Supramolekulární chemie v biologických systémech
|
|
- Helena Moravcová
- před 7 lety
- Počet zobrazení:
Transkript
1 Supramolekulární chemie v biologických systémech vysoce specifická, selektivní a kooperativní Umožňuje živým systémům: udržet se v jejich prostředí živit se dýchat reprodukovat se odpovídat na externí podněty 1
2 Host = Receptorová místa enzymů, genů, protilátek imunitního systému, ionoforů Guest = substráty, inhibitory, kofaktory, antigeny Modelování biologických procesů v laboratoři: katalýza org.chemických reakcí enzymy selektivní transport kovových kationtů transport molekulových substrátů (O 2 ) X Abiotická analoga výrazně zaostávají za přírodou 2
3 Komponenty vykazují supramolekulární vlastnosti: molecular recognition self-assembly self-organization kinetická a termodynamická komplementarita Typy interakcí: koordinační (ion-dipól) vazby H- vazby π π stacking Biologické systémy jsou supramolekulární systémy par excellence 3
4 Kationty alkalických kovů v biochemii Membránové potenciály: ATP, schopnost dlouhodob.ukládání energie vzniklé metabol. potravy. V ATP náboj 4 -, vyrovnán kationty alk. kovů a kovů alk.zemin 4
5 ATP využíván při endergonických reakcích. Působením enzymů ATPáz ADP +H 2 PO 4- + energie (35 kj/mol) 5
6 Na + /K + -ATPáza, důležitý transmembrán. enzym ve fosfolipidové membráně buněk Během přeměny ATP transportovány kationty Na +, K + z jedné strany membrány na druhou Na + ven, proti koncentračnímu gradientu, K + do buněk intracelulárně vys. konc. K +, extracelulárně vys. konc. Na + Velmi důležitý proces pro vznik transmembrán. potenciálu (množství rozděl. náboje malé) uplatnění např. pro přenos informace v nerv.buňkách 6
7 Přenos nervového vzruchu 1) Konc. gradient pomocí Na + /K + -ATPázy 2) Otevření iontových kanálků, vyrovnání Na +, K + a změna membrán.potenciálu slabý el.impulz 3) Na konci axonu uvolnění acetylcholinu (neurotransmiter) 4) Acetylcholin otevře iontový kanálek v dalším axonu atd. 7
8 Model zásobovací pumpy Pump storage model Ionty aktivně pumpovány Na + /K +- ATPázou proti gradientu dynam. nerovnov. stav stimulace brány (gate) rychlý návrat do rovnováhy 8
9 Membránový transport Struktura dvojvrstvy: obdoba u buněčné membrány a liposomu 9
10 Možný transport polárních Na +, K + přes lipofilní membrány: 1)ionoforem=lipofilním nosičem ( carrier ligand ) 1) hydrofilními kanálky a)volné -pasivní transport b)řízené ( gated channel ) -aktivní transport 10
11 Valinomycin i nonactin selektivní pro K + přibližně oktaedrické rozmístění tvrdých,nepolariz. kys.atomů. Dutina nejlépe preorganizovaná pro K +. Pro strukturu valinomycinu důležitá H-vazba NH O=C - i jako antibiotika, narušují transmebrán. rovnováhu v bakteriích Přírodní ionofory carrier ligands : 11
12 Desolvatace-komplexace-transportdekomplexace mechanismus pro ionoforem zprostředkovaný přenos pomalý např. pro nerv.signaly X Transport iontů přes iontové kanálky velmi rychlý (blíží se difuz. limitu, cca 10 8 ion/s pro 1 kanálek) 12
13 RTG struktura K + kanálku V Streptomyces lividans. Podstata vysoké rychlosti a selektivity (10 5 x větší pro K + proti Na + ) ve struktuře kanálku. Příklad pasivního transportu iontů. 13
14 Oba konce kanálu obklopeny záporně nabitými zbytky AK zvýš. koncentrace kationtů Pór se skládá z dlouhého kanálku (18 A) s centrál. rozšířením dutinou (10 A) uprostřed K + cestuje dutinou bez ztráty hydrat. obalu Selektivní filtr pro K + tvořený karbonyl. skupinami, vazeb. místa tvoří rigidní kruh, držený arylovými tryptofanovými a tyrosinovými skupinami 14
15 Na + /K + -ATPáza plasmatických membrán ( Sodíková pumpa ) příklad aktivního transportu iontů pumpuje Na + ven a K + do buňky za souběžné hydrolýzy intracelulár. ATP Realizuje tzv. elektrogenní antiport: 3 kladně nabit. náboje opuštějí buňku a 2 do ní vstupují 3Na + (in) + 2K + (ex) + ATP 3Na + (ex) + 2K + (in) + ADP + P Důležité pro osmot. regulaci H 2 O v buňkách, excitabilitu nerv. buněk atd. 15
16 Na + /K + -ATPáza je fosforylována ATP v přítomnosti Na +, naopak její aspartylfosfátový zbytek je hydrolyzován v přítomnosti K + 2 konformační stavy enzymu (E 1 a E 2 ). Liší se terc.strukturou, katal.aktivitou a ligand.specificitou. E 1 má vysokou afinitu k Na + na cytosolové straně. Je-li navázán Na +, reaguje s ATP za vzniku aktiv.e 1 -P. X E 2 -P má na extracel.straně vazeb. místo pro K +, je-li navázán, hydrolyzuje za vzniku P + E 2. 16
