3.3. Mikroskopie Základní součásti světelného mikroskopu

Rozměr: px
Začít zobrazení ze stránky:

Download "3.3. Mikroskopie. 3.3.1. Základní součásti světelného mikroskopu"

Transkript

1 3.3. Mikroskopie Různé mikroskopické metody dosáhly obrovských možností při pozorování nejen biologických objektů. Na pozorování neživých struktur lze použít v podstatě jakoukoliv metodu, ovšem na pozorování biologických objektů jen některou. Ještě menší je výběr, když je potřeba pozorovat živé biologické objekty v jejich růstu, zániku, nebo při dlouhodobém pozorování. Mikroskopické metody jsou nejrozšířenější metodou studia mikroorganizmů. K tomuto účelu slouží hlavně světelná mikroskopie a její případné modifikace. Dále je obrazově výhodná elektronová mikroskopie, která ale není možná v použití na sledování živých organizmů. Proto se v této částí budeme zabývat hlavně světelnou mikroskopií a případným užitím jiných metod, které by v budoucnu bylo možné použít na tyto biologické aplikace Základní součásti světelného mikroskopu Úplný mikroskop se skládá z mechanického tělesa, které tvoří stativ se stolkem, tubusem a osvětlovací soupravou s kondenzorem, a z optických dílů: okulárů a objektivů v otočném revolverovém nosiči. U běžných mikroskopů nejsou jednotlivé díly pevnou součástí stativu, lze je vyměňovat a sestavit tak mikroskop různým způsobem podle požadavků metody, kterou chceme použít. Mluvíme pak o stavebnicových mikroskopech. Jednotlivé díly mikroskopů se často nazývají moduly. Zaostřování obrazu v mikroskopu se provádí změnou pozorovací vzdálenosti dvojitým souosým knoflíkem na obou stranách stativu mikroskopu. Vnější (větší) knoflík je pro hrubé nastavení, vnitřní (menší) knoflík pro jemné zaostřování. Knoflík jemného posunu bývá opatřen stupnicí, nejmenší dílek odpovídá obvykle posunu o 1µm. Posun může být opatřen nastavitelnou zarážkou, vymezující pohyb ve směru zmenšování pozorovací vzdálenosti, což ulehčuje návrat do roviny ostrosti při výměně vzorků. Zaostřování se u vzpřímených mikroskopů děje svislým pohybem stolku. Stolek mikroskopu slouží pro uložení pozorovaného vzorku do optické osy mikroskopu. Preparáty jsou nejčastěji na standardních podložních sklíčkách ( mm), bývají většinou zakryty krycím sklíčkem. U krycího sklíčka je nutno dbát na jeho kvalitu, má mít tloušťku přesně 0,17 mm, být zcela čiré a planparalelní. Na tloušťku 0,17 mm jsou vesměs korigovány objektivy, není-li tato hodnota dodržena, může to mít za následek zhoršení obrazu. Některé dražší objektivy jsou vybaveny korekcí na tloušťku krycího skla. Moderní mikroskopy mají vodič objektu (vodič preparátu), do kterého se upíná podložní sklíčko (nebo jiný nosič) s preparátem. Posun se provádí po ploše stolku ve dvou osách dvojitým souosým vrubovaným knoflíkem, umístěným většinou na pravé straně stolku tak, aby jej bylo možné pohodlně obsluhovat. Tubus je základním dílem stativu a vsazuje se do něho nástavec pro okuláry, vesměs výměnný a upravený pro jeden nebo dva okuláry (monokulární nebo binokulární tubus), případně s dalším optickým výstupem (trinokulární tubus). Na opačném konci je k tubusu je připevněn otočný revolverový nosič objektivů, do kterého se závitem upevňují objektivy. Optická a mechanická délka tubusu patří k základním parametrům mikroskopu. Tubus se dvěma okuláry se nazývá binokulární tubus. Pro přesměrování světla do fotografického přístroje nebo televizní kamery jsou určeny tubusy s dalším výstupem, které se nazývají trinokulární tubusy. Mikroskop však může mít pro fotografický přístroj nebo televizní kameru jeden i více samostatných výstupů. Jednoduché trinokuláry dělí světelné paprsky zrcadly, lepší jsou vybavené hranoly.

2 Osvětlovací souprava se skládá ze síťového transformátoru na 220 V/50 Hz s regulací výstupního napětí (6 nebo 12 V), kterým se napájí halogenová žárovka o výkonu W. Mikroskopy s vyšším výkonem žárovky mají samostatnou lampovou skříňku, nutnou pro lepší odvádění tepla, která se ke stativu připevňuje bajonetem. Velké mikroskopy mají v samostatné skříňce také napájecí transformátor. Regulace světelného výkonu žárovky se pak může provádět buď na tomto zdroji, nebo je přenesena do stativu. Vzhledem k tomu, že se jen malá část výkonu žárovky promění ve světelné záření a zbytek (kolem 90 %) v teplo, je nutné dbát na to, aby kolem lampové skříňky mohl volně proudit vzduch. Otočný revolverový nosič objektivů může pojmout pět až šest objektivů, které se do něj upevňují závitem. Revolverový nosič je připojen ke stativu buď trvale, nebo je výměnný. Výměnný revolver je výhodný při používání více druhů objektivů. Abychom mohli osvětlení v mikroskopu účelně nastavit, je v dráze paprsků osvětlovací soustavy kondenzor, který je součástí osvětlovací soustavy mikroskopu. Rozlišovací schopnost objektivů mikroskopu může být dokonale využita jen tehdy, je-li osvětlení preparátu provedeno pomocí kondenzoru kuželem paprsků o určité nejmenší apertuře. Kondenzor je umístěn (u vzpřímených mikroskopů) pod stolkem, nesoucím preparát. Bývá většinou svisle posuvný v samostatném pomocném stolku, ze kterého jej lze snadno vyjmout. Důležité je, aby optická osa osvětlovací soustavy procházela středem kondenzoru. Toho dosáhneme přesným vystředěním jeho polohy pomocí středících šroubů. Kondenzor je opatřen irisovou clonou, ovládanou páčkou. V lepším případě se tato páčka pohybuje podél stupnice, udávající numerickou aperturu kondenzoru. Základní typy kondenzorů jsou většinou podle svého konstruktéra jsou označeny jako Abbeho kondenzory, jsou vhodné pro objektivy se zvětšením od 4 až do 100. Při použití objektivů s malým zvětšením mohou nastat potíže, protože se neosvětlí rovnoměrně celé zorné pole Velmi kvalitní obraz při použití objektivů s olejovou imerzí zajišťují kondenzory pro olejovou imerzi, na ně se (podobně jako na preparát) nanese kapka imerzního oleje, takže paprsky procházejí po výstupu z kondenzoru homogenním prostředím se stejným indexem lomu. Obraz v mikroskopu pozorujeme okulárem. Novější mikroskopy jsou vybaveny tubusem pro dva okuláry (binokulární tubus), takže obraz pozorujeme současně oběma očima. Okuláry jsou výměnné. Mohou být rozděleny podle optické konstrukce, podle zvětšení a podle velikosti pozorovaného obrazového pole (které je kruhové). Kritériem pro jakost okulárů je stupeň odstranění tzv. zbytkových vad: barevné vady, sklenutí a astigmatismu. Běžné okuláry mají zvětšení 10x, jsou však okuláry se zvětšením 5, 12,5, 15 a jiné. Dobré okuláry mají možnost nastavit dioptrickou korekci pro uživatele, kteří nosí brýle. Zaostření obrazu pak závisí též na nastavení dioptrických korekcí v okulárech. Tato okolnost má vliv na správné zaostření mikrofotografického snímku, nemá-li mikrofotografický přístroj samostatný zaostřovací okulár. Objektivy jsou nejvýznamnější částí mikroskopu, která rozhoduje o jeho kvalitě. Jejich vlastnosti prošly dlouhým vývojem - od jednoduché čočky až k dnešním dokonalým objektivům. Na jejich kvalitě závisí výsledný obraz. Názvy objektivů se u různých výrobců liší, přesto však mají hlavní skupiny podobné názvy, popisující jejich vlastnosti. Podle toho rozeznáváme: 1. Achromáty - mají barevnou zbytkovou vadu odstraněnou jen pro dvě barvy, optimální barevná korekce je provedena pro žlutozelenou barvu, na kterou je oko nejcitlivější. Korekce pro modrou a červenou barvu nemusí být tak dokonalá. Achromáty jsou nejekonomičtější objektivy, mohou však být výhodné např. při fluorescenci, protože jsou složeny z méně čoček, takže pohlcují méně ultrafialového záření. 2. Plan-objektivy, např. planachromáty, mají dokonale odstraněnou vadu sklenutí, používají se hlavně pro mikrofotografické práce. Korekce barevné vady je stejná, jako u achromátů. 2

