Logický agent, výroková logika. Návrh logického agenta

Rozměr: px
Začít zobrazení ze stránky:

Download "Logický agent, výroková logika. Návrh logického agenta"

Transkript

1 Obsah: Logika Návrh logického agenta, výroková logika leš Horák Úvod do umělé inteligence 8/ / 3 Návrh logického agenta agent musí umět: reprezentovat stavy, akce, zpracovat nové vstupy z prostředí aktualizovat svůj vnitřní popis světa odvodit skryté informace o stavu světa odvodit vlastní odpovídající akce přístupy k tvorbě agenta deklarativní procedurální (kombinace) návrh agenta víc pohledů: znalostní hledisko tvorba agenta zadání znalostí pozadí, znalostí domény a cílového požadavku např automatické tai znalost mapy, dopravních pravidel, požadavek dopravit zákazníka na FI MU rno implementační hledisko jaké datové struktury K obsahuje + algoritmy, které s nimi manipulují Úvod do umělé inteligence 8/ 3 / 3 logický agent { = agent využívající znalosti (knowledge-based agent) reprezentace znalostí (knowledge representation) koncepty: vyvozování znalostí (knowledge reasoning) inference rozdíly od prohledávání stavového prostoru: znalost při prohledávání stavového prostoru jen zadané funkce (přechodová funkce, cílový test, ) znalosti logického agenta obecná forma umožňující kombinace těchto znalostí obecné znalosti důležité v částečně pozorovatelných prostředích (partially observable environments) fleibilita logického agenta: schopnost řešit i nové úkoly možnost učení nových znalostí úprava stávajících znalostí podle stavu prostředí Úvod do umělé inteligence 8/ / 3 Komponenty agenta, áze znalostí komponenty logického agenta: inferenční stroj (inference engine) báze znalostí (knowledge base) Komponenty agenta, áze znalostí algoritmy nezávislé na doméně znalosti o doméně báze znalostí (K) = množina vět (tvrzení) vyjádřených v jazyce reprezentace znalostí obsah báze znalostí: na začátku tzv znalosti pozadí (background knowledge) průběžně doplňované znalosti úkol tell(+k,+sentence) akce logického agenta: % kb agent action(+k,+time,+percept, ction, NewTime) kb agent action(k,time,percept,ction,newtime):- make percept sentence(percept,time,sentence), tell(k,sentence), % přidáme výsledky pozorování do K make action query(time,query), ask(k,query,ction), % zeptáme se na další postup make action sentence(ction,time,sentence), tell(k,sentence), % přidáme informace o akci do K NewTime is Time + Úvod do umělé inteligence 8/ 4 / 3

2 Popis světa PES zadání světa rozumného agenta: míra výkonnosti (Performance measure) plus body za dosažené (mezi)cíle, pokuty za nežádoucí následky prostředí (Environment) objekty ve světě, se kterými agent musí počítat, a jejich vlastnosti akční prvky (ctuators) možné součásti činnosti agenta, jeho akce se skládají z použití těchto prvků senzory (Sensors) zpětné vazby akcí agenta, podle jejich výstupů se tvoří další akce např zmiňované automatické tai: míra výkonnosti doprava na místo, vzdálenost, bezpečnost, bez přestupků, komfort, prostředí ulice, křižovatky, účastníci provozu, chodci, počasí, akční prvky řízení, plyn, brzda, houkačka, blinkry, komunikátory, senzory kamera, tachometr, počítač kilometrů, senzory motoru, GPS, Úvod do umělé inteligence 8/ 5 / 3 lastnosti problému Wumpusovy jeskyně PES zadání Wumpusovy jeskyně: P míra výkonnosti zlato +, smrt -, - za krok, - za užití šípu E prostředí Místnosti vedle Wumpuse zapáchají místnosti vedle jámy je vánek místnosti je zlato je v ní třpyt ýstřel zabije Wumpuse, pokud jsi obrácený k němu ýstřel vyčerpá jediný šíp, který máš Zvednutím vezmeš zlato ve stejné místnosti Položení odloží zlato v aktuální místnosti akční prvky Otočení vlevo, Otočení vpravo, Krok dopředu, Zvednutí, Položení, ýstřel S senzory, Třpyt, Zápach, Náraz do zdi, Chroptění Wumpuse Úvod do umělé inteligence 8/ 6 / 3 Průzkum Wumpusovy jeskyně 4 3 Zápach Zápach STRT Zápach Trpyt JÁM JÁM JÁM 3 4 pozorovatelné deterministické episodické statické diskrétní více agentů ne, jen lokální vnímání ano, přesně dané výsledky ne, sekvenční na úrovni akcí ano, Wumpus a jámy se nehýbou ano ne, Wumpus je spíše vlastnost prostředí 8 J X X Z X X TZ ZEDNI! W = gent = T = Třpyt = bezpečí J = Jáma Z = Zápach X = navštíveno W = Wumpus Úvod do umělé inteligence 8/ 7 / 3 Úvod do umělé inteligence 8/ 8 / 3

