitů Závit je geometricky určen závitovou plochou. Rozeznáváme závit matice (vnitřní) a závit šroubu (vnější). Závitová plocha vznikne pohybem profilu závitu tak, že každý jeho bod opisuje

Více

Inovace a zkvalitnění výuky prostřednictvím ICT. Tváření. Název: Tváření závitů. Téma: Ing. Kubíček Miroslav. Autor:

Inovace a zkvalitnění výuky prostřednictvím ICT. Tváření. Název: Tváření závitů. Téma: Ing. Kubíček Miroslav. Autor: Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Tváření Tváření závitů Ing. Kubíček Miroslav Číslo:

Více

Spojovací součásti a spoje

Spojovací součásti a spoje Spojovací součásti a spoje Každý stroj nebo strojní celek se skládá z jednotlivých součástí. Tyto součásti lze spojovat různými způsoby. Spoje můžeme rozdělit podle dvou kritérií: spoje rozebíratelné a

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ KRESLENÍ SOUČÁSTÍ A SPOJŮ 3 PŘEVODY

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2. 10 Základní části strojů Kapitola 5 Šrouby

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Spoje a spojovací součásti Pohybové šrouby Ing. Magdalena

Více

KOLÍKOVÉ, NÝTOVÉ A ČEPOVÉ SPOJE

KOLÍKOVÉ, NÝTOVÉ A ČEPOVÉ SPOJE KOLÍKOVÉ, NÝTOVÉ A ČEPOVÉ SPOJE Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ KRESLENÍ SOUČÁSTÍ A SPOJŮ 1 Čepy,

Více

Výroba závitů. Řezání závitů závitníky a závitovými čelistmi

Výroba závitů. Řezání závitů závitníky a závitovými čelistmi Výroba závitů Závity se ve strojírenské výrobě používají především k vytváření rozebíratelných spojení různých součástí a dále jako pohybové šrouby strojů a zařízení či měřidel. Principem výroby závitů

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Protokol měření. Kontrola a měření závitů

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Protokol měření. Kontrola a měření závitů Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Protokol měření Tolerování závitů Kontrola a měření závitů Řetězec norem, které se zabývají závity, zahrnuje

Více

ŘETĚZOVÉ PŘEVODY Vysoká škola technická a ekonomická v Českých Budějovicích

ŘETĚZOVÉ PŘEVODY Vysoká škola technická a ekonomická v Českých Budějovicích ŘETĚZOVÉ PŘEVODY Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů

Více

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura:

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: 8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: (1)Poláček, J., Doležal, M.: Základy deskriptivní a konstruktivní geometrie, díl 5, Křivky a plochy

Více

Smysl otáčení. Aplikace. Pravotočivá

Smysl otáčení. Aplikace. Pravotočivá Šroubovice Definice Šroubovice je křivka generovaná bodem A, který se otáčí kolem dané přímky o a zároveň se posouvá podél této přímky, oboje rovnoměrnou rychlostí. Pohyb bodu A šroubový pohyb Přímka o

Více

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří

Více

ZÁVITY. Střední odborná škola a Gymnázium Staré Město. Lubomír Petrla III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název DUMu

ZÁVITY. Střední odborná škola a Gymnázium Staré Město. Lubomír Petrla III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název DUMu ZÁVITY Název školy Střední odborná škola a Gymnázium Staré Město Číslo projektu CZ.1.07/1.5.00/34.1007 Autor Lubomír Petrla Název šablony III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název DUMu

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných

Více

POHYBOVÉ KLUZNÉ ŠROUBY trapézové, pilové, ACME

POHYBOVÉ KLUZNÉ ŠROUBY trapézové, pilové, ACME POHYBOVÉ KLUZNÉ ŠROUBY trapézové, pilové, ACME KSK Precise Motion, a.s. Vždy máme řešení! Profily pohybových závitů Závit lichoběžníkový rovnoramenný TRAPÉZOVÝ (Tr) dle ČSN 01 4050, DIN 103 Standardně

Více

5. P L A N I M E T R I E

5. P L A N I M E T R I E 5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční

Více

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název

Více

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy 1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné

Více

Interaktivní modely pro Konstruktivní geometrii

Interaktivní modely pro Konstruktivní geometrii Interaktivní modely pro Konstruktivní geometrii Jakub Makarovský Abstrakt V příspěvku jsou prezentovány interaktivní modely základních úloh z Konstruktivní geometrie (1. ročník, zimní semestr) zaměřující

Více

MECHANICKÉ PŘEVODOVKY S KONSTANTNÍM PŘEVODOVÝM POMĚREM

MECHANICKÉ PŘEVODOVKY S KONSTANTNÍM PŘEVODOVÝM POMĚREM MECHANICKÉ PŘEVODOVKY S KONSTANTNÍM PŘEVODOVÝM POMĚREM Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v

Více

STEREOMETRIE 9*. 10*. 11*. 12*. 13*

STEREOMETRIE 9*. 10*. 11*. 12*. 13* STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou

Více

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických

Více

Výroba závitů - shrnutí

Výroba závitů - shrnutí Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Obrábění Výroba závitů - shrnutí Ing. Kubíček Miroslav

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

VÝROBA ZÁVITŮ OBRÁBĚNÍM

VÝROBA ZÁVITŮ OBRÁBĚNÍM Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.