3 3. Apochromáty - mají již provedenou korekci barevné vady pro tři základní barvy spektra. Dosahují vyšší numerické aparatury a lepšího rozlišení pozorovaných detailů. 4. Planapochromáty spojují vlastnosti apochromátů s plan-objektivy. Patří k nejlepším a k nejdražším objektivům. 5. Fluoritové objektivy - např. plan fluory využívají vynikajících optických vlastností fluoritového skla, které dobře propouští ultrafialové záření. Používají se hlavně pro speciální účely, např. při fluorescenční mikroskopii. Fluoritové objektivy fluory spojují vlastnosti kvalitních planachromátů s vysokou propustností pro krátkovlnné záření a jsou vhodné nejen pro fluorescenci, ale též pro pozorování ve světlém poli. Objektivy Plan Fluor lze použít pro fázový kontrast, epifluorescenci, světlé pole i pro diferenciální interferenční kontrast. 6. Imerzní objektivy. Objektivy se dále mohou lišit tím, zda jsou suché nebo určené pro imerzi. U suchých objektivů je korekce provedena tak, že mezi objektivem a krycím sklem preparátu se předpokládá vrstva vzduchu. K imerzi se nejčastěji používá zvláštní imerzní olej, méně často voda. Imerzní olej má podobný index lomu jako sklo, takže vznikne opticky homogenní prostředí: krycí sklo imerzní olej objektiv, ve kterém objektiv zachytí maximum světla, které tvoří obraz v mikroskopu Tento olej má být dobré kvality, předepsaný index lomu má být 1,5130. Dříve často užívaný cedrový olej zanechává nepříjemné zbytky na objektivu. Olejová imerze se používá u objektivů s vyšším zvětšením, nejčastěji u zvětšení 100. Podobný - i když slabší - účinek má vodní imerze. Index lomu vody je vyšší, než vzduchu, avšak nižší, než u imerzního oleje. Objektivy pro vodní imerzi mají význam hlavně tehdy, pozorujeme-li objekty, plovoucí ve vodě. Práce s vodní imerzí je méně náročná, objektivy není třeba pracně čistit od imerzního oleje. 7. Objektivy pro práci bez krycího skla. Dále můžeme rozlišovat objektivy, vyžadující krycí sklo a objektivy pro práci bez krycího skla, označované NCG (No Cover Glass). Krycí sklo je součástí optické soustavy mikroskopu a musí mít tloušťku, na kterou jsou objektivy korigovány (0,17 mm). Rozdíly v tloušťce krycího skla mohou být příčinou pro snížení jakosti pozorovaného obrazu. Objektivy, korigované na práci bez krycího skla se používají hlavně v hematologii. 8. Objektivy s irisovou clonou. Některé velmi kvalitní objektivy mohou být opatřeny irisovou clonou, která má podobnou funkci jako u fotografických objektivů. Vliv zaclonění objektivu mikroskopu na hloubku ostré kresby je však vzhledem k malým pozorovacím vzdálenostem velmi omezený, irisová clona se používá hlavně k omezení světelného toku objektivem. Výstupní čočka objektivů s velkým zvětšením je při zaostření na preparát velmi blízko krycímu sklu a může dojít k mechanickému dotyku. Proto jsou objektivy s velkým zvětšením vybaveny pružným uložením vstupní čočky, která se při dotyku krycího skla částečně zasune do pouzdra, čímž je objektiv chráněn před poškozením. Takovým objektivům se říká odpružené [9, E] Světelná mikroskopie Světelná mikroskopie umožňuje pozorovat mikroskopické objekty a struktury do 2000 násobného zvětšení bez speciálních úprav mikroskopu a při běžné přípravě vzorků broušením a leštěním nebo rozložených na skleněné podložce. Optická mikroskopie umožňuje pozorovat vzorky v přirozeném stavu včetně vlhkosti a s malými úpravami též při nižších nebo vyšších teplotách. [15, 16, F] Světelné mikroskopii je vyhrazena především oblast od 0,2 10 µm. Využívá se hlavně bíle smíšené světlo v oblasti nm. 3

