Sylabus přednášky č.5 z ING3

Rozměr: px
Začít zobrazení ze stránky:

Download "Sylabus přednášky č.5 z ING3"

Transkript

1 Sylabus přednášky č.5 z ING3 Navrhování geometrické přesnosti Doc. Ing. Jaromír Procházka, CSc. Výtah z publikace Z. Matějka a kol.: Geometrická přesnost staveb, Praha 1999 Praha

2 NAVRHOVÁNÍ GEOMETRICKÉ PŘESNOSTI ZÁSADY NAVRHOVÁNÍ Účelem návrhu geometrické přesnosti je stanovit charakteristiky důležitých geometrických parametrů (rozměrů, úhlů) popisujících výrobu, vytyčování a osazování tak, aby byly splněny funkční požadavky kladené na důležité (kritické) parametry (úložná délka, šířka spáry, světlost apod.). V technické dokumentaci a výkresech se uplatňují tzv. technické charakteristiky, zejména nominální hodnota x nom, mezní odchylka δx, popř. tolerance Δx. Návrh geometrické přesnosti, včetně stanovení charakteristik přesnosti, je nedílnou součástí návrhu stavebního objektu a všech staveništních procesů. Důležitým znakem návrhu přesnosti je nutnost přihlížet k technologickým možnostem výroby, vytyčování a osazování se zřetelem k podmínkám realizace uvažovaného objektu. Předepsané charakteristiky přesnosti musí tedy odpovídat technologickým postupům při výrobě dílců a provádění stavby i uvažovaným geodetickým postupům a přístrojům. Možnosti dodržení požadované přesnosti jsou vždy omezené (absolutní přesnost neexistuje) a významně závislé na předpokládaných technologických postupech výroby a provádění stavby. Z hlediska technologie provádění je tedy možno rozlišit: Výchozí (technologické) parametry, Výsledné parametry. Výchozí geometrické parametry se samostatně (nezávisle na jiných parametrech) sledují při výrobě a provádění (např. vytyčené rozměry, rozměry dílců a parametry, které se samostatně sledují při osazování dílců) a nezávisí na žádných dalších parametrech. Výchozí parametry se zpravidla uvažují jako statisticky nezávislé náhodné veličiny. Výsledné parametry (např. šířky spár), které se při osazování přímo nesledují, závisí na výchozích parametrech, popř. na dalších výsledných parametrech. Jestliže mohou být vyjádřeny samostatně (poměrně častý případ), není nutno jejich závislost uvažovat. Sleduje-li se současně více výsledných parametrů, které se vzájemně vyrovnávají (např. šířky spár), je nutno k jejich vzájemné závislosti přihlížet. FUNKČNÍ POŽADAVKY Funkční požadavky na geometrickou přesnost se v současné době odvozují ze základních evropských předpisů pro stavební výrobky, Směrnic rady EU a navazujících interpretačních dokumentů. Ve Směrnicích je uvedeno šest základních požadavků: mechanická odolnost, zahrnující únosnost, použitelnost a trvanlivost, požární bezpečnost, hygiena, uživatelská bezpečnost, ochrana proti hluku, ochrana energie. Souhrnné požadavky na geometrickou přesnost, které zajišťují funkční způsobilost stavby, se vyjadřují tzv. funkčními charakteristikami přesnosti, zejména funkční tolerancí Δx f nebo funkční mezní odchylkou δx f. Doporučené (nejvýše přípustné) hodnoty těchto charakteristik, platné po celou dobu předpokládané životnosti stavby, jsou souhrnně uvedeny v příloze k ČSN Geometrická přesnost ve výstavbě. Navrhování geometrické přesnosti. Uvedené hodnoty jsou stanoveny na základě předchozích zkušeností s ohledem na běžné technologické postupy a materiály. Jde však pouze o doporučené hodnoty, které je nutno v konkrétních případech ověřit 2

3 s přihlédnutím k charakteru objektu, odpovídajícím funkčním požadavkům, aktuálním technologickým možnostem a použitým materiálům. Velmi důležitou okolností stanovení a interpretace funkčních charakteristik přesnosti je předpokládaná pravděpodobnost jejich dodržení (ČSN uvádí 90%), popř. doplňková pravděpodobnost (riziko, dle ČSN je to ±5%)) jejich porušení, tj. podkročení dolní nebo překročení horní mezní hodnoty. Podle ČSN se při předpisu tolerance obecně dává přednost symetrickým mezním odchylkám vzhledem k průměru μx, který se zpravidla shoduje se základní (nominální) hodnotou x nom. V odůvodněných případech, kdy je základní hodnota x nom odlišná od průměru μx (při vzniku systematických odchylek ve výrobě a během provádění nebo při vlivu časově závislých objemových změn), může být však účelné předepsat nenulovou počáteční systematickou odchylku δx c. V těchto případech může účelně stanovená počáteční systematická odchylka δx c přispět k vyšší celkové přesnosti geometrických parametrů (systematická složka je z nich vyloučena) během předpokládané životnosti stavby. Jak již bylo uvedeno výše, předpokládá ČSN pro běžné případy (stejná závažnost přikládána dodržení geometrické přesnosti i dodržení mezních stavů použitelnosti) dodržení funkčních charakteristik přesnosti pravděpodobnost 0,90. Této hodnotě odpovídá koeficient spolehlivosti u p =1,645. U náročných staveb (u kterých může např. dojít k narušení funkce důležitého strojního vybavení) je však vhodné pracovat s vyšší pravděpodobností, tedy např. 0,99 až 0,999. Navrhování, včetně výpočtu přesnosti se formálně nezmění, pokud se uvažuje stejná pravděpodobnost u všech parametrů (výchozích i výsledných). Jestliže se však u různých parametrů uplatní různé pravděpodobnosti, pak je nutno při navrhování a výpočtu k těmto rozdílům přihlédnout. Změna požadované pravděpodobnosti se projeví též v postupech kontroly přesnosti. ZÁSADY A POSTUPY NAVRHOVÁNÍ Obecnou zásadou navrhování staveb, konstrukcí a dílců z hlediska geometrické přesnosti je hospodárnost, kontrolovatelnost a reálná možnost provedení. Se zvyšujícími se požadavky na geometrickou přesnost se značně zvyšují náklady na výrobu, vytyčování i provádění a je tedy třeba hledat optimální cenu, která je součtem nákladů na zabezpečení geometrické přesnosti a nákladů na nepříznivé následky případných nepřesností. Obecně je taková optimalizace náročným úkolem, který je však v konkrétních případech možno nahradit porovnávací studií několika variant. Omezujícími podmínkami rozhodování je předpoklad, že předepsané charakteristiky přesnosti je možno kontrolovat a že jsou z technologického hlediska splnitelné, především vůbec měřitelné (není například možné předepsat mezní odchylku rovinnosti podlahy 0,1 mm). Konstrukční řešení stavby (dispozice, tvar a materiál dílců, styků, spojů, postup a technologie provádění) je třeba navrhnout tak, aby se pokud možno omezil nepříznivý vliv nepřesností a odchylek při výrobě, vytyčování a osazování, popř. aby se snížil nepříznivý vliv objemových změn. Z tohoto hlediska je účelné při návrhu usilovat o: co nejmenší počet kritických parametrů, dostatečnou vůli prostoru vymezeného pro technologická zařízení, co nejširší intervaly funkčních tolerancí, co nejmenší počet nutných kontrol, možnosti vzájemného vyrovnávání spár a styků (přeurčené osazování). 3