17 Reakční schéma: 1) E 1 3Na +, který přijal Na + uvnitř buňky, váže ATP za vzniku ternár.komplexu E 1 ATP 3Na +. 2) Komplex reaguje vzniku makroergického aspartylfosfátového intermediátu E 1 -P 3Na +. 3) Intermed. relax. na konformaci E 2 -P 3Na + o nižší en. a přenese Na + ven z buňky. 4) E 2 -P váže K + z okolí buňky za vzniku komplexu E 2 -P 2K +. 5) Hydrolýzou se odštěpuje P, vznik E 2 2K +. 17
18 6) E 2 2K + mění konformaci, přenáší 2 K + přes membránu a nahrazuje je 3 Na +. Kinetické schéma aktivního transportu Na + a K + Na + /K + -ATPázou. 18
19 Na + /K + -ATPáza- 2 podjednotky α a β v dimerním uspořádání Pravděpodobný transport iontů: pomocí 6 helik. peptid. řetězců 19
20 Porfyriny a tetrapyrolové makrocykly Důležité makrocyklické ligandy, vážou kov. ionty díky chelat. a makrocyklickému efektu. -uplatnění i jako ionofory -velikost. selektivní vázba s přech. i nepřech. kovy -rozsáhlá redox chemie Hl.skupiny: 1) Chlorofyly, obsahují Mg 2+, akumulace světelné energie při fotosyntéze) 20
21 2) Hemové komplexy, Fe v centru subst. porfyrinu, např. hem (Fe-protoporfyrin IX) v hemoglobinu -v řadě enzymů (cytochromů),které mají jako substrát O 2 3) Koenzym F450 porfyrinoidní komplex Ni 2+, v mikroorganismech produkujících CH 4 (nezáv. na proteinov. složkách) 4) Kobalaminy (aktiv. forma vitaminu B 12 ), oproti porfyrinům obsahují jen částečně konjug. systém - corrin ( parc. hydrogenace porf. kruhu) 21
22 a)corrin b) hem (Fe-protoporfyrin IX) c) koenzym F450 22
23 Speciální vlastnosti: 1) velice stabilní, téměř planární kruhový systém 2) tetradentátní chelat. ligandy - protonizace i deprotonizace do 1. a 2. stupně - schopnost vázat kovové ionty, (chelátový, makrocyklický efekt) - komplex disociuje, přeruší-li se všechny vazby kov-ligand současně - selektivní vůči iontovému poloměru vázaného kovového iontu (rigidní, konjugované kruhy - nejselektivnější) 23
24 3) většinou arom. konjug. systém, 18 π el., 16 členný kruh - barevnost látek fotoaktivita - termická stabilita - stabilita redox produktů (delokalizace náboje) 4) 4-koord. at. v planárním uspořádání ponechána volná axiální místa pro vazbu substrátů a regulujícího ligandu 24
25 -možnost deformace za tvorby klenbového (místo planárního) koordinač. uspořádání pro velké kov.ionty (vysokospin. Fe 2+, činnost hemoglobinu) 25
26 Fotosyntéza rostlin - u zelených rostlin, některých bakterií a řas fotosyntetický výtěžek: cca 1 g glukózy/hod/1 m 2 plochy povrchu listu, < 1% účinnost Celkově cca 200 miliard tun ekvivalentů (CH 2 O) n a z CO 2 ročně 26
27 Pigmenty (receptory,chromofory) transformace světla dopadajícího na zemský povrch (Vis: nm, NIR: nm) chlorofyl a, bakteriochlorofyl a,+ další pigmenty odvozené od tetrapyrol. makrocyklů, s kovem i bez něj) 27
28 Chlorofyly obsahují konjugovaný π-systém (18 π-el). Vys. extink. koeficient (cca 10 5 M - 1 cm -1 ) na obou koncích VIS spektra (λ max 455 a 630 nm) zelená barva Bakteriochlorofyly, 2 částeč. hydrogen. pyrolové kruhy abs. pásy posunuty bathochromně Karotenoidy a otevřené řetezce tetrapyrolových molekul (phycobilins, phycoerythrin, phycocyanin) doplňují chlorofylové pigmenty pokryto široké abs.spektrum 28
29 Konec růst. periody degradace chlorofylu, viditelná jsou nezelená barviva, např. phycoerythrin (λ max = 455 nm, m ž, 510 nm, mz č, 555 nm, z f) 29
30 Pigmenty umístěné ve skládané fotosyntetické membráně s velkým povrchem (vysokým průřezem pro záchyt fotonů) 30
31 Přes 98% pigmentů využito pro absorpci světla ( light harvesting ) a anténní přenos energie do reak. center.prostorově orientovaný přenos definovanou sítí pigmentů - kaskáda přenosu energie (překryv emisních pásů donoru s abs. pásy akceptoru en.) 31
32 Kaskáda přenosu energie u pigmentů v řase Porhyridium cruetum: 32
33 Pigmenty zakotveny ve fotosyntetické membráně pomocí dlouhého fytylového řetězce. Role Mg 2+ : přispívá k fixování a uspořádání pigmentů v prostoru. 2 axiální místa oktaedru vazba na postranní polypeptidové ligandy 3 bodové ukotvení 33