4 Obr : Schéma Abbeova kondenzoru při průchodu paprsků ve světlém a temném poli [F, O]. Vznik obrazu v mikroskopu je vysvětlen na základě Abbeova teorie, pomocí jevů, které jsou spjaty s působením předmětu na obraz světelného zdroje vytvářený objektivem. Předmětová rovina je prosvětlena rovnoběžným paprskovým svazkem, na který působí předmět jako plošná nepravidelná mřížka. Proto se v obrazové ohniskové rovině vytvoří obraz světelného zdroje, který je charakterizován řadou ohybových maxim a minim. Maxima jsou pak zdrojem sekundárního vlnění, tyto vlny pak spolu interferují a tvoří tak v obrazové rovině objektu obraz předmětu. Aby se např. světelným paprskům usnadnila cesta skrz vzorek do objektivu, používá se u větších zvětšení tzv. imerze - mezi krycím sklíčkem a objektivem není vzduch, ale např. speciální olej, který má stejný index lomu jako sklo. Světlo tak nemusí přestupovat z jednoho prostředí do druhého a do objektivu ho pronikne výrazně více. Metoda světlého pole Světelný kužel prochází (v procházejícím světle), nebo se odráží (v odrážejícím světle) a vstupuje do objektivu. Metoda temného pole (zástin) Osvětlovací soustava je upravena tak, že paprsky osvětlující preparát nevstupují do objektivu. Paprsky se odrážejí, lámou, rozptylují či ohýbají, pak vstupují do objektivu a na temném pozadí jsou patrné obrysy struktur preparátu. Je vyloučeno nulté maximum a na vytvoření obrazu se podílí boční ohybová maxima (viz obr ). Výsledné kvalita pozorovaného objektu je dána zrakem, technická dokonalostí mikroskopu, ale také psychofyziologickou kondicí uživatele [9, 15, F] Mikroskopie fázového kontrastu V neobarvených preparátech živých tkání je fázový kontrast způsoben rozdílem indexu lomu pozadí a indexu lomu jednotlivých částí nebarevného preparátu. Jelikož nelze pozorovat přímo fázový kontrast, je nutné převést fázový kontrast na rozdíl v intenzitě světla nebo na rozdíl v barvě. K tomu slouží metoda fázového kontrastu. V optickém systému fázového kontrastu prochází světlo prstencem kondenzoru. Pomocí čtvrtvlnné destičky ve fázovém kroužku objektivu vzniká kontrast jako výsledek interference fázově posunutých paprsků přímého světla z pozadí a paprsků odchýlených ve vzorku (viz obr ). Intenzita přímého 4

5 světla z pozadí je redukována pomocí neutrálního materiálu ve fázovém kroužku objektivu. Tím se zvyšuje kontrastní efekt. Bohužel je však při klasickém fázovém kontrastu kvalita obrazu snížena halací. Halace znamená vytváření nežádoucích světlých kroužků na okraji objektů. Tyto světlé kroužky jsou způsobeny velkým fázovým rozdílem. V klasickém fázovém kontrastu vzniká halace tam, kde je fázový rozdíl tak veliký, že dojde k pozitivní interferenci mezi světlem z pozadí a světlem ze vzorku. V takovém případě vzniká nežádoucí jasné světlo, protože odchýlené světlo má větší amplitudu, než světlo přímé. Index lomu (n) živých buněk, je obvykle 1,36 až 1,37. Budeme-li předpokládat kulové objekty, bude s rostoucí tloušťkou pozorovaných objektů růst fázový rozdíl a úhel difrakce bude menší. [9, 15, G]. Obr : Optické schéma fázového kontrastu, halo efekt [H]. Pomocí apodizovaného fázového kontrastu pozorovat detaily uvnitř živých buněk. Toto je hlavní předností této metody [G]. Při pozorování silně lomivých objektů (kvasinek) vzniká tzv. halo efekt, což je jasně zářící rozhraní mezi objektem a okolním prostředím, v němž se ztrácejí skutečné hranice objektů. Druhým nedostatkem fázového kontrastu je to, že silně absorbující zbarvené objekty nemusí být ve fázovém kontrastu vůbec viditelné, proto se zkoumají jen neobarvené vzorky. V některých případech je halo efekt žádoucí, protože při obrazové analýze se snadněji odliší zkoumaný objekt od rušivého prostředí. Objektivy firmy NIKON mají na jedné ze svých čoček mají nanesený neprůhledný fázový prstenec, na kterém nastává posun fáze světelné vlny, jsou to speciální ADL objektivy snižující vzniku halace. Na zvýšení kontrastu se užívá zelený interferenční filtr, který propouští zelené světlo vlnové délky kolem 540nm. Oko má v této oblasti maximální citlivost [H] Polarizační mikroskopie Polarizační mikroskop je oproti běžnému biologickému mikroskopu vybaven polarizačním zařízením, které umožňuje studovat i ty vlastnosti minerálů, které nejsou patrné v obyčejném (nepolarizovaném světle) [CH]. Metoda využívá interakce polarizovaného světla s opticky anizotropními látkami, při které dochází k tzv. dvojlomu. Původní paprsek se po průchodu vzorkem rozdělí na dva nové, řádný a mimořádný, které jsou navzájem fázově posunuté (šíří se různou rychlostí) a kmitají v různých rovinách. 5

6 V analyzátoru mikroskopu se oba paprsky složí do stejné roviny kmitu a jejich fázový posun se projeví vznikem interferenčních barev. Polarizační mikroskopii lze proto charakterizovat jako metodu zvýšení kontrastu mikroskopického obrazu [I]. Obr : Schéma polarizačního mikroskopu [I]. Polarizační mikroskop je kombinací světelného mikroskopu a polarimetru (viz obr ). V osvětlovací soustavě je zařazen polarizátor a za objektiv se dává analyzátor. Mikroskop je vybaven přesným úhlovým nastavením polarizátoru, analyzátoru a otočného stolku s preparátem. Tak je možné přesně odečíst úhel stáčení polarizovaného roviny světla v anizotropních částech preparátu. Tato mikroskopie se používá hlavně v mineralogii. V biologii je možné studovat některé anizotropní systémy např. příčně pruhovaný sval, buněčné stěny, jaderná membrána, dělící vřeténko atd. [9, 15, 16] Fluorescenční (luminiscenční) mikroskopie Fluorescenční mikroskopie se dělí na dvě metody: pozorování v odraženém světle (epifluorescence) a pozorování v procházejícím světle (diafluorescence). Fluorescenční pozorování v procházejícím světle se v současné době téměř nepoužívá. Podstatou fluorescence je buzení viditelného záření v objektech, které obsahují chemické sloučeniny (fluorochromy), schopné specificky měnit dopadající ultrafialové, nebo infračervené záření na odražené barevné viditelné záření. Některé biologické objekty již takové sloučeniny samy obsahují (např. chlorofyl), zde se jedná o primární luminiscenci, jiným je musíme dodávat specifickým barvením, jedná se o sekundární luminiscenci. Takové preparáty jsou často zdrojem viditelného záření pouze dočasně. Fluorochromy jsou sloučeniny schopné fluorescence. Navážou se na některou látku ve vzorku např. na DNA, a tím ji zviditelní. V mikroskopu pozorujeme vlastně pouze fluorochrom, který se však nachází jedině tam, kde je i námi zkoumaná látka. Pozorovaný obraz je vytvářen pouze světlem vyzářeným sledovanou látkou, obraz neruší nic dalšího. Můžou se studovat např. chromozomy, bílkoviny tvořící buněčnou kostru nebo organely, které by jinak nebylo možno odhalit 6