4 Z hlediska navrhování geometrické přesnosti se ve smyslu ČSN rozlišují tři možné postupy: geometrická přesnost se nenavrhuje; jde o konstrukce, u nichž se nevyskytují žádné kritické geometrické parametry nebo konstrukce, jejichž přesnost je ověřena na předchozích analogických stavbách, výchozí odhad přesnosti, jehož cílem je prověřit technologické možnosti dosažení požadované přesnosti omezeného počtu kritických geometrických parametrů, podrobný návrh přesnosti, při kterém se požadovaná přesnost ověřuje u všech kritických parametrů a dále se předepisuje způsob kontroly a metrologického zabezpečení provádění. Důležitou součástí návrhu přesnosti je výpočet přesnosti, který poskytuje podklady pro stanovení charakteristik přesnosti. Přednost se dává statistické metodě výpočtu, při které se mezní odchylky sčítají podle pravidla druhých mocnin (kvadratický součet). INHERENTNÍ ODCHYLKY U konstrukcí z velkorozměrných prvků (> 2 m) se mohou významně uplatňovat časově závislé objemové změny v důsledku smršťování, bobtnání, teploty a dále přetvoření (průhyb, ohyb apod.) v důsledku zatížení, včetně dotvarování. Z hlediska závislosti objemových změn na čase se rozlišují: vratné objemové změny (vliv teploty a okamžitá přetvoření od zatížení), nevratné objemové změny (smršťování, bobtnání a dotvarování). Pro výpočet geometrické přesnosti se zřetelem k inherentním odchylkám se definují tzv. výchozí podmínky, které charakterizují podmínky výroby (přejímky) prvku a které mohou být odlišné od podmínek jeho zabudování do okolní konstrukce, například: teplota (doporučuje se průměrná teplota 15 C), určitá doba od zhotovení výrobku (např. 28 dnů od betonáže u betonových prvků), určitá vlhkost (v závislosti na technologii výroby a době od zhotovení). Vedle těchto výchozích podmínek se při výpočtu uplatní montážní podmínky, které charakterizují podmínky při zabudování prvku do konstrukce (+7 C až +35 C) a podmínky provozní, které charakterizují extrémní podmínky (-15 C až + 70 C u obvodového pláště objektu, vystaveného přímému slunečnímu záření) během předpokládané životnosti konstrukce (např. 50 let). Inherentní odchylky jsou významné zejména u obvodových plášťů z velkorozměrných prvků, u kterých se vedle nevratných objemových změn významně uplatňují vratné změny způsobené periodickými změnami teploty a teplotního gradientu. KONTROLA PŘESNOSTI Podrobný návrh geometrické přesnosti má obsahovat rovněž požadavky na kontrolu přesnosti. Kromě kontroly vytyčení (která je nedílnou součástí geodetických prací) se ke kontrole přesnosti zpravidla předepisují: kritické parametry konstrukce, vybrané parametry výroby a osazení, které významně ovlivňují kritické parametry. Pokyny pro kontrolu mají obsahovat jednoznačná místa a čas kontroly, vztažený k postupu montáže tak, aby kontrolní měření bylo proveditelné. V zásadě se dává přednost kontrole měřením před kontrolou srovnáváním. Rozsah kontroly se stanoví v souladu s pravidly statistické kontroly hromadné výroby. Pouze ve zvlášť důležitých případech se předepisuje kontrola stoprocentní. 4

5 VÝPOČET PŘESNOSTI Postup zjednodušeného statistického výpočtu přesnosti je stanoven a podrobně popsán v ČSN (Geometrická přesnost ve výstavbě. Navrhování geometrické přesnosti). Vztahy pro dolní a horní mezní hodnotu tolerančního intervalu uvažují k nominální hodnotě geometrického parametru x nom případnou systematickou odchylku δx c, její možnou změnu s časem εx(t) a mezní náhodnou odchylku δx. V technické dokumentaci se při nulové systematické odchylce, její nulové změně s časem a symetrických intervalech udávají mezní hodnoty vztahem x nom ± δx. Zjednodušený výpočet se opírá o dva základní vztahy: pečlivý rozbor všech funkčních požadavků a určení odpovídajících funkčních charakteristik přesnosti kritických (důležitých) parametrů, který předchází výpočtu přesnosti a má zásadní význam pro posouzení vhodného postupu výstavby, včetně výroby, vytyčování, osazování (montáže) a pro další postup ověřování přesnosti, stanovení přípustné pravděpodobnosti překročení mezních hodnot kritických parametrů (rizika), které je ovšem nutno navázat na vhodné postupy výstavby a použité metody kontroly dodržení přesnosti (viz str.3). Snížení rizika vede ke zvýšení požadavků na výrobu dílců, přesnost vytyčování, montáže i ověřovacího měření a je ho vhodné konzultovat s odborníky na uvedené oblasti výstavby. UVÁDĚNÍ HODNOT GEOMETRICKÉ PŘESNOSTI V PROJEKTOVÉ DOKUMENTACI Všeobecně Jako charakteristiky přesnosti se v projektové dokumentaci určují největší a nejmenší mezní hodnoty (např. 600 min., 600 max.), dolní a horní mezní odchylky od základní hodnoty (např. ), tolerance (i když tolerance je absolutní hodnota bez znaménka, vyjadřuje se u stavebních objektů běžně jako ± mezní odchylka, tedy např. 600±10) a odchylka středu tolerančního intervalu od základní hodnoty. Charakteristiky přesnosti délkových, výškových a úhlových rozměrů se předepisují některým z následujících způsobů: číselnými hodnotami za základními hodnotami geometrických parametrů, vyjádřených kótami podle zásad uvedených v následující podkapitole, číselnými hodnotami uvedenými u každého obrazu na výkresu, popř. nad popisovým polem výkresu (např. Mezní odchylky rozměrů ±10 mm ) tehdy, majíli mít všechny rozměry shodné odchylky, uvedením čísla příslušné technické normy nad popisovým polem, popř. v legendě výkresu (např. Přesnost délkových a výškových rozměrů ČSN ), specifikací požadavků na přesnost jednotlivých rozměrů nad popisovým polem, popř. v legendě výkresu, kde se uvede rozsah rozměrů a k nim se přiřadí požadavky na jejich přesnost, např. v souboru výkresů stropních dílců téhož druhu se vyjádří požadavek na přesnost dílců takto: Délka l Mezní odchylky [mm] do 3,0 m ± 5 přes 3,0 do 5,4 m ± 7 6,0 a 6,6 m ± 8 kombinací podle prvního bodu (připisování odchylek ke kótám) a podle třetího a čtvrtého bodu (uvedením odkazu na normu, popř. specifikací odchylek); nad 5