34 Přednosti Mg 2+ : 1) hojný výskyt v přírodě (nekatalytická funkce) 2) nemá redox aktivitu (vadila by v mezipigmentovém přenosu el.) 3) silná tendence k hexakoordinaci 4) vhodný iont. poloměr 5) malá spin-orbit interak. konstanta (vedoucí k dlouhožijícím exc.triplet. stavům k světlo nebo teplo produkujícím procesům) 34
35 En. kolektována antenním pigment. systémem do reakč. centra. Excitace elektronu, ET a rychlá separace náboje. Reakční centrum (polyproteinový komplex ve fotosynt. membráně) bakterie Rhodopseudomonas viridis: 1) Excitace bakteriochlorofyl, dimeru (BC) 2 (BC) 2 * (primární separace náboje) 2) ET na monomerní BC (akceptor el.) 3) ET na sek. akceptor, bakteriofeofytin (BP) (sekundární separace náboje) 4) ET na para-chinon (Q a ) 35
36 5) ET na další chinon (např. ubichinon) Vznik el. gradientu vznik H + gradientu fotosyn. fosforylace (ATP syntéza) Ve vyšších organismech dark reakce, redukce CO 2 (Calvinův cyklus): 4e - + 4H + + CO 2 1/n (CH 2 O) n + H 2 O 36
37 Klíčový rys fotosyntézy: schopnost oddělit od sebe v prostoru náboje z reakčního centra v excit. stavu dříve, než proběhne velice účinná ale biochemicky neužitečná rekombinace - odděl. nábojů 10 8 x rychlejší než rekombinace (nemožné v normální chem. reakci) Dosaženo prostorovým ukotvením komponent ve vzájemně vhodné orientaci v nepolární oblasti proteinů zakotvených v membráně -znemožňuje difúzi, umožňuje chemickou reakci 37
38 Manganem katalyzovaná oxidace vody na kyslík Ve vyšších rostlinách 2 separované fotosystémy: PSI a PSII. PSI založen hlavně na pigmentu P 700, který se excituje přes PSII a redukuje CO 2 PSII podobný jako u bakteriálního reak.centra, navíc pigment P 680. Separací náboje vznik oxidujícího kationtu a kaskády oxid. reakcí: a) tyrosin tyrosin radikál.kation b) plastohydrochinon(pqh 2 ) plastochinon (PQ) 38
39 PQ oxiduje H 2 O v 4-el. redox pochodu, který je katalyzován OEC (Oxygen-Evolving-Complex) Enzym OEC tvořen Mn 4 clustrem, který přechází přes 5 oxid.stavů (malá akt. energie, velké změny v ox. stavech. 39
40 Polymanganový (OEC) systém funguje: i) jako el. resorvoár, akumulující náboj ii) katalyzátor, který neváže 3 O 2 40
41 1) MnO 2-x nh 2 O dobrý heterogenní katalyzátor rozkladu H 2 O 2 na O 2 a vodu 2) Snadno dostupný z mořské vody v době vývoje fotosyntézy (před 3x10 9 lety, nyní hojně na mořském dně) 3)Velké množství stabilních a metastabilních oxidačních stavů (II, III, IV, VI, VII) 4) Labilní vazba s ligandy 5) Upřednostňuje vysokospin. stavy, malé štěpení d orbitalů 41
12-Fotosyntéza FRVŠ 1647/2012
C3181 Biochemie I 12-Fotosyntéza FRVŠ 1647/2012 Petr Zbořil 10/6/2014 1 Obsah Fotosyntéza, světelná fáze. Chlorofyly, struktura fotosyntetického centra. Komponenty přenosu elektronů (cytochromy, chinony,
Eva Benešová. Dýchací řetězec
Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ
Fyziologie rostlin. 9. Fotosyntéza část 1. Primární fáze fotosyntézy. Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014
Fyziologie rostlin 9. Fotosyntéza část 1. Primární fáze fotosyntézy Alena Dostálová, Ph.D. Pedagogická fakulta ZČU, letní semestr 2013/2014 Fotosyntéza 1. část - úvod - chloroplasty - sluneční záření -
1- Úvod do fotosyntézy
1- Úvod do fotosyntézy Prof. RNDr. Petr Ilík, Ph.D. KBF a CRH, PřF UP FS energetická bilance na povrch Země dopadá 2/10 10 energie ze Slunce z toho 30% odraz do kosmu 47% teplo 23% odpar vody 0.02% pro
Hořčík. Příjem, metabolismus, funkce, projevy nedostatku
Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán
TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA
TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA 1 VÝZNAM TRANSPORTU PŘES MEMBRÁNY V MEDICÍNĚ Příklad: Membránový transportér: CFTR (cystic fibrosis transmembrane regulator) Onemocnění: cystická fibróza
Fotosyntéza Světelné reakce. Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni
Fotosyntéza Světelné reakce Ondřej Prášil Mikrobiologický ústav AVČR Laboratoř fotosyntézy v Třeboni Literatura Plant Physiology (L.Taiz, E.Zeiger), kapitola 7 pdf verze na požádání www.planthys.net Fotosyntéza
Typy molekul, látek a jejich vazeb v organismech
Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,
Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.