7 Pro fluorescenci potřebujeme samostatnou osvětlovací soustavu. Jednak musí světlo dopadat na objekt (podstata epifluorescence) a za druhé musí mít určitou vlnovou délku, často z oblasti UV a IR záření. Výbava mikroskopu pro fluorescenci se skládá ze zdroje záření, nástavce pro osvětlení dopadajícím světlem, držáku s výměnnými fluorescenčními filtry a ochranného oranžového štítu. Zdrojem záření je téměř vždy vysokotlaká rtuťová výbojka, méně často halogenová žárovka. Výbojka je napájená ze sítě přes samostatný zdroj ze sítě 220V/50H, obecně zvaný startér. Je umístěna v lampové skříňce, která souvisí s nástavcem pro osvětlení dopadajícím světlem. Důležitou součástí fluorescenční výbavy jsou fluorescenční filtry. Fluorescenční filtr je obvykle vyroben jako kostka, která se skládá z excitačního filtru, závěrného filtru a dichroického zrcadla. Filtry se od sebe liší vlnovými délkami, které vymezují pásma propustnosti excitačního a závěrného filtru. Dichroické zrcadlo odráží přednostně krátkovlnné záření na preparát a propouští dlouhovlnné záření do okuláru. Pro praxi je důležité, že ke každému fluorescenčnímu barvivu je nutné přiřadit určitý fluorescenční filtr (mluvíme o jednom filtru, ačkoliv jde o soustavu dvou filtrů a zrcadla v kostce). Výrobci nabízejí množství různých filtrů, některé z nich jsou i vícepásmové. Princip fluorescenční mikroskopie je na obr Obr : Principy a základní součásti fluorescenčního mikroskopu [K] Excitační filtr propouští pouze světlo, které je potřebné k fluorescenci vzorku, především obvykle s kratší vlnovou délkou. Ostatní světlo pohlcuje. Bariérový filtr pohlcuje všechno excitační světlo, které nebylo použito k excitaci a propouští pouze fluorescenční světlo. Navíc je možné z fluorescenčního spektra nechat projít pouze jeho část [6, 9, 15, 17, 18, J] Konfokální mikroskopie Pomocí konfokálního mikroskopu se lze zbavit neostrostí v důsledku překrývání se zaostřeného obrazu s rozmazanými obrazy struktur, které se nacházejí mimo zaostřenou rovinu, což je obzvlášť rušivý jev při fluorescenční mikroskopii. Při konfokální mikroskopii je pozorovaný objekt osvětlen bodovým zdrojem, nejčastěji k tomu slouží laserový paprsek fokusovaný na clonku, která je pak objektivem mikroskopu zobrazena na vzorek rovněž v podobě bodu. Stejný objektiv pak sbírá světlo vzorkem odražené a rozptýlené, případně fluorescenci. Při zpětném průchodu tohoto záření objektivem vznikne další obraz bodové clonky, který je pomocí děliče paprsků lokalizován před fotonásobič (viz obr ). V místě tohoto obrazu se nachází druhá konfokální bodová clonka, která blokuje detekci záření pocházejícího z míst vzorku mimo rovinu právě zaostřenou. Obraz celé této roviny získáme rastrováním bod po bodu. 7

8 Existují tři různé způsoby rastrování: 1. cestou rozmítání laserového paprsku 2. příčným posouváním vzorku před objektivem 3. posouváním objektivu před vzorkem Při rastrování je signál z fotonásobiče registrován počítačem spolu s informací o souřadnicích analyzovaných bodů. Celý soubor těchto dat je pak převeden na obraz pozorovaného vzorku. Tento obraz již díky prostorové filtraci záření dopadajícího na detektor neobsahuje neostré pozadí mimofokálních oblastí vzorky. Konfokální obrazy jsou proto vždy zaostřené a představují optické řezy vzorkem [9, 15, K]. Mezi hlavní přednosti konfokální mikroskopie ve srovnání s klasickou optickou mikroskopií patří možnost zaznamenávat série digitalizovaných obrazů relativně tenkých optických řezů vedených i tlustším vzorkem, tloušťka optických řezů jsou pouhé desetiny mikronu [L]. Obr : Princip konfokální mikroskopie [M]. Ze série optických řezů uložených v paměti počítače můžeme sestrojit trojrozměrný obraz studovaného objektu. Jednotlivé optické řezy však také můžeme přes sebe jednoduše přeložit. Pak uvidíme studovaný objekt zobrazený s hloubkou ostrosti, která je zcela mimo technické možnosti obyčejného mikroskopu [M] Mikroskopie v blízkém poli Během posledních dvou desetiletí se objevila řada konstrukčních řešení mikroskopů pro blízké pole. Z těchto mikroskopů jsou nejrozšířenější STM (skenující tunelová mikroskopie, Scanning Tunneling Microscopy), AFM (mikroskopie atomárních sil, Atomic Force Microscopy) a alternativy těchto dvou metod STOM (skenující tunelová optická mikroskopie, Scanning Tunneling Optical Microscopy), SNOM (skenující optická mikroskopie v blízkém poli, Scanning Near-field Optical Microscopy) a NSOM (skenující optická mikroskopie v blízkém poli, Near-field Scanning Optical Microscopy). 8

9 Blízké pole je oblast v okolí vzorku menším než je vlnová délka dopadajícího světla (řádově nm). Všechny tyto typy mikroskopů pracují s lokální sondou (viz obr ). Pracuje se ve dvou módech: 1. Reflexní mód - detekce se provádí prostřednictvím malého otvoru. 2. Transmisní mód - na detekci se užívá vlnovod registrující evanescentní vlny z blízké oblasti. Zkoumaný předmět může být osvětlen několika způsoby. Každý z těchto způsobů definuje jednu variantu mikroskopu. STOM Je charakterizován osvětlením pomocí úplného vnitřního odrazu. Je určen pro transparentní předměty. V současné době je nejužívanějším typem pro laboratorní experimenty. Detekovaná intenzita světelné evanescentní vlny exponenciálně klesá s rostoucí vzdáleností sondy od předmětu. SNOM Pracuje buď při osvětlení předmětu vnějším odrazem, kde sonda představuje buď současně vysílač i přijímač, nebo při vnějším šikmém osvětlení. Umožňuje analýzu všech typů předmětů, transparentních i netransparentních a má výhodu, že ve srovnání se STOM osvětlení izotropní. NSOM Pracuje pouze v transmisním režimu, hrot který má pouze funkci vysílače osvětluje předmět. V tomto případě je signál detekován ve vzdáleném poli, přičemž se používá spojná čočka jako kolektor. Obr : Schéma optických mikroskopů pracujících v blízkém poli. Chalkogenidová sonda s pozlacenou špičkou [N]. Hlavní prvky těchto mikroskopů jsou sonda (v praxi se užívají tři typy sond optické vlákno, AFM hrot a kovový hrot), řídící systém a nanokolektor, nebo nanodetektor. Řádkování (v rozsahu několik nm 110 µm) se uskutečňuje pomocí trojrozměrnému ohybu piezotrubičky, je-li na ni přiloženo vhodné napětí. Nanodetektor je většinou špičaté optické vlákno, jehož druhý konec je spojen se vzdáleným detektorem. Kolektor naruší pole jen velmi málo, aby se příliš nenarušilo chování evanescentního pole. Tím je tato analýza velice přesná a vysoce využívána. Elektronické zařízení je složeno z nízkošumových zesilovačů (pro 9