6 popisovým polem se napíše: Rozměry, u nichž nejsou zapsány mezní odchylky, přesnost podle ČSN Charakteristiky přesnosti orientace a vzájemné polohy geometrických prvků se předepisují grafickými značkami a číselnými hodnotami podle příslušné následující podkapitoly, obvykle na výkresech, určených pro realizaci stavebních objektů nebo pro výrobu jejich částí. Značky pro jednotlivé druhy tolerancí a odchylek se zapisují ve vztahu k základně tolerančního rámečku bez ohledu na jeho polohu na výkresu. Označování přesnosti délkových, výškových a úhlových rozměrů Předepisují-li se číselné hodnoty mezních odchylek pro nesouměrně rozložené toleranční pole, zapisuje se horní odchylka nad dolní odchylku (obr.1a). Dolní mezní odchylka se zapisuje na stejné účaří jako základní rozměr a horní mezní odchylka se zapisuje o řádek výše (obr.1b). Při souměrném rozložení tolerančního pole se zapisuje hodnota odchylky pouze jednou se znaménkem ± (obr.1c). Přitom se výška číslic odchylky musí rovnat výšce číslic základního rozměru. Číselné hodnoty mezních odchylek se zapisují do poslední platné číslice; počet znaků horní a dolní odchylky se vyrovná doplněním nulou (obr.1b). Mezní odchylky rovné nule se předepisují bez znamének plus nebo minus a počtem znaků se nevyrovnávají (obr.2a, b, c). Jestliže je třeba předepsat pouze jeden mezní rozměr (druhý není omezen ve směru zvětšení nebo zmenšení jakoukoli podmínkou), připíše se za tento rozměr odpovídající značka min. nebo max. (obr.3a, b). Mezní odchylky úhlových rozměrů se předepisují pouze číselnými hodnotami s označením jednotek (stupňů, minut, vteřin) podle obrázku č. 4a, b, c. 6

7 Označování přesnosti orientace, polohy a tvaru Charakteristiky přesnosti orientace (vzájemné polohy) geometrických prvků povrchů dílců a konstrukcí (jejich os, hran, rovin, ploch atd.) jednoho nebo dvou dílců či konstrukcí, popř. jejich určitých geometrických prvků k určenému směru se uvádějí číselnými hodnotami mezních odchylek nebo tolerancí, doplněnými grafickými značkami podle tabulky č.1. Charakteristika přesnosti tvaru profilu nebo povrchu stavebních dílců a konstrukcí se uvádějí hodnotami tolerancí a grafickými značkami podle tabulky č.2. Značka a číselná hodnota tolerance se zapisují do tolerančního rámečku, rozděleného na jednotlivá pole, v tomto pořadí (zleva, doprava): v prvním poli se uvádí značka tolerance podle tabulek č.1 a 2, ve druhém poli se zapisuje číselná hodnota tolerance v milimetrech (obr.5a, b), ve třetím poli se zapisuje, je-li to třeba, písmenné označení základny (základen), k níž se předepisuje tolerance (obr.5b a obr.9). 7

8 Charakteristiku přesnosti orientace, polohy a tvaru stavebního prvku, dílce nebo konstrukce lze zapsat např. těmito způsoby: charakteristika přesnosti polohy ve směru os x a y na montážní vodorovné rovině a ve výškové úrovni se uvede hodnotami mezních odchylek k základní hodnotě geometrického parametru, stanovujícího vzdálenost mezi určenými geometrickými prvky stavebního dílce nebo konstrukce (hranami, osami nebo povrchy) a základnou (vytyčené nebo rozměřené montážní značky na montážní rovině, bod výškové úrovně, hrana apod.) podle obr.6, označení a číselná hodnota charakteristiky přesnosti, vztahující se k povrchu dílce nebo konstrukce, který je ohraničen obrysem, se uvádějí v tolerančním rámečku podle obr.7, který je spojen odkazovou čarou s výraznou tečkou uvnitř obrysu, vztahuje-li se charakteristika přesnosti k ose nebo rovině souměrnosti určitého prvku, musí se konec spojovací čáry vést k prodloužení kótovací čáry příslušného rozměru (např. k průměru, obr.8a nebo k rozměru šířky, obr. 8b). Vztahuje-li se k ose nebo rovině souměrnosti několika geometrických prvků, vede se spojovací čára ke společné ose či rovině souměrnosti (obr.8c, d), charakteristiky přesnosti orientace dvou nebo více geometrických prvků (hran, povrchových rovin apod.) se zpravidla vztahují ke geometrickému prvku označenému jako základna. Základny se označují plným trojúhelníkem (rovnostranným o výšce velikosti písma kót), který se spojí s tolerančním rámečkem (obr.9a), popř. se zvláštním rámečkem s označením základny (obr.9b). 8

9 Označování technologických procesů a funkčních požadavků Jestliže je nutné rozlišovat na výkresech geometrické parametry vztahující se k různým technologickým procesům a k funkčním požadavkům, k nimž se stanovují charakteristiky přesnosti a požadavky na jejich kontrolu, užívá se pro jejich rozlišení písmenných značek podle tabulky č.3. Tab.č.3 Písmenné značky technologických procesů Písmenná značka Proces M Výroba stavebních dílců S Vytyčení SD Rozměření E Osazení (montáž) B Funkční geometrický parametr Poznámka: při zobrazení pouze jednoho technologického procesu na výkresu se písmenné označení geometrických parametrů neuvádí (obr.10a) Písmenné značky se vpisují do předřazeného rámečku, umístěného vlevo od tolerančního rámečku, ve kterém se uvádějí označení druhu tolerancí nebo mezních odchylek (obr.10a). Pokud se písmenné značky vztahují ke geometrickému parametru délkovému, výškovému či úhlovému, připisuje se písmenná značka procesu bezprostředně za mezní odchylku, např ± 5S (obr.10a). Zobrazují-li se na jednom výkresu geometrické parametry více technologických procesů, např. parametry rozměření a osazení, označují se písmennými značkami pouze geometrické parametry následného technologického procesu, v uvedeném příkladu tedy E - osazení (obr.10b). Na výkresech rozměření a osazení, kde se přesnost osazení dílců stanovuje, se uvádějí montážní značky vyčerněným trojúhelníkem na vytyčené přímce, na montážní rovině nebo na výškové úrovni a prázdným (nevyčerněným) trojúhelníkem na zobrazované hraně (ose, vyznačeném bodu) stavebního dílce, který má být osazován (obr.10a, b). REALIZAČNÍ PROCESY Při stanovování charakteristik přesnosti geometrických parametrů je třeba mít vždy na paměti reálnost jejich dosažení. To znamená, že je nutné při návrhu zvážit nejen s jakou přesností (jednotlivých rozměrů, případně tvarů) vstoupí do procesu na staveništi dílce a výrobky zhotovené předem, ale i jaká bude přesnost přístrojů a pomůcek, které budou použity při vytyčování, rozměřování a osazování a jaká bude přesnost vlastních procesů na staveništi. V procesech výroby je vytvořen potřebný fyzický tvar dílce (výrobku), ve staveništních procesech jsou výrobky (případně části bednění) osazovány do navržené (funkčně potřebné) polohy. Při osazování může dojít k posunu a pootočení v prostorové pravoúhlé soustavě souřadnic (osa z je orientována ve směru 9

10 gravitace). Obvykle se rozlišuje posun v půdorysné osnově (v osách x, y) a posun ve svislém směru (v ose z). K pootočení může dojít kolem všech tří os. Pokud nejsou některé z posunů a pootočení podchyceny konstrukčním řešením, musí být eliminovány až při staveništních procesech. U většiny konstrukcí lze pootočení a posuny omezit, nikoli však zcela eliminovat. Souhrn odchylek posunutí dílce ve směru zvoleného souřadnicového systému a odchylek pootočení od základní polohy je označen jako odchylky polohy a orientace. Tyto odchylky jsou vymezovány při vytyčení, rozměření a osazení dílců (výrobků) nebo částí bednění. Vždy musí být provedeno vytyčení prostorové polohy a vytyčení podrobné, na jehož rozsahu pak závisí rozsah rozměření. Osazení stavebních dílců (výrobků) Do osazení stavebního dílce nebo části bednění jsou zahrnuty všechny operace, které po podrobném vytyčení a rozměření ovlivňují jeho umístění do projektované polohy (ČSN Geometrická přesnost ve výstavbě. Podmínky provádění. Část 1: Přesnost osazení). Z hlediska osazení je montážní značkou značka podrobného vytyčení, rozměření nebo body smluvené (projektem, technickými podmínkami či normami zhotovitele) na smontované konstrukci, pomocné konstrukci, případně na dílci. Dílec je pak osazován k montážní značce. Přesnost osazení dílců je charakterizována podle výše uvedené normy mezními odchylkami shodnosti značek na dílci a značek vytyčených či rozměřených. Vytyčené sekundární přímky pak slouží zároveň pro následnou kontrolu ve smyslu ČSN Na obrázcích č.11a, b a 12 a, b jsou uvedeny příklady podchycení nepřesností polohy a orientace při podrobném vytyčení a rozměření při osazování sloupu a stěny. 10