3 Logika Průzkum Wumpusovy jeskyně problémy Základní vlastnost logického vyvozování: Kdykoliv agent dospěje k závěru z daných informací tento závěr je zaručeně správný, pokud jsou správné dodané informace Obtížné situace: Z J J J J v (, ) i v (, ) žádná bezpečná akce Při předpokladu uniformní distribuce děr díra v (, ) má pravděpodobnost 86, na krajích 3 Zápach v (, ) nemůže se pohnout je možné použít donucovací strategii (strategy of coercion): ýstřel jedním ze směrů byl tam Wumpus je mrtvý (poznám podle Chroptění) bezpečné 3 nebyl tam Wumpus (žádné Chroptění) bezpečný směr Úvod do umělé inteligence 8/ 9 / 3 Logika Důsledek Logika Logika = syntae a sémantika formálního jazyka pro reprezentaci znalostí umožňující vyvozování závěrů Syntae definuje všechny dobře utvořené věty jazyka Sémantika definuje význam vět definuje pravdivost vět v jazyce (v závislosti na možném světě) např jazyk aritmetiky: + y je dobře utvořená věta; + y > není věta + y je pravda číslo + není menší než číslo y + y je pravda ve světě, kde = 7, y = + y je nepravda ve světě, kde =, y = 6 zápis na papíře v libovolné syntai v K se jedná o konfiguraci (částí) agenta vlastní vyvozování generování a manipulace s těmito konfiguracemi Úvod do umělé inteligence 8/ / 3 Logika Model Důsledek Model Důsledek (vyplývání, entailment) jedna věc logicky vyplývá z druhé (je jejím důsledkem): K = α Z báze znalostí K vyplývá věta α α je pravdivá ve všech světech, kde je K pravdivá např: K obsahuje věty Češi vyhráli Slováci vyhráli z K pak vyplývá Češi vyhráli nebo Slováci vyhráli z + y = 4 vyplývá 4 = + y Důsledek je vztah mezi větami (syntae), který je založený na sémantice možný svět = model formálně strukturovaný (abstraktní) svět, umožňuje vyhodnocení pravdivosti říkáme: m je model věty α α je pravdivá v m M(α) množina všech modelů věty α např: K = α = K = α M(K) M(α) Češi vyhráli Slováci vyhráli Češi vyhráli M(α) M(K) Úvod do umělé inteligence 8/ / 3 Úvod do umělé inteligence 8/ / 3