Více

Trojúhelník. Jan Kábrt

Trojúhelník. Jan Kábrt Trojúhelník Jan Kábrt Co se učívá ve školách Výšky, jejich průsečík ortocentrum O Těžnice, jejich průsečík těžiště T Osy stran, střed kružnice opsané S o Osy úhlů, střed kružnice vepsané S v Někdy ještě

Více

MONGEOVO PROMÍTÁNÍ - 2. část

MONGEOVO PROMÍTÁNÍ - 2. část MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice

Více

SPOJE OCELOVÝCH KONSTRUKCÍ

SPOJE OCELOVÝCH KONSTRUKCÍ 2. cvičení SPOJE OCELOVÝCH KONSTRUKCÍ Na spojování prvků ocelových konstrukcí se obvykle používají spoje šroubové (bez předpětí), spoje třecí a spoje svarové. Šroubové spoje Základní pojmy. Návrh spojovacího

Více

Části a mechanizmy stojů I

Části a mechanizmy stojů I Části a mechanizmy stojů I Název studijního programu Ing. Daniel Kučerka, PhD., ING-PAED IGIP doc. Ing. Soňa Rusnáková, PhD., ING-PAED IGIP doc. Ing. Ján Kmec, CSc. 2013 České Budějovice 1 Tento učební

Více

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce 1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé

Více

Volba a počet obrazů

Volba a počet obrazů Volba a počet obrazů Všeobecné zásady: kreslí se nejmenší počet obrazů potřebný k úplnému a jednoznačnému zobrazení předmětu, jako hlavní zobrazení se volí ten obraz, který nejúplněji ukazuje tvar a rozměry

Více

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU: 1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.

Více

kolík je v jedné nebo více spojovaných součástech usazen s předpětím způsobeným buď přesahem naráženého kolíku vůči díře, nebo kuželovitostí

kolík je v jedné nebo více spojovaných součástech usazen s předpětím způsobeným buď přesahem naráženého kolíku vůči díře, nebo kuželovitostí KOLÍKOVÉ SPOJE KOLÍKOVÉ SPOJE Spoje pevné - nepohyblivé (výjimku může tvořit spoj kolíkem s konci pro roznýtování). Lze je považovat za rozebíratelné, i když častější montáž a demontáž snižuje jejich spolehlivost.

Více

a) Konstrukční materiály a polotovary. Zobrazování normalizovaných prvků na technických výkresech.

a) Konstrukční materiály a polotovary. Zobrazování normalizovaných prvků na technických výkresech. a) Konstrukční materiály a polotovary. Zobrazování normalizovaných prvků na technických výkresech. 1. Konstrukční materiály a polotovary Předpis výrobku, jeho polotovaru a materiálu musí v konstrukční

Více

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI Šroubový pohyb vzniká složením otáčení kolem osy o a posunutí ve směru osy o, přičemž oba pohyby jsou spojité a rovnoměrné. Jestliže při pohybu po ose "dolů" je otáčení

Více

Obsah a průběh zkoušky 1PG

Obsah a průběh zkoušky 1PG Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2. 10 Základní části strojů Kapitola 29

Více

SPOJE STROJE STR A ZAŘÍZENÍ OJE ČÁSTI A MECHANISMY STROJŮ STR

SPOJE STROJE STR A ZAŘÍZENÍ OJE ČÁSTI A MECHANISMY STROJŮ STR SPOJE STROJE A ZAŘÍZENÍ ČÁSTI A MECHANISMY STROJŮ ZÁKLADNÍ POZNATKY Spoje jejich základní funkcí je umožnit spojení částí výrobků a to často v kombinaci s pohyblivostí. Spoje mohou být pohyblivé a nepohyblivé.

Více

ROTAČNÍ PLOCHY. 1) Základní pojmy

ROTAČNÍ PLOCHY. 1) Základní pojmy ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2. 10 Základní části strojů Kapitola 8 Svěrné

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.

Více

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2] Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.