11 Zde autor autor příručky upozorňuje na nepřesnosti, které se v praxi občas vyskytují, a to že místo mezních odchylek osazení (tedy shody montážních značek), jsou jako odchylky pro osazení nesprávně předepisovány odchylky funkčních parametrů, např. odchylky spáry, jejíž hodnota je výsledkem všech technologických vlivů, tedy odchylek dílců, vytyčení, rozměření a osazení. Přesnost monolitických betonových konstrukcí Bednění je považováno za druh montované konstrukce (jak již bylo zmíněno dříve), u níž mimo přesnosti samotného zhotovení, podrobného vytyčení, rozměření a osazení může působit celá řada vlivů během a po betonáži, které se podílejí na výsledné přesnosti monolitické konstrukce. Z těchto důvodů je nutné jako kritérium pro přesnost bednění použít skutečnou přesnost v něm zhotovené konstrukce. V tomto smyslu by měly být i garance zhotovitele bednění. Změny geometrických parametrů, které nastanou v betonové konstrukci po odbednění při zatěžovací pevnosti, by měly být zahrnuty do hodnot mezních odchylek a tolerancí betonové konstrukce, které jsou odvozeny (vypočteny) z funkčních požadavků. Základní princip při odvození požadavku na přesnost monolitických konstrukcí by měl vycházet z požadované přesnosti následných konstrukcí a výrobků, jimiž je monolitická konstrukce vybavována (obvodový plášť, výplně otvorů atd.). Neměla by tedy být zbytečně požadována přesnost vyšší, než je nezbytně nutné. Podrobné vytyčení a rozměření pro osazení bednění u monolitických konstrukcí by mělo proběhnout se znalostí geometrické přesnosti bednících systémů, s předpokládanou stoprocentní kontrolou. Průběžná i výsledná kontrola geometrických parametrů monolitických konstrukcí by měla být prováděna na základě zpracovaného projektu kontrolních měření. Příkladem dílčího geometrického parametru je svislost budovy (obr.13a), měřená ve svislém sekundárním systému vně nebo uvnitř budovy (obr.13b). Geometrickou přesností staveb, vytyčením, měřením a kontrolou se zabývá řada mezinárodních norem ISO (terminologie, měřicí přístroje a měřické postupy): Terminologie ČSN , ČSN ISO 7078/96, ČSN ISO 1803/99, Měřící přístroje a určování jejich správné funkce ČSN ISO 8322, část 1 až 10. Měřící metody ve výstavbě ČSN ISO až 3, ČSN ISO a 2, 11

12 Geometrická přesnost ve výstavbě ČSN , ČSN , ČSN ISO a 2 Geometrická přesnost ve výstavbě kontrola přesnosti ČSN , ČSN , část 3 až 7 Podrobněji ve volitelném předmětu Kontrolní měření! 12

0 Úvod...5. 1 Základní pojmy...8

0 Úvod...5. 1 Základní pojmy...8 Obsah 0 Úvod...5 1 Základní pojmy...8 2 Soustava norem geometrické přesnosti...13 2.1 Základní normy souboru...14 2.2 Normy pro navrhování...15 2.3 Normy realizačních procesů...15 2.4 Normy pro kontrolu

Více

Úvod do inženýrské geodézie

Úvod do inženýrské geodézie Úvod do inženýrské geodézie Úvod do inženýrské geodézie Rozbory přesnosti Vytyčování Čerpáno ze Sylabů přednášek z inženýrské geodézie doc. ing. Jaromíra Procházky, CSc. Úvod do inženýrské geodézie Pod

Více

Vytyčování pozemních stavebních objektů s prostorovou skladbou

Vytyčování pozemních stavebních objektů s prostorovou skladbou Vytyčování pozemních stavebních objektů s prostorovou skladbou ZÁPADOČESKÁ UNIVERZITA V PLZNI Ing. Martina Vichrová, Ph.D. Fakulta aplikovaných věd - KMA oddělení geomatiky vichrova@kma.zcu.cz Vytvoření

Více

Sylabus přednášky č.6 z ING3

Sylabus přednášky č.6 z ING3 Sylabus přednášky č.6 z ING3 Přesnost vytyčování staveb (objekty s prostorovou skladbou) Doc. Ing. Jaromír Procházka, CSc. Výtah z ČSN 73 0420-2 Praha 2014 1 PŘESNOST VYTYČOVÁNÍ STAVEB (Výtah z ČSN 73

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE TECHNICKÁ DOKUMENTACE Jan Petřík 2013 Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Obsah přednášek 1. Úvod do problematiky tvorby technické dokumentace

Více

Kontrola svislosti montované budovy

Kontrola svislosti montované budovy 1. Zadání Kontrola svislosti montované budovy Určete skutečné odchylky svislosti panelů na budově ČVUT. Objednatel požaduje kontrolu svislosti štítové stěny objektu. Při konstrukční výšce jednoho podlaží

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE TECHNICKÁ DOKUMENTACE Jan Petřík 2013 Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Obsah přednášek 1. Úvod do problematiky tvorby technické dokumentace

Více

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec

Více

Tech. dokumentace-kjp-ing. Král K. 1

Tech. dokumentace-kjp-ing. Král K. 1 Tech. dokumentace-kjp-ing. Král K. 1 Obsah lekce III. 1. Základní pojmy a pravidla Provedení kót Hraniční značky Zapisování a umístění 2. Soustavy kót Řetězcové, od základny, smíšené, souřadnicové 3. Kótování

Více

ZATÍŽENÍ KONSTRUKCÍ VŠEOBECNĚ

ZATÍŽENÍ KONSTRUKCÍ VŠEOBECNĚ ZATÍŽENÍ KONSTRUKCÍ VŠEOBECNĚ Charakteristiky zatížení a jejich stanovení Charakteristikami zatížení jsou: a) normová zatížení (obecně F n ), b) součinitele zatížení (obecně y ), c) výpočtová zatížení

Více

TVORBA TECHNICKÉ DOKUMENTACE Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

TVORBA TECHNICKÉ DOKUMENTACE Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice TVORBA TECHNICKÉ DOKUMENTACE Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ PRAVIDLA PRO KÓTOVÁNÍ SOUČÁSTÍ

Více

Předepisování přesnosti rozměrů, tvaru a polohy

Předepisování přesnosti rozměrů, tvaru a polohy Předepisování přesnosti rozměrů, tvaru a polohy Geometrické tolerance Na správné funkci součásti se kromě přesnosti rozměrů a jakosti povrchu významně podílí také geometricky přesný tvar funkčních ploch.