4 Logika Inference Inference yvozování požadovaných důsledků inference K i α věta α může být vyvozena z K pomocí (procedury) i (i odvodí α z K) všechny možné důsledky K jsou kupka sena ; α je jehla vyplývání = jehla v kupce sena; inference = její nalezení ezespornost: i je bezesporná K i α K = α Úplnost: i je úplná K = α K i α ztah k reálnému světu: Pokud je K pravdivá v reálném světě věta α vyvozená z K pomocí bezesporné inference je také pravdivá ve skutečném světě nejjednodušší logika, ilustruje základní myšlenky výrokové symboly P, P, jsou věty negace S je věta S je věta konjunkce S a S jsou věty S S je věta disjunkce S a S jsou věty S S je věta implikace S a S jsou věty S S je věta ekvivalence S a S jsou věty S S je věta Jestliže máme sémantiku pravdivou v reálném světě můžeme vyvozovat závěry o skutečném světě pomocí logiky Úvod do umělé inteligence 8/ 3 / 3 Sémantika výrokové logiky Sémantika výrokové logiky každý model musí určit pravdivostní hodnoty výrokových symbolů např: m = {P = false, P = false, P 3 = true} pravidla pro vyhodnocení pravdivosti u složených výroků pro model m: S je true S je false S S je true S je true a S je true S S je true S je true nebo S je true S S je true S je false nebo S je true tj je false S je true a S je false S S je true S S je true a S S je true rekurzivním procesem vyhodnotíme lib větu: P (P P 3 ) = true (false true) = true true = true pravdivostní tabulka: P Q P P Q P Q P Q P Q false false true false false true true false true true false true true false true false false false true false false true true false true true true true Úvod do umělé inteligence 8/ 5 / 3 Logická ekvivalence Úvod do umělé inteligence 8/ 4 / 3 Logická ekvivalence Dva výroky jsou logicky ekvivalentní právě tehdy, když jsou pravdivé ve stejných modelech: α β α = β a β = α (α β) (β α) komutativita (α β) (β α) komutativita ((α β) γ) (α (β γ)) asociativita ((α β) γ) (α (β γ)) asociativita ( α) α eliminace dvojí negace (α β) ( β α) kontrapozice (α β) ( α β) eliminace implikace (α β) ((α β) (β α)) eliminace ekvivalence (α β) ( α β) de Morgan (α β) ( α β) de Morgan (α (β γ)) ((α β) (α γ)) distributivita nad (α (β γ)) ((α β) (α γ)) distributivita nad Úvod do umělé inteligence 8/ 6 / 3

5 Platnost a splnitelnost Tvrzení pro Wumpusově jeskyni Platnost a splnitelnost ýrok je platný je pravdivý ve všech modelech např: true,,, ( ( )) Platnost je spojena s vyplýváním pomocí věty o dedukci: K = α (K α) je platný výrok ýrok je splnitelný je pravdivý v některých modelech např:, C ýrok je nesplnitelný je nepravdivý ve všech modelech např: Splnitelnost je spojena s vyplýváním pomocí důkazu α sporem (reductio ad absurdum): K = α (K α) je nesplnitelný Úvod do umělé inteligence 8/ 7 / 3 Tvrzení pro Wumpusově jeskyni Definujeme výrokové symboly J i,j je pravda Na [i, j] je Jáma a i,j je pravda Na [i, j] je báze znalostí K: pravidlo pro [, ]: R : J, pozorování: R :,, R 3 :, pravidla pro vztah Jámy a ánku: Jámy způsobují ve vedlejších místnostech R 4:, (J, J, ) R 5:, (J, J, J 3, ) poli je právě tehdy, když je ve vedlejším poli Jáma K = R R R 3 R 4 R 5 R 4 :, (J, J, ) R 5 :, (J, J, J 3, ) Úvod do umělé inteligence 8/ 8 / 3 Inference ve Wumpusově jeskyni kontrola modelů (model checking) procházení pravdivostní tabulky (vždycky eponenciální v n) vylepšené prohledávání s navracením (improved backtracking), např Davis Putnam Logemann Loveland heuristické prohledávání prostoru modelů (bezesporné, ale neúplné) aplikace inferenčních pravidel legitimní (bezesporné) generování nových výroků ze starých důkaz = sekvence aplikací inferenčních pravidel je možné použít inferenční pravidla jako operátory ve standardních prohledávacích algoritmech typicky vyžaduje překlad vět do normální formy situace: v [, ] nedetekováno nic krok doprava, v [, ] uvažujeme možné modely pro (budou nás zajímat jen Jámy) 3 pole s ooleovskými možnostmi {T, F } 3 = 8 možných modelů Úvod do umělé inteligence 8/ 9 / 3 Úvod do umělé inteligence 8/ / 3