Fyziologie buňky RNDr. Zdeňka Chocholoušková, Ph.D. Přeměna látek v buňce = metabolismus Výměna látek mezi buňkou a prostředím Buňka = otevřený systém probíhá výměna látek i energií s prostředím Některé
Sacharidy a polysacharidy (struktura a metabolismus)
Sacharidy a polysacharidy (struktura a metabolismus) Sacharidy Živočišné tkáně kolem 2 %, rostlinné 85-90 % V buňkách rozličné fce: Zdroj a zásobárna energie (glukóza, škrob, glykogen) Výztuž a ochrana
METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI
METABOLISMUS SLOUČENINY S MAKROERGNÍMI VAZBAMI Obsah Formy organismů Energetika reakcí Metabolické reakce Makroergické sloučeniny Formy organismů Autotrofní x heterotrofní organismy Práce a energie Energie
5. Lipidy a biomembrány
5. Lipidy a biomembrány Obtížnost A Co je chybného na často slýchaném konstatování: Biologická membrána je tvořena dvojvrstvou fosfolipidů.? Jmenujte alespoň tři skupiny látek, které se podílejí na výstavbě
ENZYMY. RNDr. Lucie Koláčná, Ph.D.
ENZYMY RNDr. Lucie Koláčná, Ph.D. Enzymy: katalyzátory živé buňky jednoduché nebo složené proteiny Apoenzym: proteinová část Kofaktor: nízkomolekulová neaminokyselinová struktura nezbytně nutná pro funkci
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fotosyntéza Fotosyntéza pohlcení energie slunečního záření a její přeměna na chemickou energii rovnováha fotosyntetisujících a heterotrofních
FOTOBIOLOGICKÉ POCHODY
FOTOBIOLOGICKÉ POCHODY Základním zdrojem energie nutné pro život na Zemi je sluneční záření. Většina pochodů souvisí s přímým využitím zářivé energie pro metabolické pochody nebo pro orientaci organizmu
Vnitřní prostředí organismu. Procento vody v organismu
Vnitřní prostředí organismu Procento vody v organismu 2 Vnitřní prostředí organismu Obsah vody v různých tkáních % VODY KREV 83% SVALY 76% KŮŽE 72% KOSTI 22% TUKY 10% ZUBNÍ SKLOVINA 2% 3 Vnitřní prostředí
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Fotosyntéza světelná fáze. VY_32_INOVACE_Ch0214.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
FOTOSYNTÉZA. Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1
FOTOSYNTÉZA Mgr. Alena Výborná Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_1_07_BI1 Fotosyntéza (z řec. phos, photós = světlo) je anabolický děj probíhající u autotrofních organismů (řasy,
4 Přenos energie ve FS
4 Přenos energie ve FS Petr Ilík KF a CH, PřF UP Přenos energie (excitace) do C - 1-1 molekula chl je i při vysoké ozářenosti excitována max. 10x za sekundu neefektivní pro C - nténní systém s mnoha pigmenty
Fotosyntéza (2/34) = fotosyntetická asimilace
Fotosyntéza (2/34) = fotosyntetická asimilace FOTO - protože k fotosyntéze je třeba fotonů Jedná se tedy o zachycování sluneční energie a přeměnu jednoduchých anorganických látek (CO 2 a H 2 O) na složitější
Mendělejevova tabulka prvků
Mendělejevova tabulka prvků V sušině rostlin je obsaženo přibližně 45% uhlíku, 42% kyslíku, 6,5% vodíku, 1,5% dusíku a 5% minerálních prvků. Tzv. organogenní prvky (C, O, H, N) představují tedy 95% veškerých
FOTOSYNTÉZA. Princip, jednotlivé fáze
FOTOSYNTÉZA Princip, jednotlivé fáze FOTOSYNTETICKÉ PIGMENTY - chlorofyl a modrozelený - chlorofyl b žlutozelený + karoteny, xantofyly žluté a oranžové zbarvení CHLOROFYL a, b CHLOROFYL a - nejdůležitější
Vyjádření fotosyntézy základními rovnicemi
FOTOSYNTÉZA Fotochemický proces, při němž fotosynteticky aktivní pigmenty v zelených částech rostlin přijímají energii světelného záření a přeměňují ji na energii chemickou. Ta je dále využita při biologických
BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ
BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za
FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN
FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,
METABOLISMUS SACHARIDŮ
METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces
Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.
Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický
Charakteristika složky 3) cytochrom-c NADH-Q-reduktasa cytochrom-c- oxidasa ubichinon cytochromreduktasa
8. Dýchací řetězec a fotosyntéza Obtížnost A Pomocí následující tabulky charakterizujte jednotlivé složky mitochondriálního dýchacího řetězce. SLOŽKA Pořadí v dýchacím řetězci 1) Molekulový typ 2) Charakteristika
Bunka a bunecné interakce v patogeneze tkánového poškození
Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce
Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron).
Otázka: Fotosyntéza a biologické oxidace Předmět: Biologie Přidal(a): Ivana Černíková FOTOSYNTÉZA = fotosyntetická asimilace: Jediný proces, při němž vzniká v přírodě kyslík K přeměně jednoduchých látek
FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74. Katedra experimentální biologie rostlin, Z. Lhotáková
FOTOSYNTÉZA I. Přednáška Fyziologie rostlin MB130P74 Katedra experimentální biologie rostlin, Z. Lhotáková proteinové komplexy thylakoidní membrány - jsou kódovány jak plastidovými tak jadernými geny 1905
Hořčík. Příjem, metabolismus, funkce, projevy nedostatku
Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
FOTOSYNTÉZA. soubor chemických reakcí,, probíhaj v rostlinách a sinicích. z CO2 a vody jediný zdroj kyslíku ku pro život na Zemi
Fotosyntéza FOTOSYNTÉZA soubor chemických reakcí,, probíhaj hajících ch v rostlinách a sinicích ch zachycení a využit ití sluneční energie k tvorbě složitých chemických sloučenin z CO2 a vody jediný zdroj
Energetický metabolismus rostlin. respirace
Energetický metabolismus rostlin Zdroje E: fotosyntéza respirace Variabilní využívání: - orgánové a pletivové rozdíly (kořen, prýt, pokožka, ) - změny při vývoji a diferenciaci - vliv dostupnosti vody,
6 Přenos elektronů a protonů
6 Přenos elektronů a protonů Petr Ilík KBF a CRH, PřF UP Evoluce FS 1 Halobaktérie H + pumpa http://www.rsc.org/publishing/chemtech/volume/2008/11/b acteriorhodopsin_insight.asp - Protonová pumpa halobakterií
Energetický metabolismus rostlin
Energetický metabolismus rostlin Sylabus - témata (Fischer, Duchoslav) 1. Energie v živých systémech Formy energie a základní principy přeměny energií; změny volné energie, rovnovážná konstanta, spřažení
Tělesné kompartmenty tekutin. Tělesné kompartmenty tekutin. Obecná patofyziologie hospodaření s vodou a elektrolyty.
Obecná patofyziologie hospodaření s vodou a elektrolyty. 2. 4. 2008 Tělesné kompartmenty tekutin Voda je v organismu kompartmentalizovaná do několika oddílů. Intracelulární tekutina (ICF) zahrnuje 2/3
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 4. Membránové proteiny Ivo Frébort Lipidová dvojvrstva Biologické membrány Integrální membránové proteiny Transmembránové proteiny Kovalentně ukotvené membránové
Opakování
Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony
Bp1252 Biochemie. #11 Biochemie svalů
Bp1252 Biochemie #11 Biochemie svalů Úvod Charakteristickou funkční vlastností svalu je schopnost kontrakce a relaxace Kontrakce následuje po excitaci vzrušivé buněčné membrány je přímou přeměnou chemické
Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů
Dynamické procesy & Pokročilé aplikace NMR chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Chemická výměna jakýkoli proces při kterém dané jádro mění svůj stav
umožňují enzymatické systémy živé protoplazmy, nezbytný je kyslík,
DÝCHÁNÍ ROSTLIN systém postupných oxidoredukčních reakcí v živých buňkách, při kterých se z organických látek uvolňuje energie, která je zachycena jako krátkodobá energetická zásoba v ATP, umožňují enzymatické
Fluorescenční rezonanční přenos energie
Fluorescenční rezonanční přenos energie Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1 Přenos excitační energie Přenos elektronové energie se uskutečňuje mechanismy zářivými nebo
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Transport elektronů a oxidativní fosforylace
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Transport elektronů a oxidativní fosforylace Oxidativní fosforylace vs. fotofosforylace vyvrcholení katabolismu Všechny oxidační degradace
pátek, 24. července 15 BUŇKA
BUŇKA ŽIVOČIŠNÁ BUŇKA mitochondrie ribozom hrubé endoplazmatické retikulum cytoplazma plazmatická membrána mikrotubule lyzozom hladké endoplazmatické retikulum Golgiho aparát jádro jadérko chromatin volné
OXIDATIVNÍ FOSFORYLACE
OXIDATIVNÍ FOSFORYLACE OBSAH Mitochondrie Elektronový transport Oxidativní fosforylace Kontrolní systém oxidativního metabolismu. Oxidace a syntéza ATP jsou spojeny transmembránovým tokem protonů Dýchací
Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů.