Více

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Řešení kruţnicových oblouků v souřadnicích) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec 2015

Více

Technická dokumentace

Technická dokumentace Technická dokumentace Obor studia: 23-45-L / 01 Mechanik seřizovač VY_32_inovace_FREI19 : předepsané tolerance, podmínky kontroly tolerancí Datum vypracování: 04.02.2013 Vypracoval: Ing. Bohumil Freisleben

Více

Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování

Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování doc. Ing. Miloslav Kepka, CSc. ZČU v Plzni, Fakulta strojní, Katedra konstruování strojů

Více

EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek

EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření Jan Krystek 9. května 2019 CHYBY A NEJISTOTY MĚŘENÍ Každé měření je zatíženo určitou nepřesností způsobenou nejrůznějšími negativními vlivy,

Více

ZOBRAZOVÁNÍ STAVEBNÍCH KONSTRUKCÍ A ÚPRAV VE STAVEBNÍCH VÝKRESECH P

ZOBRAZOVÁNÍ STAVEBNÍCH KONSTRUKCÍ A ÚPRAV VE STAVEBNÍCH VÝKRESECH P ZOBRAZOVÁNÍ STAVEBNÍCH KONSTRUKCÍ A ÚPRAV VE STAVEBNÍCH VÝKRESECH PŮDORYSŮ, ŘEZŮ A POHLEDŮ V MĚŘÍTKU 1 : 100 A 1 : 50 1.Kreslení svislých konstrukcí: Půdorys- - Pro zobrazení a kótování svislých stěn,

Více

Měřítko: 1: 500, 1:1000, 1:2000, 1:5000

Měřítko: 1: 500, 1:1000, 1:2000, 1:5000 1. TERÉN HRUBÁ ÚPRAVA TERÉNU (HUT) - změna úrovně terénu před zahájením výstavby VÝKRESY HUT: situace HUT, profily HUT KONEČNÁ ÚPRAVA TERÉNU (KUT) - změna úrovně terénu po dokončení výstavby Měřítko: 1:

Více

Principy návrhu 28.3.2012 1. Ing. Zuzana Hejlová

Principy návrhu 28.3.2012 1. Ing. Zuzana Hejlová KERAMICKÉ STROPNÍ KONSTRUKCE ČSN EN 1992 Principy návrhu 28.3.2012 1 Ing. Zuzana Hejlová Přechod z národních na evropské normy od 1.4.2010 Zatížení stavebních konstrukcí ČSN 73 0035 = > ČSN EN 1991 Navrhování

Více

ČLENĚNÍ STAVBY NA STAVEBNÍ DÍLY A JEJICH ZAKRESLOVÁNÍ VE ST. VÝKRESECH

ČLENĚNÍ STAVBY NA STAVEBNÍ DÍLY A JEJICH ZAKRESLOVÁNÍ VE ST. VÝKRESECH ČLENĚNÍ STAVBY NA STAVEBNÍ DÍLY A JEJICH ZAKRESLOVÁNÍ VE ST. VÝKRESECH 1. TERÉN + 2. VÝKOPY + 3. ZÁKLADY + 4. SVISLÉ KONSTRUKCE 5. POVRCHOVÉ ÚPRAVY 6. KOMÍNY A VENTILACE 7. VODOROVNÉ KONSTRUKCE + 8. PODLAHY

Více

T- MaR. Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. Podmínky názvy. 1.c-pod. ZS 2015/ Ing. Václav Rada, CSc.

T- MaR. Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. Podmínky názvy. 1.c-pod. ZS 2015/ Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Podmínky názvy 1.c-pod. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. MĚŘENÍ praktická část OBECNÝ ÚVOD Veškerá měření mohou probíhat

Více

Schöck Isokorb typ QS

Schöck Isokorb typ QS Schöck Isokorb typ Schöck Isokorb typ Obsah Strana Varianty připojení 182 Rozměry 183 Pohledy/čelní kotevní deska/přídavná stavební výztuž 18 Dimenzační tabulky/vzdálenost dilatačních spar/montážní tolerance

Více

Sylabus přednášky č.7 z ING3

Sylabus přednášky č.7 z ING3 Sylabus přednášky č.7 z ING3 Přesnost vytyčování staveb (objekty liniové a plošné) Doc. Ing. Jaromír Procházka, CSc. Výtah z ČSN 73 0420-2 Praha 2014 1 PŘESNOST VYTYČOVÁNÍ STAVEB (Výtah z ČSN 73 0420-2,

Více

ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ

ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ Doporučená literatura: ČSN EN 99 Eurokód: zásady navrhování konstrukcí. ČNI, Březen 24. ČSN EN 99-- Eurokód : Zatížení konstrukcí - Část -: Obecná zatížení - Objemové tíhy,

Více

124KP1 Konstrukce pozemních staveb strana 1

124KP1 Konstrukce pozemních staveb strana 1 124KP1 Konstrukce pozemních staveb strana 1 ZÁKLADY ZAKRESLOVÁNÍ PODKLAD 1 ČSN 01 3420 - Výkresy pozemních staveb Kreslení výkresů stavební části - výtah z normy pro potřeby cvičení z 124KP1 a 124KP2 pozn.:

Více

Základní pojmy a pravidla kótování

Základní pojmy a pravidla kótování Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Základní pojmy a pravidla kótování Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující

Více

Tolerování rozměrů, základní pojmy

Tolerování rozměrů, základní pojmy Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Tolerování rozměrů Tolerování rozměrů, základní pojmy Při výrobě součástí vznikají nepřesnosti způsobené zvolenou

Více

Předepisování rozměrů a kreslení strojních součástí lekce IV - str

Předepisování rozměrů a kreslení strojních součástí lekce IV - str Předepisování rozměrů a kreslení strojních součástí lekce IV - str.118-199 Lícování, zobrazování součástí 1 Obsah lekce IV. 1. Předepisování přesnosti rozměrů, tvaru a polohy Tolerování rozměrů, základní

Více

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT ZÁSADY TVORBY VÝKRESŮ POZEMNÍCH STAVEB II. Autor

Více

1.PLOCHA VÝKRESOVÉHO LISTU. Plocha výkresového listu má toto základní dělení: - plocha pro kresbu - plocha pro text - popisové pole

1.PLOCHA VÝKRESOVÉHO LISTU. Plocha výkresového listu má toto základní dělení: - plocha pro kresbu - plocha pro text - popisové pole 1.PLOCHA VÝKRESOVÉHO LISTU Plocha výkresového listu má toto základní dělení: - plocha pro kresbu - plocha pro text - popisové pole 1.1 Plocha pro kresbu: Jednotlivá zobrazení, tvořící výkres, se umísťují

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 Teorie měření a regulace Praxe názvy 1. ZS 2015/2016 2015 - Ing. Václav Rada, CSc. OBECNÝ ÚVOD - praxe Elektrotechnická měření mohou probíhat pouze při

Více

Bibliografická citace VŠKP

Bibliografická citace VŠKP Bibliografická citace VŠKP PROKOP, Lukáš. Železobetonová skeletová konstrukce. Brno, 2012. 7 stran, 106 stran příloh. Bakalářská práce. Vysoké učení technické v Brně, Fakulta stavební, Ústav betonových

Více

Technický návod je vytvořen tak, aby mohlo být provedeno posouzení shody také podle 5 (vazba na 10).

Technický návod je vytvořen tak, aby mohlo být provedeno posouzení shody také podle 5 (vazba na 10). 7, 8 Technický návod je vytvořen tak, aby mohlo být provedeno posouzení shody také podle 5 (vazba na 10). TN nevztahuje na výrobky deklarované dle norem: 01.11.2007 ČSN EN 516 Prefabrikované příslušenství

Více

TECHNICKÁ DOKUMENTACE. pro obor Elektrotechnika

TECHNICKÁ DOKUMENTACE. pro obor Elektrotechnika TECHNICKÁ DOKUMENTACE pro obor Elektrotechnika 2. Normalizace... 7 2.1. Základní pojmy... 7 2.2. Druhy norem... 7 2.3. Druhy technických výkresů 8 2.4. Formáty výkresů 8 2.5. Úprava výkresového listu...