Více

Střední škola technická Žďár nad Sázavou. Autor Milan Zach Datum vytvoření: 25.11.2012. Frézování ozubených kol odvalovacím způsobem

Střední škola technická Žďár nad Sázavou. Autor Milan Zach Datum vytvoření: 25.11.2012. Frézování ozubených kol odvalovacím způsobem Číslo šablony Číslo materiálu Název školy III/2 VY_32_INOVACE_T.9.4 Střední škola technická Žďár nad Sázavou Autor Milan Zach Datum vytvoření: 25.11.2012 Tématický celek Předmět, ročník Téma Anotace Obrábění

Více

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 2) Vypočtěte velikost úhlu : a) 150 10 b) 149 22 c) 151

Více

Název zpracovaného celku: Řízení automobilu. 2.natočit kola tak,aby každé z nich opisovalo daný poloměr zatáčení-nejsou natočena stejně

Název zpracovaného celku: Řízení automobilu. 2.natočit kola tak,aby každé z nich opisovalo daný poloměr zatáčení-nejsou natočena stejně Předmět: Ročník: Vytvořil: Datum: Silniční vozidla druhý NĚMEC V. 14.9.2012 Název zpracovaného celku: Řízení automobilu Řízení je nedílnou součástí automobilu a musí zajistit: 1.natočení kol do rejdu změna

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE TECHNICKÁ DOKUMENTACE Jan Petřík 2013 Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Obsah přednášek 1. Úvod do problematiky tvorby technické dokumentace

Více

Měření závitů - kontrola středního průměru -

Měření závitů - kontrola středního průměru - Měření závitů - kontrola středního průměru - Profil metrického závitu Studijní text Příklad označení - M12 M - metrický závit 12 - jmenovitý velký průměr závitu d = D = 12 mm d - velký průměr závitu šroubu

Více

Technická dokumentace

Technická dokumentace Technická dokumentace VY_32_inovace_FREI21 : Zásady kreslení závitů Datum vypracování: 1.9.2013 Vypracoval: Ing. Bohumil Freisleben Motto: spirálovitě vinuté drážky spoutáme normami a pravidly Text slouží

Více

půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho

půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho Řešené úlohy Rotační paraboloid v kolmém promítání na nárysnu Příklad: V kolmém promítání na nárysnu sestrojte tečnou rovinu τ v bodě A rotačního paraboloidu, který má ohnisko F a svislou osu o, F o, rotace;

Více

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný

Více

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

STROJNÍ SOUČÁSTI. Podle účelu a použití se strojní součásti rozdělují na:

STROJNÍ SOUČÁSTI. Podle účelu a použití se strojní součásti rozdělují na: STROJNÍ SOUČÁSTI Podle účelu a použití se strojní součásti rozdělují na: části spojovací (šrouby, klíny, pera, kolíky); části pružicí (pružiny, torzní tyče); části točivého a posuvného pohybu a jejich

Více

OVMT. Měření a kontrola závitů

OVMT. Měření a kontrola závitů Měření a kontrola závitů Základní pojmy Závity jsou funkční částí šroubů a matic. Nejčastěji vznikají vyříznutím šroubovité drážky určitého profilu do dříku šroubu nebo díry matice. Závit je obvykle vinut

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ HŘÍDELE A ČEPY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.1.Hřídele a čepy HŘÍDELE A ČEPY Hřídele jsou základní strojní součástí válcovitého tvaru, která slouží k

Více

Rozpis výstupů zima 2008 Geometrie

Rozpis výstupů zima 2008 Geometrie Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...

Více

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník 2.4.1. Základní vlastnosti 2.4.2. Výšky

Více

tečen a osu o π, V o; plochu omezte hranou vratu a půdorysnou a proved te rozvinutí

tečen a osu o π, V o; plochu omezte hranou vratu a půdorysnou a proved te rozvinutí Řešené úlohy Rozvinutelná šroubová plocha v Mongeově promítání Příklad: V Mongeově promítání zobrazte půl závitu rozvinutelné šroubové plochy, jejíž hranou vratu je pravotočivá šroubovice, která prochází

Více

Podstata frézování Zhotoveno ve školním roce: 2011/2012. Princip a podstata frézování. Geometrie břitu frézy

Podstata frézování Zhotoveno ve školním roce: 2011/2012. Princip a podstata frézování. Geometrie břitu frézy Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka

2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška

Více

Několik úloh z geometrie jednoduchých těles

Několik úloh z geometrie jednoduchých těles Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,

Více

VY_32_INOVACE_C Jedná se o takové aplikace, které pro přenos krouticího momentu mezi hřídelem a nábojem využívají tření.