Fotosyntéza. Dýchání a fotosyntéza, struktura a funkce antén a reakčních center, energetika transportu elektronů a protonů. Šárka Gregorová, 2013 Poznámka: protože se tyhle dvě státnicové otázky z velké
14. Fyziologie rostlin - fotosyntéza, respirace
14. Fyziologie rostlin - fotosyntéza, respirace Metabolismus -přeměna látek a energií (informací) -procesy: anabolický katabolický autotrofie Anabolismus heterotrofie Autotrofní organismy 1. Chemoautotrofy
Energetický metabolismus rostlin
Energetický metabolismus rostlin Sylabus - témata (Fischer, Šantrůček) 1. Základy energetiky v živých systémech Formy energie a základní principy přeměny energií; změny volné energie, rovnovážná konstanta,
Bc. Miroslava Wilczková
KOMPLEXNÍ SLOUČENINY Bc. Miroslava Wilczková Komplexní sloučeniny Začal studovat Alfred Werner. Na základě získaných chemických a fyzikálních vlastností objasnil základní rysy jejich vnitřní struktury,
3) Membránový transport
MBR1 2016 3) Membránový transport a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy 1 Prokaryotická buňka Eukaryotická buňka 2 Pohyb vody první reakce klidných
Membránové potenciály
Membránové potenciály Vznik a podstata membránového potenciálu vzniká v důsledku nerovnoměrného rozdělení fyziologických iontů po obou stranách membrány nestejná propustnost membrány pro různé ionty různá
OPVK CZ.1.07/2.2.00/
OPVK CZ.1.07/2.2.00/28.0184 Základní principy vývoje nových léčiv OCH/ZPVNL Mgr. Radim Nencka, Ph.D. ZS 2012/2013 Molekulární interakce SAR Možné interakce jednotlivých funkčních skupin 1. Interakce alkoholů
Katabolismus - jak budeme postupovat
Katabolismus - jak budeme postupovat I. fáze aminokyseliny proteiny polysacharidy glukosa lipidy Glycerol + mastné kyseliny II. fáze III. fáze ETS itrátový cyklus yklus trikarboxylových kyselin, Krebsův
Předmět: KBB/BB1P; KBB/BUBIO
Předmět: KBB/BB1P; KBB/BUBIO Energie z mitochondrií a chloroplastů Cíl přednášky: seznámit posluchače se základními principy získávání energie v mitochondriích a chloroplastech Klíčová slova: mitochondrie,
FOTOSYNTÉZA ZÁKLAD ŽIVOTA NA ZEMI
FOTOSYNTÉZA ZÁKLAD ŽIVOTA NA ZEMI Pavel Peč Katedra biochemie Přírodovědecké fakulty Univerzita Palackého v Olomouci Fotosyntéza fixuje na Zemi ročně asi 1011 tun uhlíku, což reprezentuje 1018 kj energie.
Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech
Citrátový cyklus Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech 1. stupeň: OXIDACE cukrů, tuků a některých aminokyselin tvorba Acetyl-CoA a akumulace elektronů v NADH a FADH 2 2.
3 a) Fyzikální principy. 5 Chemický potenciál (µ s ) (volná energie na jeden mol: J/mol) * = chemický potenciál roztoku s za standartních podmínek
MBRO1 1 2 2017 3) Membránový transport Prokaryotická buňka Eukaryotická buňka a) Fyzikální principy b) Regulace pohybu roztoků membránami a jejich transportéry c) Pumpy Pohyb vody první reakce klidných
9. Dýchací řetězec a oxidativní fosforylace. mitochondriální syntéza ATP a fotosyntéza
9. Dýchací řetězec a oxidativní fosforylace mitochondriální syntéza ATP a fotosyntéza CHEMIOSMOTICKÁ TEORIE SYNTÉZY ATP Heterotrofní organismy získávají hlavní podíl energie (cca 90%) uložené ve struktuře
ení k tvorbě energeticky bohatých organických sloučenin
Fotosyntéza mimořádně významný proces, využívající energii slunečního zářenz ení k tvorbě energeticky bohatých organických sloučenin (sacharidů) z jednoduchých anorganických látek oxidu uhličitého a vody
>>> E A1 + E A2. . aktivační energie potřebná k reakci bez přítomnosti katalyzátoru E A E A1. energie potřebná ke vzniku enzym-substrátového komplexu
Enzymy Charakteristika enzymů- fermentů katalyzátory biochem. reakcí biokatalyzátory umožňují a urychlují průběh rcí v organismu nachází se ve všech živých systémech z chemického hlediska jednoduché nebo
Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3
Respirace (buněčné dýchání) Fotosyntéza Dýchání Energie záření teplo chem. energie CO 2 (ATP, NAD(P)H) O 2 Redukce za spotřeby NADPH BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3 oxidace produkující
Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4.