Více

nařízení vlády č. 163/2002 Sb., ve znění nařízení vlády č. 312/2005 Sb. a nařízení vlády č. 215/2016 Sb. (dále jen nařízení vlády )

nařízení vlády č. 163/2002 Sb., ve znění nařízení vlády č. 312/2005 Sb. a nařízení vlády č. 215/2016 Sb. (dále jen nařízení vlády ) Technický návod je vytvořen tak, aby mohlo být provedeno posouzení shody také podle 5 (vazba na 10). TN nevztahuje na výrobky deklarované dle norem: 01.11.2007 ČSN EN 516 Prefabrikované příslušenství pro

Více

SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy

SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 8 Normové předpisy 2012 Spolehlivost konstrukcí,

Více

Norma upřesňuje zobrazení rozměrů svarů a rozměrů příprav svarových spojů.

Norma upřesňuje zobrazení rozměrů svarů a rozměrů příprav svarových spojů. Změna normy pro zobrazování svarů na výkresech norma ČSN EN ISO 2553, Svařování a příbuzné procesy zobrazování na výkresech Svarové spoje Ing. Jiří Barták, CSc., WELDING PLZEŇ Táto evropská norma má status

Více

Normalizace v technické dokumentaci

Normalizace v technické dokumentaci Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Základní pojmy Normalizace v technické dokumentaci Při výrobě složitých výrobků je nutná spolupráce výrobce

Více

SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek

SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek Thákurova 7, 166 29 Praha 6 Dejvice Česká republika Program přednášek a cvičení Výuka: Úterý 12:00-13:40, C -219 Přednášky a cvičení:

Více

ZÁKLADY ZAKRESLOVÁNÍ I. Výběr literatury. ZÁKLADY ZAKRESLOVÁNÍ II. - ČSN Výkresy pozemních staveb Kreslení výkresů stavební části

ZÁKLADY ZAKRESLOVÁNÍ I. Výběr literatury. ZÁKLADY ZAKRESLOVÁNÍ II. - ČSN Výkresy pozemních staveb Kreslení výkresů stavební části 124KP1 Konstrukce pozemních staveb strana 1 ZÁKLADY ZAKRESLOVÁNÍ I. Výběr literatury ČSN EN ISO 128-23 Typy čar a jejich použití ČSN 01 0451 Technické písmo ČSN 01 3130 Technické výkresy Kótování Základní

Více

Vytyčování staveb a hranic pozemků

Vytyčování staveb a hranic pozemků Vytyčování staveb a hranic pozemků Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským

Více

Principy navrhování stavebních konstrukcí

Principy navrhování stavebních konstrukcí Pružnost a plasticita, 2.ročník bakalářského studia Principy navrhování stavebních konstrukcí Princip navrhování a posudku spolehlivosti stavebních konstrukcí Mezní stav únosnosti, pevnost stavebních materiálů

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ VÝROBNÍ VÝKRESY (POPISOVÉ POLE)

Více

NÁVRHU Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice

NÁVRHU Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice 2. ŠIKMÉ A STRMÉ STŘECHY PRINCIPY NÁVRHU Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu

Více

Vytyčování staveb a hranic pozemků (1)

Vytyčování staveb a hranic pozemků (1) Vytyčování staveb a hranic pozemků (1) Vytyčování staveb a hranic pozemků Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115

Více

PŘEHLED ZÁKLADNÍCH ZKUŠEBNÍCH OTÁZEK ke zkoušce odborné způsobilosti k udělení úředního oprávnění pro ověřování výsledků zeměměřických činností

PŘEHLED ZÁKLADNÍCH ZKUŠEBNÍCH OTÁZEK ke zkoušce odborné způsobilosti k udělení úředního oprávnění pro ověřování výsledků zeměměřických činností PŘEHLED ZÁKLADNÍCH ZKUŠEBNÍCH OTÁZEK ke zkoušce odborné způsobilosti k udělení úředního oprávnění pro ověřování výsledků zeměměřických činností Obecná část 1. Základní ustanovení katastrálního zákona,

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.

Více

Trvanlivost betonových konstrukcí. Prof. Ing. Jaroslav Procházka, CSc. ČVUT - stavební fakulta katedra betonových konstrukcí

Trvanlivost betonových konstrukcí. Prof. Ing. Jaroslav Procházka, CSc. ČVUT - stavební fakulta katedra betonových konstrukcí Trvanlivost betonových konstrukcí Prof. Ing. Jaroslav Procházka, CSc. ČVUT - stavební fakulta katedra betonových konstrukcí 1 Osnova přednášky Požadavky na betonové konstrukce Trvanlivost materiálu a konstrukce

Více

Železobetonové patky pro dřevěné sloupy venkovních vedení do 45 kv

Železobetonové patky pro dřevěné sloupy venkovních vedení do 45 kv Podniková norma energetiky pro rozvod elektrické energie ČEZ Distribuce, E.ON Distribuce, E.ON ČR, Železobetonové patky pro dřevěné sloupy venkovních vedení do 45 kv PNE 34 8211 3. vydání Odsouhlasení

Více

Kótování sklonu, kuželovitosti, jehlanovitosti a zkosených hran

Kótování sklonu, kuželovitosti, jehlanovitosti a zkosených hran Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Kótování sklonu, kuželovitosti, jehlanovitosti a zkosených hran Kótování sklonu Sklon plochy nebo přímky, popř.

Více

Předmět poskytuje základní vědomosti o normalizaci pro zobrazování, kótování, kreslení řezů a detailů, značení materiálů výrobků na výkresech.

Předmět poskytuje základní vědomosti o normalizaci pro zobrazování, kótování, kreslení řezů a detailů, značení materiálů výrobků na výkresech. 1. ÚVOD DO PŘEDMĚTU Předmět poskytuje základní vědomosti o normalizaci pro zobrazování, kótování, kreslení řezů a detailů, značení materiálů výrobků na výkresech. Cílem je čtení, kreslení jednoduchých

Více

KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU

KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU OBSAH 1. ÚVOD... 3 1.1. Předmět a účel... 3 1.2. Platnost a závaznost použití... 3 2. SOUVISEJÍCÍ NORMY A PŘEDPISY... 3 3. ZÁKLADNÍ

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

Definice kótování. Základní vlastnosti kótování

Definice kótování. Základní vlastnosti kótování Technická dokumentace Bc. Lukáš Procházka Téma: úvod do kótování 1) Základní pojmy kótování 2) Pravidla zobrazování kót 3) Kótování od základny, řetězové a smíšené kótování 4) Funkční a technologické kótování

Více

Posouzení přesnosti měření

Posouzení přesnosti měření Přesnost měření Posouzení přesnosti měření Hodnotu kvantitativně popsaného parametru jakéhokoliv objektu zjistíme jedině měřením. Reálné měření má vždy omezenou přesnost V minulosti sloužila k posouzení

Více

Schöck Isokorb typ KS

Schöck Isokorb typ KS Schöck Isokorb typ 20 Schöck Isokorb typ 1 Obsah Strana Varianty připojení 16-165 Rozměry 166-167 Dimenzační tabulky 168 Vysvětlení k dimenzačním tabulkám 169 Příklad dimenzování/upozornění 170 Údaje pro