10 zesílení velmi slabého optického signálu od fotonásobiče), z ovládání piezoposuvů pro řádkování a přibližování sondy k povrchu vzorku. Velkou předností kterou nabízí optika blízkého pole je snadnost změny vlnové délky. Pro výběr jedné vlnové délky, nebo pro potlačení určitých pásem vlnových délek stačí jednoduchý interferenční filtr, nebo použití laditelného laseru. V optické mikroskopii s lokální sondou se užívají v principu dva způsoby detekce. První je režim konstantní výšky, spočívá v řádkování předmětu sondou jejíž hrot má konstantní vzdálenost od určité vztažné roviny z. Sonda detekuje rozložení intenzity světla ve vztažné rovině nad povrchem vzorku. Druhý, režim konstantního proudu spočívá v nastavení sondy tak, že zpětná vazba řídící elektroniky udržuje hrot sondy v konstantní vzdálenosti od povrchu předmětu. Registrovaným signálem je elektrické napětí na ovládací piezoelektronice, což je přímo spojeno s polohou sondy detektoru. Nevýhodou je nemožnost oddělit topografický obraz od optického. Tato mikroskopie se používá ke zkoumání charakteristik propustných i odrazných předmětů za pokojové teploty a normálního tlaku (výhoda před elektronovou mikroskopií, kde je nutné užívat absolutně vysušené vzorky ve vakuu), k lokální diagnostice polovodičových struktur, nanolitografie, studium povrchových plazmonů, a pro biologické aplikace, což se teprve začíná rozvíjet (speciální úprava AFM, raménka plně ponořená do kapaliny). Nejdůležitější argument pro užití této metody je schopnost blízkého pole překonat hranici rozlišovací schopnosti klasických optických zařízení a tím získat vysoké rozlišení, které není možno v žádném případě dosáhnout s konvenčními optickými přístroji [15, 17, 18, 24, N]. 10

1. Teorie mikroskopových metod

1. Teorie mikroskopových metod 1. Teorie mikroskopových metod A) Mezi první mikroskopové metody patřilo barvení biologických preparátů vhodnými barvivy, což způsobilo ovlivnění amplitudy světla prošlého preparátem, který pak byl snadno

Více

Základní pojmy a vztahy: Vlnová délka (λ): vzdálenost dvou nejbližších bodů vlnění kmitajících ve stejné fázi

Základní pojmy a vztahy: Vlnová délka (λ): vzdálenost dvou nejbližších bodů vlnění kmitajících ve stejné fázi LRR/BUBCV CVIČENÍ Z BUNĚČNÉ BIOLOGIE 1. SVĚTELNÁ MIKROSKOPIE A PREPARÁTY V MIKROSKOPII TEORETICKÝ ÚVOD: Mikroskopie je základní metoda, která nám umožňuje pozorovat velmi malé biologické objekty. Díky

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

Příloha C. zadávací dokumentace pro podlimitní veřejnou zakázku Mikroskopy pro LF MU 2013. TECHNICKÉ PODMÍNKY (technická specifikace)

Příloha C. zadávací dokumentace pro podlimitní veřejnou zakázku Mikroskopy pro LF MU 2013. TECHNICKÉ PODMÍNKY (technická specifikace) Příloha C zadávací dokumentace pro podlimitní veřejnou zakázku Mikroskopy pro LF MU 2013 TECHNICKÉ PODMÍNKY (technická specifikace) 1. část VZ: Laboratorní mikroskop s digitální kamerou a PC Položka č.1

Více

Typy světelných mikroskopů

Typy světelných mikroskopů Typy světelných mikroskopů Johann a Zacharias Jansenové (16. stol.) Systém dvou čoček délka 1,2 m 17. stol. Typy světelných mikroskopů Jednočočkový mikroskop 17. stol. Typy světelných mikroskopů Italský

Více

Zoologická mikrotechnika - FLUORESCENČNÍ MIKROSKOPIE

Zoologická mikrotechnika - FLUORESCENČNÍ MIKROSKOPIE Fluorescence Fluorescence je jev, kdy látka absorbuje ultrafialové záření nebo viditelné světlo s krátkou vlnovou délkou a emituje viditelné světlo s delší vlnovou délkou než má světlo absorbované Emitace

Více

příloha C zadávací dokumentace pro veřejnou zakázku malého rozsahu Mikroskopy pro LF MU TECHNICKÉ PODMÍNKY (technická specifikace)

příloha C zadávací dokumentace pro veřejnou zakázku malého rozsahu Mikroskopy pro LF MU TECHNICKÉ PODMÍNKY (technická specifikace) příloha C zadávací dokumentace pro veřejnou zakázku malého rozsahu Mikroskopy pro LF MU TECHNICKÉ PODMÍNKY (technická specifikace) Část 1 Stereomikroskop s digitální kamerou : - Konstrukce optiky CMO (Common

Více

Mikroskop ECLIPSE E200 STUDENTSKÝ NÁVOD K POUŽITÍ. určeno pro studenty ČZU v Praze

Mikroskop ECLIPSE E200 STUDENTSKÝ NÁVOD K POUŽITÍ. určeno pro studenty ČZU v Praze Mikroskop ECLIPSE E200 STUDENTSKÝ NÁVOD K POUŽITÍ určeno pro studenty ČZU v Praze Mikroskop Nikon Eclipse E200 Světelný mikroskop značky Nikon (Eclipse E200) používaný v botanické cvičebně zvětšuje při

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

Základy mikroskopie. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 10

Základy mikroskopie. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 10 Úloha č. 10 Základy mikroskopie Úkoly měření: 1. Seznamte se základní obsluhou třech typů laboratorních mikroskopů: - biologického - metalografického - stereoskopického 2. Na výše jmenovaných mikroskopech

Více

Indikátory vitality dřevin (INVID)

Indikátory vitality dřevin (INVID) Vzdělávací materiál projektu Indikátory vitality dřevin (INVID) Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR INVID CZ.1.07/2.3.00/20.0265 1. Úvodní obecné informace

Více

Optická (světelná) Mikroskopie pro TM I

Optická (světelná) Mikroskopie pro TM I Optická (světelná) Mikroskopie pro TM I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Typy klasických biologických a polarizačních mikroskopů Přehled součástí

Více

Techniky mikroskopie povrchů

Techniky mikroskopie povrchů Techniky mikroskopie povrchů Elektronové mikroskopie Urychlené elektrony - šíření ve vakuu, ovlivnění dráhy elektrostatickým nebo elektromagnetickým polem Nepřímé pozorování elektronového paprsku TEM transmisní