Vyučovací předmět - Chemie Vzdělávací obor - Člověk a příroda Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4. ročník - seminář
Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:
Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -
Fotosyntéza a Calvinův cyklus. Eva Benešová
Fotosyntéza a Calvinův cyklus Eva Benešová Fotosyntéza světlo CO 2 + H 2 O O 2 + (CH 2 O) světlo 6CO 2 + 6H 2 O 6O 2 + C 6 H 12 O 6 Opět propojení toku elektronů se syntézou ATP. Zachycení světelné energie
Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY
Inovace profesní přípravy budoucích učitelů chemie CZ.1.07/2.2.00/15.0324 Text zpracovala Mgr. Taťána Štosová, Ph.D PŘÍRODNÍ LÁTKY Obsah 1 Úvod do problematiky přírodních látek... 2 2 Vitamíny... 2 2.
Biosyntéza sacharidů 1
Biosyntéza sacharidů 1 S a c h a r id y p o tr a v y (š k r o b, g ly k o g e n, sa c h a r o sa, a j.) R e z e r v n í p o ly sa c h a r id y J in é m o n o sa c h a r id y Trávení (amylásy - sliny, pankreas)
Dýchací řetězec. Viz též přednášky prof. Kodíčka (snímky a blány v levém sloupci)
Dýchací řetězec Viz též přednášky prof. Kodíčka (snímky a blány v levém sloupci) Odbourávání glukosy (včetně substrátových fosforylací) C 6 H 12 O 6 + 6O 2 -->6 CO 2 + 6H 2 O + 38 ATP Dýchací
FOTOSYNTÉZA. CO 2 a vody. - soubor chemických reakcí. - probíhá v rostlinách a sinicích. - zachycení a využití světelné energie
Fotosyntéza FOTOSYNTÉZA - soubor chemických reakcí - probíhá v rostlinách a sinicích - zachycení a využití světelné energie - tvorba složitějších chemických sloučenin z CO 2 a vody - jediný zdroj kyslíku
Enzymologie. Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů.
ENZYMOLOGIE 1 Enzymologie Věda ležící na pomezí fyz. ch. a bioch. Zabývá se problematikou biokatalyzátorů. Jak je možné, že buňka dokáže utřídit hrozivou změť chemických procesů, které v ní v každém okamžiku
Cukry (Sacharidy) Sacharidy a jejich metabolismus. Co to je?
Sacharidy a jejich metabolismus Co to je? Cukry (Sacharidy) Organické látky, které obsahují karbonylovou skupinu (C=O) a hydroxylové skupiny (-O) vázané na uhlících Aldosy: karbonylová skupina na konci
Biologie buňky. systém schopný udržovat se a rozmnožovat
Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický
BIOMEMBRÁNY. Sára Jechová, leden 2014
BIOMEMBRÁNY Sára Jechová, leden 2014 zajišťují ohraničení buněk- plasmatické membrány- okolo buněčné protoplazmy, bariéra v udržování rozdílů mezi prostředím uvnitř buňky a okolím a organel= intercelulární
03a-Chemické reakce v živých organizmech FRVŠ 1647/2012
C3181 Biochemie I 03a-Chemické reakce v živých organizmech FRVŠ 1647/2012 Petr Zbořil 9/23/2014 1 Obsah Obecné rysy metabolismu Chemické reakce a jejich energetika Makroergické sloučeniny Petr Zbořil 9/23/2014
Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou CHEMICKÁ VAZBA VY_32_INOVACE_03_3_07_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou CHEMICKÁ VAZBA Volné atomy v přírodě
Chemická kinetika. Chemické změny probíhající na úrovni atomárně molekulové nazýváme reakční mechanismus.
Chemická kinetika Chemická reakce: děj mezi jednotlivými atomy a molekulami, při kterých zanikají některé vazby v molekulách výchozích látek a jsou nahrazovány vazbami v molekulách nově vznikajících látek.