Více

ČSN 01 3483 - VÝKRESY KOVOVÝCH KONSTRUKCÍ

ČSN 01 3483 - VÝKRESY KOVOVÝCH KONSTRUKCÍ KURZ BO04 PRACOVNÍ KOPIE ČSN 01 3483 - VÝKRESY KOVOVÝCH KONSTRUKCÍ KURZ BO04 PRACOVNÍ KOPIE 1 NÁZVOSLOVÍ 1.1 UCELENÁ ČÁST KONSTRUKCE část kovové konstrukce, která sestává z dílců vzájemně spojených ve

Více

NK 1 Konstrukce. Volba konstrukčního systému

NK 1 Konstrukce. Volba konstrukčního systému NK 1 Konstrukce Přednášky: Doc. Ing. Karel Lorenz, CSc., Prof. Ing. Milan Holický, DrSc., Ing. Jana Marková, Ph.D. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta

Více

Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu CZ.1.07/3.2.08/03.0035. Tvorba technické dokumentace

Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu CZ.1.07/3.2.08/03.0035. Tvorba technické dokumentace Inovace profesního vzdělávání ve vazbě na potřeby Jihočeského regionu CZ.1.07/3.2.08/03.0035 Tvorba technické dokumentace Fáze projektové dokumentace z hlediska stavebního řízení Průběh stavebního řízení

Více

Schöck Isokorb typ K. Schöck Isokorb typ K

Schöck Isokorb typ K. Schöck Isokorb typ K Schöck Isokorb typ Schöck Isokorb typ (konzola) Používá se u volně vyložených ů. Přenáší záporné ohybové momenty a kladné posouvající síly. Prvek Schöck Isokorb typ třídy únosnosti ve smyku VV přenáší

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE VŠB-TU Ostrava, Fakulta elektrotechniky a informatiky Katedra elektrických strojů a přístrojů KAT 453 TECHNICKÁ DOKUMENTACE (přednášky pro hodiny cvičení) Cvičení č. I. Formáty výkresů 1 Formáty výkresů

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 7. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace provádí početní operace v oboru celých a racionálních čísel zaokrouhluje, provádí odhady

Více

Principy navrhování stavebních konstrukcí

Principy navrhování stavebních konstrukcí Pružnost a plasticita, 2.ročník bakalářského studia Principy navrhování stavebních konstrukcí Princip navrhování a posudku spolehlivosti stavebních konstrukcí Mezní stav únosnosti, pevnost stavebních materiálů

Více

TOLERANCE A LÍCOVÁNÍ

TOLERANCE A LÍCOVÁNÍ TOLERANCE A LÍCOVÁNÍ Zdůvodnění - TOLEROVÁNÍ rozměry součástí předepsány kótami žádný rozměr nelze při výrobě ani měření dodržet s absolutní přesností = určitá smluvená nepřesnost předepsaných rozměrů

Více

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT ZÁSADY TVORBY VÝKRESŮ POZEMNÍCH STAVEB II. Autor

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE VŠB-TU Ostrava, Fakulta elektrotechniky a informatiky Katedra elektrických strojů a přístrojů KAT 453 TECHNICKÁ DOKUMENTACE (přednášky pro hodiny cvičení) Zobrazování Petr Šňupárek, Martin Marek 1 Co je

Více

http://www.tobrys.cz KONSTRUKČNÍ ŘEŠENÍ SPOJOVACÍ LÁVKA, ÚŘAD PRÁCE PARDUBICE 01/2014 Ing. Tomáš Bryčka

http://www.tobrys.cz KONSTRUKČNÍ ŘEŠENÍ SPOJOVACÍ LÁVKA, ÚŘAD PRÁCE PARDUBICE 01/2014 Ing. Tomáš Bryčka http://www.tobrys.cz KONSTRUKČNÍ ŘEŠENÍ SPOJOVACÍ LÁVKA, ÚŘAD PRÁCE PARDUBICE 01/2014 Ing. Tomáš Bryčka 1. OBSAH 1. OBSAH 2 2. ÚVOD: 3 2.1. IDENTIFIKAČNÍ ÚDAJE: 3 2.2. ZADÁVACÍ PODMÍNKY: 3 2.2.1. Použité

Více

Vytyčovací sítě. Výhody: Přizpůsobení terénu

Vytyčovací sítě. Výhody: Přizpůsobení terénu Typ liniové sítě záleží na požadavcích na přesnost. Mezi tyto sítě patří: polygonové sítě -> polygonový pořad vedený souběžně s liniovou stavbou troj a čtyřúhelníkové řetězce -> zdvojený polygonový pořad

Více

Měřítka. Technická dokumentace Ing. Lukáš Procházka. Téma: Měřítka, čáry a technické písmo 1) Měřítka 2) Technické čáry 3) Technické písmo

Měřítka. Technická dokumentace Ing. Lukáš Procházka. Téma: Měřítka, čáry a technické písmo 1) Měřítka 2) Technické čáry 3) Technické písmo Technická dokumentace Ing. Lukáš Procházka Téma: Měřítka, čáry a technické písmo 1) Měřítka 2) Technické čáry 3) Technické písmo Měřítka Měřítka zmenšení (1 : 10000 až 1 : 2) skutečné (1 : 1) zvětšení

Více

5 Analýza konstrukce a navrhování pomocí zkoušek

5 Analýza konstrukce a navrhování pomocí zkoušek 5 Analýza konstrukce a navrhování pomocí zkoušek 5.1 Analýza konstrukce 5.1.1 Modelování konstrukce V článku 5.1 jsou uvedeny zásady a aplikační pravidla potřebná pro stanovení výpočetních modelů, které

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE TECHNICKÁ DOKUMENTACE Jan Petřík 2013 Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Obsah přednášek 1. Úvod do problematiky tvorby technické dokumentace

Více

148 VYHLÁŠKA ze dne 18. června 2007 o energetické náročnosti budov

148 VYHLÁŠKA ze dne 18. června 2007 o energetické náročnosti budov 148 VYHLÁŠKA ze dne 18. června 2007 o energetické náročnosti budov Ministerstvo průmyslu a obchodu (dále jen "ministerstvo") stanoví podle 14 odst. 5 zákona č. 406/2000 Sb., o hospodaření energií, ve znění

Více

Volba a počet obrazů

Volba a počet obrazů Volba a počet obrazů Všeobecné zásady: kreslí se nejmenší počet obrazů potřebný k úplnému a jednoznačnému zobrazení předmětu, jako hlavní zobrazení se volí ten obraz, který nejúplněji ukazuje tvar a rozměry

Více

Použité zdroje a odkazy: Nápověda Corel Draw X6, J. Švercl: Technické kreslení a deskriptivní geometrie pro školu a praxi

Použité zdroje a odkazy: Nápověda Corel Draw X6, J. Švercl: Technické kreslení a deskriptivní geometrie pro školu a praxi Označení materiálu: Autor: Mgr. Ludmila Krčmářová VY_32_INOVACE_PoGra1709 Tematický celek: Corel DrawX6 Učivo (téma): Kótování v Corel Draw Stručná Charakteristika: Využití nástrojů CD vhodných na kótování

Více

Předepisování jakosti povrchu

Předepisování jakosti povrchu Předepisování jakosti povrchu Při výrobě strojních součástí je nutné dbát nejen na přesnost rozměrů, ale také na vzniklé nerovnosti povrchu. Jednotlivé plochy mohou vznikat obráběním (povrch obrobený),