VY_32_INOVACE_C Jedná se o takové aplikace, které pro přenos krouticího momentu mezi hřídelem a nábojem využívají tření. Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

CAD_Inventor -cvičení k modelování a tvorbě technické obrazové dokumentace Spirála

CAD_Inventor -cvičení k modelování a tvorbě technické obrazové dokumentace Spirála Předmět: Ročník: Vytvořil: Datum: CAD druhý, třetí Petr Machanec 25.5.2013 Název zpracovaného celku: CAD_Inventor -cvičení k modelování a tvorbě technické obrazové dokumentace Spirála Spirála vrták s válcovou

Více

Šroubovaný přípoj konzoly na sloup

Šroubovaný přípoj konzoly na sloup Šroubovaný přípoj konzoly na sloup Připojení konzoly IPE 180 na sloup HEA 220 je realizováno šroubovým spojem přes čelní desku. Sloup má v místě přípoje vyztuženou stojinu plechy tloušťky 10mm. Pro sloup

Více

Roznášení svěrné síly z hlav, resp. matic šroubů je zajištěno podložkami.

Roznášení svěrné síly z hlav, resp. matic šroubů je zajištěno podložkami. 4. cvičení Třecí spoje Princip třecích spojů. Návrh spojovacího prvku V třecím spoji se smyková síla F v přenáší třením F s mezi styčnými plochami spojovaných prvků, které musí být vhodně upraveny a vzájemně

Více

Časopis pro pěstování mathematiky a fysiky

Časopis pro pěstování mathematiky a fysiky Časopis pro pěstování mathematiky a fysiky L. Borovanský Ukázky themat daných k písemným zkouškám maturitním na českých školách středních v škol. r. 1907 [II.] Časopis pro pěstování mathematiky a fysiky,

Více

Šroubové plochy. Mgr. Jan Šafařík. Konzultace č. 3. přednášková skupina P-BK1VS1 učebna Z240

Šroubové plochy. Mgr. Jan Šafařík. Konzultace č. 3. přednášková skupina P-BK1VS1 učebna Z240 Šroubové plochy Mgr. Jan Šafařík Konzultace č. 3 přednášková skupina P-BK1VS1 učebna Z240 Šroubový pohyb Šroubový pohyb vzniká složením z rovnoměrného otáčení (rotace) kolem dané osy o a rovnoměrného posunutí

Více

Martin Škoula TECHNICKÁ DOKUMENTACE

Martin Škoula TECHNICKÁ DOKUMENTACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Martin Škoula TECHNICKÁ DOKUMENTACE SOUBOR PŘÍPRAV PRO 2. R. OBORU 23-56-H/01OBRÁBĚČ KOVŮ Vytvořeno

Více

Regulační pohony. Radomír MENDŘICKÝ. Regulační pohony

Regulační pohony. Radomír MENDŘICKÝ. Regulační pohony Radomír MENDŘICKÝ 1 Pohony posuvů obráběcích strojů (rozdělení elektrických pohonů) Elektrické pohony Lineární el. pohon Rotační el. pohon Asynchronní lineární Synchronní lineární Stejnosměrný Asynchronní

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Teorie frézování

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Teorie frézování Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Teorie frézování Geometrie břitu frézy Aby břit mohl odebírat třísky, musí k tomu být náležitě upraven. Každý

Více

Přednáška č.12 Čepy, kolíky, zděře, pružiny

Přednáška č.12 Čepy, kolíky, zděře, pružiny Fakulta strojní VŠB-TUO Přednáška č.12 Čepy, kolíky, zděře, pružiny ČEPY Čepy slouží k rozebíratelnému spojení součástí a přenáší jen síly kolmé na osu čepu. Například slouží k otočnému spojení táhel.

Více

Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu

Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu ŠROUBOVICE Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace Šroubovice dráha hmotného bodu při šroubovém pohybu ZÁKLADNÍ POJMY osa šroubovice o nosná válcová plocha (r poloměr řídicí kružnice

Více

Tvorba technické dokumentace

Tvorba technické dokumentace Tvorba technické dokumentace Požadavky na ozubená kola Rovnoměrný přenos otáček, požadavek stálosti převodového poměru. Minimalizace ztrát. Volba profilu boku zubu. Materiály ozubených kol Šedá a tvárná

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

VY_32_INOVACE_C 08 08

VY_32_INOVACE_C 08 08 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

GEOMETRICKÉ TOLERANCE GEOMETRICKÁ PŘESNOST

GEOMETRICKÉ TOLERANCE GEOMETRICKÁ PŘESNOST GEOMETRICKÉ TOLERANCE GEOMETRICKÁ PŘESNOST Přesnost Tvaru Orientace Umístění Házení Např.: n ěče h o v ů či n ě če m u Jeden prvek Dva a více prvků * základna nemusí být vždy požadována Toleranční pole

Více