Více

Viková, M. : MIKROSKOPIE II Mikroskopie II M. Viková

Viková, M. : MIKROSKOPIE II Mikroskopie II M. Viková II Mikroskopie II M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz Osvětlovac tlovací soustava I Výsledkem Köhlerova nastavení je rovnoměrné a maximální osvětlení průhledného preparátu, ležícího

Více

MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ

MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ Mikroskopické techniky MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ Slouží k vizualizaci mikroorganismů Antoni van Leeuwenhoek (1632-1723) Čočka zvětšující 300x Různé druhy mikroskopů, které se liší

Více

Neživá příroda I. Optické vlastnosti minerálů

Neživá příroda I. Optické vlastnosti minerálů Neživá příroda I Optické vlastnosti minerálů 1 Charakter světla Světelný paprsek definuje: vlnová délka (λ): vzdálenost mezi následnými vrcholy vln, amplituda: výchylka na obě strany od rovnovážné polohy,

Více

Fluorescenční mikroskopie

Fluorescenční mikroskopie Fluorescenční mikroskopie Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1 VYUŽITÍ FLUORESCENCE, PŘÍMÁ FLUORESCENCE, PŘÍMÁ A NEPŘÍMA IMUNOFLUORESCENCE, BIOTIN-AVIDINOVÁ METODA IMUNOFLUORESCENCE

Více

Technická specifikace předmětu veřejné zakázky

Technická specifikace předmětu veřejné zakázky předmětu veřejné zakázky Příloha č. 1c Zadavatel požaduje, aby předmět veřejné zakázky, resp. přístroje odpovídající jednotlivým částem veřejné zakázky splňovaly minimálně níže uvedené parametry. Část

Více

Optická konfokální mikroskopie a mikrospektroskopie. Pavel Matějka

Optická konfokální mikroskopie a mikrospektroskopie. Pavel Matějka Optická konfokální mikroskopie a Pavel Matějka 1. Konfokální mikroskopie 1. Princip metody - konfokalita 2. Instrumentace metody zobrazování 3. Analýza obrazu 2. Konfokální 1. Luminiscenční 2. Ramanova

Více

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem Optické přístroje a soustav Geometrická optika převážně jsou založen na vzájemné interakci světelného pole s látkou nebo s jiným fzikálním polem Důsledkem této t to interakce je: změna fzikáln lních vlastností

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 1.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Měření s polarizovaným světlem

Více

Video mikroskopická jednotka VMU

Video mikroskopická jednotka VMU Video mikroskopická jednotka VMU Série 378 VMU je kompaktní, lehká a snadno instalovatelná mikroskopická jednotka pro monitorování CCD kamerou v polovodičových zařízení. Mezi základní rysy optického systému

Více

ECOVISION série BIOLOGICKÉ MIKROSKOPY

ECOVISION série BIOLOGICKÉ MIKROSKOPY ECOVISION série BIOLOGICKÉ MIKROSKOPY ECOVISION série OPTIKA MICROSCOPES je divize optických mikroskopů M.A.D. Apparecchiature Scientifiche, společnosti, která je již více než 30 roků klíčovým hráčem na

Více

Princip rastrovacího konfokálního mikroskopu

Princip rastrovacího konfokálního mikroskopu Konfokální mikroskop Obsah: Konfokální mikroskop... 1 Princip rastrovacího konfokálního mikroskopu... 1 Rozlišovací schopnost... 2 Pozorování povrchů ve skutečných barvách... 2 Konfokální mikroskop Olympus

Více

od 70mm (měřeno od zadní desky s axiálním výstupem) interní prvky opatřeny černou antireflexní vrstvou, centrální trubice s vnitřní šroubovicí

od 70mm (měřeno od zadní desky s axiálním výstupem) interní prvky opatřeny černou antireflexní vrstvou, centrální trubice s vnitřní šroubovicí Model QM-1 (s válcovým tubusem) QM-1 je základním modelem řady distančních mikroskopů Questar, které jsou celosvětově oceňovanými optickými přístroji zejména z hlediska extrémně precizní optiky a mechanického

Více

Základní pojmy. Je násobkem zvětšení objektivu a okuláru

Základní pojmy. Je násobkem zvětšení objektivu a okuláru Vznik obrazu v mikroskopu Mikroskop se skládá z mechanické části (podstavec, stojan a stolek s křížovým posunem), osvětlovací části (zdroj světla, kondenzor, clona) a optické části (objektivy a okuláry).

Více

Základy mikroskopování

Základy mikroskopování Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248 M o d e r n í b i o l o g i e reg. č.: CZ.1.07/1.1.32/02.0048 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

1.1 Zobrazovací metody v optické mikroskopii

1.1 Zobrazovací metody v optické mikroskopii 1 1.1 Zobrazovací metody v optické mikroskopii 1.1.1 Světlé pole Původní metoda optické mikroskopie. Světelný kužel prochází (v procházejícím světle) nebo se odráží (v odrážejícím světle) a vstupuje do

Více

LABORATORNÍ CVIČENÍ Z BIOLOGIE. Téma: STAVBA A FUNKCE MIKROSKOPU, PŘÍPRAVA DOČASNÝCH PREPARÁTŮ

LABORATORNÍ CVIČENÍ Z BIOLOGIE. Téma: STAVBA A FUNKCE MIKROSKOPU, PŘÍPRAVA DOČASNÝCH PREPARÁTŮ LABORATORNÍ CVIČENÍ Z BIOLOGIE Téma: STAVBA A FUNKCE MIKROSKOPU, PŘÍPRAVA DOČASNÝCH PREPARÁTŮ Úloha č.1.: Seznámení se stavbou optického mikroskopu a zásadami práce s mikroskopem ÚKOLY: a) teoretické:

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

27. Vlnové vlastnosti světla

27. Vlnové vlastnosti světla 27. Vlnové vlastnosti světla Základní vlastnosti světla (rychlost světla, šíření světla v různých prostředích, barva tělesa) Jevy potvrzující vlnovou povahu světla Ohyb a polarizace světla (ohyb světla

Více

Optika. Zápisy do sešitu

Optika. Zápisy do sešitu Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá

Více

Optická mikroskopie a spektroskopie nanoobjektů. Nanoindentace. Pavel Matějka

Optická mikroskopie a spektroskopie nanoobjektů. Nanoindentace. Pavel Matějka Optická mikroskopie a spektroskopie nanoobjektů Nanoindentace Pavel Matějka Optická mikroskopie a spektroskopie nanoobjektů 1. Optická mikroskopie blízkého pole 1. Princip metody 2. Instrumentace 2. Optická

Více

Mikroskopické metody Přednáška č. 3. Základy mikroskopie. Kontrast ve světelném mikroskopu

Mikroskopické metody Přednáška č. 3. Základy mikroskopie. Kontrast ve světelném mikroskopu Mikroskopické metody Přednáška č. 3 Základy mikroskopie Kontrast ve světelném mikroskopu Nízký kontrast biologických objektů Nízký kontrast biologických objektů Metodika přípravy objektů pro světelnou

Více

Proč elektronový mikroskop?