Více

DEFINITIVNÍ OSTĚNÍ PODZEMNÍCH STAVEB Z HLEDISKA BETONÁŘE

DEFINITIVNÍ OSTĚNÍ PODZEMNÍCH STAVEB Z HLEDISKA BETONÁŘE DEFINITIVNÍ OSTĚNÍ PODZEMNÍCH STAVEB Z HLEDISKA BETONÁŘE Ing. Michal Sedláček, Ph.D. Tunelářské odpoledne 3/2011 14.9.2011 NAVRHOVÁNÍ DEFINITIVNÍHO OSTĚNÍ - základní předpisy - koncepce návrhu - analýza

Více

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A12. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A12. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí 133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A12 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Navrhování zděných konstrukcí na účinky

Více

Úloha V Modelování a výpočet proslunění obytných budov programem SunLis

Úloha V Modelování a výpočet proslunění obytných budov programem SunLis Úloha V Modelování a výpočet proslunění obytných budov programem SunLis doc. Ing. Iveta Skotnicová, Ph.D. Katedra prostředí staveb a TZB Fakulta stavební VŠB-TU Ostrava Obsah úlohy Legislativní požadavky

Více

Rozdělení technické dokumentace

Rozdělení technické dokumentace Rozdělení technické dokumentace Ing. Tomáš Mlčák, Ph.D. Fakulta elektrotechniky a informatiky VŠB TU Ostrava Katedra elektrotechniky TD Definice technické dokumentace Technická dokumentace je souhrn dokumentů

Více

Výkres tvaru monolitické železobetonové konstrukce

Výkres tvaru monolitické železobetonové konstrukce Výkres tvaru monolitické železobetonové konstrukce = pohled do bednění stropní konstrukce (+ schodišť, ramp apod.) a půdorysný řez svislými nosnými prvky podporujícími zakreslovaný strop. Řez je veden

Více

08 Interpretace ostatních základních požadavků OBSAH

08 Interpretace ostatních základních požadavků OBSAH 08 Interpretace ostatních základních požadavků OBSAH Označení postupu DP 08/01 DP 08/02 DP 08/03 DP 08/04 DP 08/05 DP 08/06 DP 08/07 Otázka k přijatému doporučenému postupu V jednotlivých směrnicích EU

Více

Nejistota měření. Thomas Hesse HBM Darmstadt

Nejistota měření. Thomas Hesse HBM Darmstadt Nejistota měření Thomas Hesse HBM Darmstadt Prof. Werner Richter: Výsledek měření bez určení nejistoty měření je nejistý, takový výsledek je lépe ignorovat" V podstatě je výsledek měření aproximací nebo

Více

TN je vytvořen tak, aby mohlo být provedeno posouzení shody také podle 5 (vazba na 10).

TN je vytvořen tak, aby mohlo být provedeno posouzení shody také podle 5 (vazba na 10). nařízení vlády č. 13/2002 Sb., ve znění nařízení vlády č. 312/2005 Sb. a NV č. 215/201 Sb. (dále jen nařízení vlády ) 09.2, ( 5) TN je vytvořen tak, aby mohlo být provedeno posouzení shody také podle 5

Více

Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí

Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola

Více

1 Použité značky a symboly

1 Použité značky a symboly 1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req

Více

VYHLÁŠKA ze dne 22. března 2013 o energetické náročnosti budov

VYHLÁŠKA ze dne 22. března 2013 o energetické náročnosti budov Strana 738 Sbírka zákonů č. 78 / 2013 78 VYHLÁŠKA ze dne 22. března 2013 o energetické náročnosti budov Ministerstvo průmyslu a obchodu stanoví podle 14 odst. 4 zákona č. 406/2000 Sb., o hospodaření energií,

Více

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B2. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B2. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí 133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška B2 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Tahové zpevnění spolupůsobení taženého betonu mezi trhlinami

Více

Dilatace nosných konstrukcí

Dilatace nosných konstrukcí ČVUT v Praze Fakulta stavební PSA2 - POZEMNÍ STAVBY A2 (do roku 2015 název KP2) Dilatace nosných konstrukcí doc. Ing. Jiří Pazderka, Ph.D. Katedra konstrukcí pozemních staveb Zpracováno v návaznosti na

Více

PROJEKTOVÁ DOKUMENTACE V LEGISLATIVĚ ČR

PROJEKTOVÁ DOKUMENTACE V LEGISLATIVĚ ČR PROJEKTOVÁ DOKUMENTACE V LEGISLATIVĚ ČR Zákon č. 183/2006 Stavební zákon (novela 350/2012) Vyhlášky: - č.499/2006 Sb. o dokumentaci staveb novelizovaná 62/2013 - č.146/2008 Sb.o rozsahu a obsahu projektové

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Program semináře 1. Základní pojmy - metody měření, druhy chyb, počítání s neúplnými čísly, zaokrouhlování 2. Chyby přímých měření - aritmetický průměr a směrodatná odchylka,

Více

TECHNICKÝ NÁVOD PRO ČINNOSTI AUTORIZOVANÝCH OSOB PŘI POSUZOVÁNÍ SHODY STAVEBNÍCH VÝROBKŮ PODLE

TECHNICKÝ NÁVOD PRO ČINNOSTI AUTORIZOVANÝCH OSOB PŘI POSUZOVÁNÍ SHODY STAVEBNÍCH VÝROBKŮ PODLE Technický návod je vytvořen tak, aby mohlo být provedeno posouzení shody také podle 5 (vazba na 10). TN se nevztahuje na výrobky s ověřováním stálosti vlastností podle nařízení Evropského parlamentu a

Více

Cvičební texty 2003 programu celoživotního vzdělávání MŠMT ČR Požární odolnost stavebních konstrukcí podle evropských norem

Cvičební texty 2003 programu celoživotního vzdělávání MŠMT ČR Požární odolnost stavebních konstrukcí podle evropských norem 2.5 Příklady 2.5. Desky Příklad : Deska prostě uložená Zadání Posuďte prostě uloženou desku tl. 200 mm na rozpětí 5 m v suchém prostředí. Stálé zatížení je g 7 knm -2, nahodilé q 5 knm -2. Požaduje se

Více

Pomůcka k aplikaci ustanovení katastrální vyhlášky vztahujících se k souřadnicím podrobných bodů

Pomůcka k aplikaci ustanovení katastrální vyhlášky vztahujících se k souřadnicím podrobných bodů Příloha k č.j. ČÚZK 6495/2009-22 Pomůcka k aplikaci ustanovení katastrální vyhlášky vztahujících se k souřadnicím podrobných bodů 1. Geometrické a polohové určení 1.1. Katastrální území a nemovitosti evidované

Více

CEMVIN FORM Desky pro konstrukce ztraceného bednění

CEMVIN FORM Desky pro konstrukce ztraceného bednění CEMVIN FORM Desky pro konstrukce ztraceného bednění CEMVIN CEMVIN FORM - Desky pro konstrukce ztraceného bednění Vysoká pevnost Třída reakce na oheň A1 Mrazuvzdornost Vysoká pevnost v ohybu Vhodné do vlhkého

Více

Realizace výtahu v budově ÚZSVM ÚP Plzeň Americká 8/39, Plzeň

Realizace výtahu v budově ÚZSVM ÚP Plzeň Americká 8/39, Plzeň STATICA Plzeň s.r.o. statika konstrukcí V Obilí 1180/12, 326 00, Plzeň Realizace výtahu v budově ÚZSVM ÚP Plzeň Americká 8/39, Plzeň D.1.2.1. Objednatel: Úřad pro zastupování státu ve věcech majetkových

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ VÝROBNÍ VÝKRESY (POPISOVÉ POLE)

Více