6 Modely ve Wumpusově jeskyni uvažujeme všech 8 možných modelů: Pravdivostní tabulka pro inferenci K K = pravidla Wumpusovy jeskyně + pozorování α = [, ] je bezpečné pole K = α α = [, ] je bezpečné pole K = α 3 3 kontrola modelů jednoduchý způsob logické inference,, J, J, J, J, J 3, K α false false false false false false false false true false false false false false false true false true false true false false false false false false true false true false false false false true true true false true false false false true false true true false true false false false true true true true false true false false true false false false true true true true true true true true false false K = pravidla Wumpusovy jeskyně + pozorování α = [, ] je bezpečné pole Úvod do umělé inteligence 8/ / 3 Kontrola všech modelů do hloubky je bezesporná a úplná (pro konečný počet výrokových symbolů) % tt entails(+k,+lpha) tt entails(k,lpha):- proposition symbols(symbols,[k,lpha]), tt check all(k,lpha,symbols,[]) vrací true, pokud je lpha pravdivá v Modelu % tt check all(+k,+lpha,+symbols,+model) tt check all(k,lpha,[],model):- pl true(k,model),!,pl true(lpha,model) tt check all(k,lpha,[],model):-! tt check all(k,lpha,[p Symbols],Model):- % vytvoříme modely pro hodnoty symbolů tt check all(k,lpha,symbols,[p true Model]), tt check all(k,lpha,symbols,[p false Model]) O( n ) pro n symbolů, NP-úplný problém Úvod do umělé inteligence 8/ / 3 K = konjunkce Hornových klauzuĺı { výrokový symbol; nebo Hornova klauzule = (konjunkce symbolů) symbol např: K = C ( ) (C D ) pravidlo Modus Ponens pro K z Hornových klauzuĺı je úplné α,, α n, α α n β β pravidla pro logickou ekvivalenci se taky dají použít pro inferenci inference Hornových klauzuĺı algoritmus dopředného nebo zpětného řetězení oba tyto algoritmy jsou přirozené a mají lineární časovou složitost Úvod do umělé inteligence 8/ 3 / 3 Úvod do umělé inteligence 8/ 4 / 3

7 Dopředné řetězení Dopředné řetězení příklad Idea: aplikuj pravidlo, jehož premisy jsou splněné v K přidej jeho důsledek do K pokračuj do doby, než je nalezena odpověd K: P Q L M P L M P L L ND-OR graf K: L Q P M P Q L M P L M P L L Q P L M Úvod do umělé inteligence 8/ 5 / 3 lgoritmus dopředného řetězení Zpětné řetězení Úvod do umělé inteligence 8/ 6 / 3 :- op( 8, f, if), op( 7, f, then), op( 3, fy, or), op(, fy, and) forward :- new derived fact( P),!, % Nový fakt write( Derived: ), write( P), nl, assert( fact( P)), forward % Pokračuje generování faktů ; write( No more facts ), nl % šechny fakty odvozeny new derived fact( Concl) :- if Cond then Concl, % Pravidlo \+ fact( Concl), % Concl ještě není fakt composed fact( Cond) % Cond je true Idea: pracuje zpětně od dotazu q zkontroluj, jestli není q už známo dokaž zpětným řetězením všechny premisy nějakého pravidla, které má q jako důsledek kontrola cyklů pro každý podcíl se nejprve podívej, jestli už nebyl řešen (tj pamatuje si true i false výsledek) composed fact( Cond) :- fact( Cond) % Jednoduchý fakt composed fact( Cond and Cond) :- composed fact( Cond), composed fact( Cond) composed fact( Cond or Cond) :- composed fact( Cond); composed fact( Cond) Úvod do umělé inteligence 8/ 7 / 3 Úvod do umělé inteligence 8/ 8 / 3

8 Zpětné řetězení příklad Porovnání dopředného a zpětného řetězení P Q L M P L M P L L L Q P M dopředné řetězení je řízeno daty automatické, nevědomé zpracování např rozpoznávání objektů, rutinní rozhodování může udělat hodně nadbytečné práce bez vztahu k dotazu/cíli zpětné řetězení je řízeno dotazem vhodné pro hledání odpovědí na konkrétní dotaz např Kde jsou moje kĺıče Jak se mám přihlásit na PGS složitost zpětného řetězení může být mnohem menší než lineární vzhledem k velikosti K obecný inferenční algoritmus rezoluce zpracovává formule v konjunktivní normální formě (konjunkce disjunkcí literálů) rezoluce je bezesporná a úplná pro výrokovou logiku i predikátovou logiku řádu Úvod do umělé inteligence 8/ 9 / 3 Úvod do umělé inteligence 8/ 3 / 3