Proč elektronový mikroskop? Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční

Více

Laboratorní úloha č. 7 Difrakce na mikro-objektech

Laboratorní úloha č. 7 Difrakce na mikro-objektech Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového

Více

MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM

MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM Difrakce (ohyb) světla je jedním z několika projevů vlnových vlastností světla. Z těchto důvodů světlo při setkání s překážkou nepostupuje dále vždy

Více

CÍLE CHEMICKÉ ANALÝZY

CÍLE CHEMICKÉ ANALÝZY ANALYTICKÉ METODY CÍLE CHEMICKÉ ANALÝZY Získat maximum informací dostupným přírodovědným průzkumem o památce. Posoudit poruchy a poškození materiálů. Navrhnout nejvhodnější technologii restaurování. Určit

Více

Sada Optika. Kat. číslo 100.7200

Sada Optika. Kat. číslo 100.7200 Sada Optika Kat. číslo 100.7200 Strana 1 z 63 Všechna práva vyhrazena. Dílo a jeho části jsou chráněny autorskými právy. Jeho použití v jiných než zákonem stanovených případech podléhá předchozímu písemnému

Více

Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky

Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky Úkol : 1. Určete mřížkovou konstantu d optické mřížky a porovnejte s hodnotou udávanou výrobcem. 2. Určete vlnovou délku λ jednotlivých

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

Rozdělení přístroje zobrazovací

Rozdělení přístroje zobrazovací Optické přístroje úvod Rozdělení přístroje zobrazovací obraz zdánlivý subjektivní přístroje lupa mikroskop dalekohled obraz skutečný objektivní přístroje fotoaparát projekční přístroje přístroje laboratorní

Více

MIKROSKOP. Historie Jeden z prvních jednoduchých mikroskopů sestavil v roce 1676 holandský obchodník a vědec Anton van Leeuwenhoek.

MIKROSKOP. Historie Jeden z prvních jednoduchých mikroskopů sestavil v roce 1676 holandský obchodník a vědec Anton van Leeuwenhoek. MIKROSKOPIE E- mailový zpravodaj MIKROSKOP firmy Olympus Journal of Scanning Probe Microscopy (http://www.aspbs.com/jspm.html) Materials Today, 2008, New Microscopy Special Issue MIKROSKOP Historie Jeden

Více

Mikroskopie se vzorkovací sondou. Pavel Matějka

Mikroskopie se vzorkovací sondou. Pavel Matějka Mikroskopie se vzorkovací sondou Pavel Matějka Mikroskopie se vzorkovací sondou 1. STM 1. Princip metody 2. Instrumentace a příklady využití 2. AFM 1. Princip metody 2. Instrumentace a příklady využití

Více

Fluorescenční mikroskopie

Fluorescenční mikroskopie Luminiscence jev, kdy látka vysílá do prostoru světlo chemická reakce chemiluminiscence (např. světluška) světlo fotoluminiscence fluorescence (emisní záření jen krátkou dobu po skončení exitačního záření)

Více

Historie světelné mikroskopie. Světelná mikroskopie. Robert Hook (1670) a Antonie van Leeuwenhoek (1670) zakladatelé světelné mikroskopie

Historie světelné mikroskopie. Světelná mikroskopie. Robert Hook (1670) a Antonie van Leeuwenhoek (1670) zakladatelé světelné mikroskopie Historie světelné mikroskopie Světelná mikroskopie Robert Hook (1670) a Antonie van Leeuwenhoek (1670) zakladatelé světelné mikroskopie 1 Historie světelné mikroskopie Světelná mikroskopie Robert Hook

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 18.4.2012 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Měření s polarizovaným světlem Abstrakt V

Více

Interference světla Vlnovou podstatu světla prokázal až roku 1801 Thomas Young, když pozoroval jeho interferenci (tj. skládání). Youngův experiment interference světla na dvou štěrbinách (animace) http://micro.magnet.fsu.edu

Více

Viková, M. : MIKROSKOPIE I Mikroskopie I M. Viková

Viková, M. : MIKROSKOPIE I Mikroskopie I M. Viková Mikroskopie I M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz MIKROSVĚT nano Poměry velikostí mikro 9 10 10 8 10 7 10 6 10 5 10 4 10 3 size m 2 9 7 5 3 4 8 1 micela virus světlo 6 písek molekula

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

Světelný mikroskop - základní pracovní nástroj

Světelný mikroskop - základní pracovní nástroj Světelný mikroskop - základní pracovní nástroj Tři cíle mikroskopie: zvětšit obraz rozlišit detaily v obraze popsat detaily viditelné okem nebo kamerou Jednoduchý mikroskop jedna čočka nebo jeden systém

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

Vlnové vlastnosti světla. Člověk a příroda Fyzika

Vlnové vlastnosti světla. Člověk a příroda Fyzika Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

Světelný mikroskop - základní pracovní nástroj

Světelný mikroskop - základní pracovní nástroj Světelný mikroskop - základní pracovní nástroj Tři cíle mikroskopie: zvětšit obraz rozlišit detaily v obraze popsat detaily viditelné okem nebo kamerou Jednoduchý mikroskop jedna čočka nebo jeden systém

Více

VY_32_INOVACE_FY.12 OPTIKA II

VY_32_INOVACE_FY.12 OPTIKA II VY_32_INOVACE_FY.12 OPTIKA II Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Optická čočka je optická soustava dvou centrovaných

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím

Více

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková

Více

(Umělé) osvětlování pro analýzu obrazu

(Umělé) osvětlování pro analýzu obrazu (Umělé) osvětlování pro analýzu obrazu Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky 166 36 Praha

Více

Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi. Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi

Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi. Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi Metoda Live/Dead aneb využití fluorescenční mikroskopie v bioaugmentační praxi Juraj Grígel Inovativní sanační technologie ve výzkumu a praxi Co je to vlastně ta fluorescence? Některé látky (fluorofory)

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

S v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla

S v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla S v ě telné jevy Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla Světelný zdroj - těleso v kterém světlo vzniká a vysílá je do okolí

Více

Učební texty z fyziky 2. A OPTIKA. Obor zabývající se poznatky o a zákonitostmi světelných jevů. V posledních letech rozvoj optiky vynález a využití

Učební texty z fyziky 2. A OPTIKA. Obor zabývající se poznatky o a zákonitostmi světelných jevů. V posledních letech rozvoj optiky vynález a využití OPTIKA Obor zabývající se poznatky o a zákonitostmi světelných jevů Světlo je vlnění V posledních letech rozvoj optiky vynález a využití Podstata světla Světlo je elektromagnetické vlnění Zdrojem světla

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 18.4.2012 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Měření s polarizovaným světlem Abstrakt V

Více

Laboratorní práce č. 3: Měření vlnové délky světla

Laboratorní práce č. 3: Měření vlnové délky světla Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test