2. Fotosensitizované reakce a jejich mechanismus. 5. Samoorganizované porfyrinové nanostruktury a jednoduché aplikace
1. Úvod (proč jsou důled ležité) 2. Fotosensitizované reakce a jejich mechanismus 3. Fotodynamická terapie 4. Spontánní aggregace 5. Samoorganizované porfyrinové nanostruktury a jednoduché aplikace Porfyriny
Energetický metabolizmus buňky
Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie
5. Příjem, asimilace a fyziologické dopady anorganického dusíku. 5. Příjem, asimilace a fyziologické dopady anorganického dusíku
5. Příjem, asimilace a fyziologické dopady anorganického dusíku Zdroje dusíku dostupné v půdě: Amonné ionty + Dusičnany = největší zdroj dusíku v půdě Organický dusík (aminokyseliny, aminy, ureidy) zpracování
Metabolismus. - soubor všech chemických reakcí a příslušných fyzikálních procesů, které souvisejí s aktivními projevy života daného organismu
Metabolismus Obecné znaky metabolismu Získání a využití energie - bioenergetika Buněčné dýchání (glykolysa + CKC + oxidativní fosforylace) Biosynthesa sacharidů + fotosynthesa Metabolismus lipidů Metabolismus
B4, 2007/2008, I. Literák
B4, 2007/2008, I. Literák ENERGIE, KATALÝZA, BIOSYNTÉZA Živé organismy vytvářejí a udržují pořádek ve světě, který spěje k čím dál většímu chaosu Druhá věta termodynamiky: Ve vesmíru nebo jakékoliv izolované
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY
PŘENOS SIGNÁLU DO BUŇKY, MEMBRÁNOVÉ RECEPTORY 1 VÝZNAM MEMBRÁNOVÝCH RECEPTORŮ V MEDICÍNĚ Příklad: Membránové receptory: adrenergní receptory (receptory pro adrenalin a noradrenalin) Funkce: zprostředkování
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 3. Enzymy a proteinové motory Ivo Frébort Enzymová katalýza Mechanismy enzymové katalýzy o Ztráta entropie při tvorbě komplexu ES odestabilizace komplexu ES
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. ENZYMY I úvod, názvosloví, rozdělení do tříd
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ENZYMY I úvod, názvosloví, rozdělení do tříd Úvod z řeckého EN ZYME (v kvasinkách) biologický katalyzátor, protein (RNA) liší se od chemických
Aerobní odbourávání cukrů+elektronový transportní řetězec
Aerobní odbourávání cukrů+elektronový transportní řetězec Dochází k němu v procesu jménem aerobní respirace. Skládá se z kroků: K1) Glykolýza K2) oxidativní dekarboxylace pyruvátu K3) Krebsův cyklus K4)
ENZYMY. Charakteristika enzymaticky katalyzovaných reakcí:
ENZYMY Definice: Enzymy (biokatalyzátory) jsou jednoduché či složené makromolekulární bílkoviny s katalytickou aktivitou. Urychlují reakce v organismech tím, že snižují aktivační energii (Ea) potřebnou
Supramolecular chemistry... Intermolecular interactions. Supramolecular chemistry is about design. Therefore people are important!
K a t i o n t y Supramolecular chemistry... Intermolecular interactions Supramolecular chemistry is about design. Therefore people are important! Zatím ;-) Vazba kationtů Ionofor = přírodníči syntetický
Chemická reaktivita NK.
Chemické vlastnosti, struktura a interakce nukleových kyselin Bi7015 Chemická reaktivita NK. Hydrolýza NK, redukce, oxidace, nukleofily, elektrofily, alkylační činidla. Mutageny, karcinogeny, protinádorově
BÍLKOVINY. V organismu se nedají nahradit jinými sloučeninami, jen jako zdroj energie je mohou nahradit sacharidy a lipidy.
BÍLKOVINY o makromolekulární látky, z velkého počtu AMK zbytků o základ všech organismů o rostliny je vytvářejí z anorganických sloučenin (dusičnanů) o živočichové je musejí přijímat v potravě, v trávicím
Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké
Fotosyntéza Každá molekula kyslíku kterou právě dýcháme vznikla někdy v nějaké rostlině. Každý atom uhlíku našeho těla byl kdysi včleněn fotosyntézou do nějaké rostliny. Zelené rostliny patří mezi autotrofy
KABELOVÉ VLASTNOSTI BIOLOGICKÝCH VODIČŮ. Helena Uhrová
KABELOVÉ VLASTNOSTI BIOLOGICKÝCH VODIČŮ Helena Uhrová 19. století Lord Kelvin 1870 - Hermann namodelování elektrického napětí na nervovém vlákně 20. stol - Hermann a Cremer nezávisle na sobě rozpracovali
Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková
Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního
Chemická vazba. John Dalton Amadeo Avogadro
Chemická vazba John Dalton 1766-1844 Amadeo Avogadro 1776-1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904-1981 Fritz W. London 1900-1954 Teorie molekulových orbitalů Friedrich und 1896-1997
Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii
Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.
Metabolismus. Source:
Source: http://www.roche.com/ http://www.expasy.org/ Metabolismus Source: http://www.roche.com/sustainability/for_communities_and_environment/philanthropy/science_education/pathways.htm Metabolismus -
Konsultační hodina. základy biochemie pro 1. ročník. Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa
Konsultační hodina základy biochemie pro 1. ročník Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa Přírodní látky 1 Co to je? Cukry (Sacharidy) Organické látky,
ANABOLISMUS SACHARIDŮ
zdroj sacharidů: autotrofní org. produkty fotosyntézy heterotrofní org. příjem v potravě důležitou roli hraje GLUKÓZA METABOLISMUS SACHARIDŮ ANABOLISMUS SACHARIDŮ 1. FOTOSYNTÉZA autotrofní org. 2. GLUKONEOGENEZE
Lékařská chemie přednáška č. 3
Lékařská chemie přednáška č. 3 vnitřní prostředí organismu transport látek v membráně Václav Babuška Vaclav.Babuska@lfp.cuni.cz Vnitřní prostředí organismu Procento vody v organismu 2 Vnitřní prostředí