Logický agent, výroková logika

Logický agent, výroková logika Logický agent, výroková logika Aleš Horák E-mail: hales@fimunicz http://nlpfimunicz/uui/ Obsah: Logický agent Logika Výroková logika Inference důkazové metody Úvod do umělé inteligence 8/12 1 / 30 Logický

Více

Logický agent, výroková logika

Logický agent, výroková logika Logický agent, výroková logika Aleš Horák E-mail: hales@fimunicz http://nlpfimunicz/uui/ Obsah: Statistické výsledky průběžné písemky Logický agent Logika Výroková logika Důkazové metody Úvod do umělé

Více

Logický agent, výroková logika

Logický agent, výroková logika Logický agent, výroková logika leš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Statistické výsledky průběžné písemky Logický agent Logika Výroková logika Důkazové metody Úvod do umělé

Více

Logický agent, výroková logika.

Logický agent, výroková logika. Úvod do umělé inteligence Logický agent, výroková logika E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Statistické výsledky průběžné písemky Logický agent Wumpusova jeskyně Logika Výroková

Více

Výroková logika - opakování

Výroková logika - opakování - opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α

Více

Základy logiky a teorie množin

Základy logiky a teorie množin Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu

Více

Formální systém výrokové logiky

Formální systém výrokové logiky Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)

Více

Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.

Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D. Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro

Více

Jak jsem potkal logiku. Převod formule do (úplného) disjunktivního tvaru. Jan Hora

Jak jsem potkal logiku. Převod formule do (úplného) disjunktivního tvaru. Jan Hora Česká zemědělská univerzita 17. října 2011 U makléře Já: Dobrý den, rád bych koupil nějaký světlý byt. Chtěl bych, aby měl dvě koupelny a aby byl v domě výtah. A neměl by být nijak extrémně drahý. Makléř:

Více

Výroková a predikátová logika - V

Výroková a predikátová logika - V Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský

Více

Logika a logické programování

Logika a logické programování Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ TEORIE ROZHODOVÁNÍ Metodický list č. 1 Název tématického celku: Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do

Více

Logika. 5. Rezoluční princip. RNDr. Luděk Cienciala, Ph. D.

Logika. 5. Rezoluční princip. RNDr. Luděk Cienciala, Ph. D. Logika 5. Rezoluční princip RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou

Více

popel, glum & nepil 16/28

popel, glum & nepil 16/28 Lineární rezoluce další způsob zjemnění rezoluce; místo stromu směřujeme k lineární struktuře důkazu Lineární rezoluční odvození (důkaz) z Ë je posloupnost dvojic ¼ ¼ Ò Ò taková, že Ò ½ a 1. ¼ a všechna

Více

Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23

Sémantika výrokové logiky. Alena Gollová Výroková logika 1/23 Výroková logika Alena Gollová Výroková logika 1/23 Obsah 1 Formule výrokové logiky 2 Alena Gollová Výroková logika 2/23 Formule výrokové logiky Výrok je oznamovací věta, o jejíž pravdivosti lze rozhodnout.

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém

Více

Spojování výroků (podmínek) logickými spojkami

Spojování výroků (podmínek) logickými spojkami Spojování výroků (podmínek) logickými spojkami Spojování výroků logickými spojkami a) Konjunkce - spojení A B; Pravdivostní tabulka konjunkce A B A B 0 0 0 0 1 0 1 0 0 1 1 1 AND; A a současně B Konjunkce

Více

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α 1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny

Více

Výroková logika. Teoretická informatika Tomáš Foltýnek

Výroková logika. Teoretická informatika Tomáš Foltýnek Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox

Více

7. Inferenční metody. Inferenční metody Václav Matoušek, Josef Strolený Úvod do znalostního inženýrství, ZS 2014/

7. Inferenční metody. Inferenční metody Václav Matoušek, Josef Strolený Úvod do znalostního inženýrství, ZS 2014/ Inferenční metody 18.11.2014 7-1 Inferenční metody Rezoluční systémy Dopředné a zpětné řetězení Výběr dotazu Nemonotónní usuzování 7-2 a) Česká Literatura Dvořák J.: Expertní systémy. Skriptum VUT Brno,

Více

LOGIKA VÝROKOVÁ LOGIKA

LOGIKA VÝROKOVÁ LOGIKA LOGIKA Popisuje pravidla odvozování jedněch tvrzení z druhých. Je to myšlenková cesta ke správným závěrům. Vznikla jako součást filosofie. Zakladatelem byl Aristoteles. VÝROKOVÁ LOGIKA Obsahuje syntaktická,

Více

Která tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana.