Více

Polarizace čtvrtvlnovou destičkou

Polarizace čtvrtvlnovou destičkou Úkol : 1. Proměřte intenzitu lineárně polarizovaného světla jako funkci pozice analyzátoru. 2. Proměřte napětí na fotorezistoru ozářenou intenzitou světla za analyzátorem jako funkci úhlu mezi optickou

Více

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. 1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením

Více

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření OPTIKA = část fyziky, která se zabývá světlem Studuje zejména: vznik světla vlastnosti světla šíření světla opt. přístroje (opt. soustavami) Otto Wichterle (gelové kontaktní čočky) Světlo 1) Světlo patří

Více

Fyzika II. Marek Procházka Vlnová optika II

Fyzika II. Marek Procházka Vlnová optika II Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou

Více

Lupa a mikroskop příručka pro učitele

Lupa a mikroskop příručka pro učitele Obecné informace Lupa a mikroskop příručka pro učitele Pro vysvětlení chodu světelných paprsků lupou a mikroskopem je nutno navázat na znalosti o zrcadlech a čočkách. Hodinová dotace: 1 vyučovací hodina

Více

Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie

Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie Refraktometrie Metoda založená na měření indexu lomu Při dopadu paprsku světla na fázové rozhraní mohou nastat dva jevy: Reflexe

Více

Viková, M. : MIKROSKOPIE V Mikroskopie V M. Viková

Viková, M. : MIKROSKOPIE V Mikroskopie V M. Viková Mikroskopie V M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz Hloubka ostrosti problém m velkých zvětšen ení tloušťka T vrstvy vzorku kolmé k optické ose, kterou vidíme ostře zobrazenou Objektiv

Více

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako

Více

STEREO série Výukové stereomikroskopy

STEREO série Výukové stereomikroskopy STEREO série Výukové stereomikroskopy Základní vlastnosti Série... Tato série stereomikroskopů je určena pro splnění všech požadavků výuky a amatérských uživatelů. Celá řada, od malého MS-2 až k ST-50,

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické). PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost

Více

Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály

Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály FP 1 Měření a analýza mechanických vlastností materiálů a konstrukcí Úkoly : 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály 2. Určete moduly pružnosti vzorků nepřímo pomocí měření rychlosti

Více

7 FYZIKÁLNÍ OPTIKA. Interference Ohyb Polarizace. Co je to ohyb? 27.2 Ohyb

7 FYZIKÁLNÍ OPTIKA. Interference Ohyb Polarizace. Co je to ohyb? 27.2 Ohyb 1 7 FYZIKÁLNÍ OPTIKA Interference Ohyb Polarizace Co je to ohyb? 27.2 Ohyb Ohyb vln je jev charakterizovaný odchylkou od přímočarého šíření vlnění v témže prostředí. Ve skutečnosti se nejedná o nový jev

Více

vede sice ke zvýšení kontrastu, zároveň se ale snižuje rozlišení a ostrost obrazu (Obr. 46).

vede sice ke zvýšení kontrastu, zároveň se ale snižuje rozlišení a ostrost obrazu (Obr. 46). 4. cvičení Metody zvýšení kontrastu obrazu (1. část) 1. Přivření kondenzorové clony nebo snížení kondenzoru vede sice ke zvýšení kontrastu, zároveň se ale snižuje rozlišení a ostrost obrazu (Obr. 46).

Více

Stereomikroskop. Stativ pro dopadající světlo

Stereomikroskop. Stativ pro dopadající světlo Stereomikroskop Konstrukční typ Greenough Apochromaticky korigovaná optika Zoomovací poměr min. 8:1 Rozsah celkového zvětšení 10x 80x nebo větší (včetně uvedených hodnot, s 10x okuláry, bez předsádky)

Více

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

Zadání. Pracovní úkol. Pomůcky

Zadání. Pracovní úkol. Pomůcky Pracovní úkol Zadání 1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. Odhadněte maximální chybu měření. 2. Změřte zvětšení a zorná pole

Více

Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla:

Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla: Optika Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla: Světlo je proud částic (I. Newton, 1704). Ale tento částicový model nebyl schopen

Více

Přednáška 2_2. Stavba složeného světelného mikroskopu

Přednáška 2_2. Stavba složeného světelného mikroskopu Přednáška 2_2 Stavba složeného světelného mikroskopu Pavla Válová, 2018 Oko jako optická soustava Oko jako optická soustava Základní optické hodnoty: - pracovní vzdálenost (normální zraková délka; konvenční

Více

ZPRACOVÁNÍ OBRAZU přednáška 3

ZPRACOVÁNÍ OBRAZU přednáška 3 ZPRACOVÁNÍ OBRAZU přednáška 3 Vít Lédl vit.ledl@tul.cz TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis Ivana Krestýnová, Josef Zicha Abstrakt: Absolutní vlhkost je hmotnost

Více

5.3.5 Ohyb světla na překážkách

5.3.5 Ohyb světla na překážkách 5.3.5 Ohyb světla na překážkách Předpoklady: 3xxx Světlo i zvuk jsou vlnění, ale přesto jsou mezi nimi obrovské rozdíly. Slyšíme i to, co se děje za rohem x Co se děje za rohem nevidíme. Proč? Vlnění se

Více

Přednáška č.14. Optika

Přednáška č.14. Optika Přednáška č.14 Optika Obsah základní pojmy odraz a lom světla disperze polarizace geometrická optika elektromagnetické záření Světlo = elektromagnetické vlnění o vlnové délce 390nm (fialové) až 790nm (červené)

Více

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jan Olbrecht Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený Jaký typ lomu nastane při průchodu světla z opticky

Více

1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou.

1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 1 Pracovní úkoly 1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 2. Změřte zvětšení a zorná pole mikroskopu pro všechny možné kombinace

Více

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook

Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook Optika Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí

Více

Fluorescence (luminiscence)

Fluorescence (luminiscence) Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle

Více

F l u o r e s c e n c e

F l u o r e s c e n c e F l u o r e s c e n c e Fluorescenční mikroskopie Luminiscence jev, kdy látka vysílá do prostoru světlo chemická reakce chemiluminiscence světlo fotoluminiscence Vyvolávající záření exitační fluorescence

Více

Optické metody a jejich aplikace v kompozitech s polymerní matricí

Optické metody a jejich aplikace v kompozitech s polymerní matricí Optické metody a jejich aplikace v kompozitech s polymerní matricí Doc. Ing. Eva Nezbedová, CSc. Polymer Institute Brno Ing. Zdeňka Jeníková, Ph.D. Ústav materiálového inženýrství, Fakulta strojní, ČVUT

Více

Optika nauka o světle

Optika nauka o světle Optika nauka o světle 50_Světelný zdroj, šíření světla... 2 51_Stín, fáze Měsíce... 3 52_Zatmění Měsíce, zatmění Slunce... 3 53_Odraz světla... 4 54_Zobrazení předmětu rovinným zrcadlem... 4 55_Zobrazení

Více

Světlo jako elektromagnetické záření

Světlo jako elektromagnetické záření Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více