Která tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana. Trosečníci Adam, Barry, Code a Dan zapoměli po čase kalendář. Začali se dohadovat, který den v týdnu vlastně je. Každý z nich řekl svůj názor: A: Dnes je úterý nebo zítra je neděle B: Dnes není úterý nebo

Více

Úvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží

Úvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží Úvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží marie.duzi@vsb.cz Normální formy formulí výrokové logiky Každé formuli výrokové logiky přísluší právě jedna pravdivostní funkce,

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a

Více

Kapitola Výroky

Kapitola Výroky 1 Kapitola 1 Výroková logika 1.1 Výroky 1.1.1 Příklad Rozhodněte, zda následující posloupnosti symbolú jsou výrokové formule. Jde-li o formuli, pak sestrojte její strom, určete její hloubku a uved te všechny

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou

Více

Sémantika predikátové logiky

Sémantika predikátové logiky Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem

Více

Logika. 6. Axiomatický systém výrokové logiky

Logika. 6. Axiomatický systém výrokové logiky Logika 6. Axiomatický systém výrokové logiky RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS

6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS Základy logiky Umělá inteligence a rozpoznávání, LS 2012 6-1 Logika je naukou, která se zabývá studiem lidského uvažování. Mezi základní úlohy logiky patří nalézání metod správného usuzování, tedy postupů,

Více

Klasická výroková logika - tabulková metoda

Klasická výroková logika - tabulková metoda 1 Klasická výroková logika - tabulková metoda Na úrovni výrokové logiky budeme interpretací rozumět každé přiřazení pravdivostních hodnot výrokovým parametrům. (V případě přiřazení pravdivostních hodnot

Více

1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7

1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7 1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není

Více

Znalosti a jejich reprezentace, základní postupy, výroková logika. Katedra kybernetiky, FEL, ČVUT v Praze

Znalosti a jejich reprezentace, základní postupy, výroková logika. Katedra kybernetiky, FEL, ČVUT v Praze Znalosti a jejich reprezentace, základní postupy, výroková logika Jiří Kléma Katedra kybernetiky, FEL, ČVUT v Praze /doku.php/courses/a7b33sui/start pcelá čísla motivační příklad 1 :: Srovnejme dvě odlišné

Více

Obsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17

Obsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17 Obsah Předmluva...3 0. Rekapitulace základních pojmů logiky a výrokové logiky...11 0.1 Logika jako věda o vyplývání... 11 1. Uvedení do predikátové logiky...17 1.1 Základní terminologie... 17 1.2 Základní

Více

vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí

vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí Rezoluce: další formální systém vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí pracujeme s formulemi v nkf (též klauzulárním tvaru), ale používáme

Více

přednáška 2 Marie Duží

přednáška 2 Marie Duží Logika v praxi přednáška 2 Marie Duží marie.duzi@vsb.cz 1 1 Výroková logika Analyzuje způsoby skládání jednoduchých výroků do výroků složených pomocí logických spojek. Co je to výrok? Výrok je tvrzení,

Více

Prolog PROgramming in LOGic část predikátové logiky prvního řádu rozvoj začíná po roce 1970 Robert Kowalski teoretické základy Alain Colmerauer, David

Prolog PROgramming in LOGic část predikátové logiky prvního řádu rozvoj začíná po roce 1970 Robert Kowalski teoretické základy Alain Colmerauer, David Úvod do Prologu Prolog PROgramming in LOGic část predikátové logiky prvního řádu rozvoj začíná po roce 1970 Robert Kowalski teoretické základy Alain Colmerauer, David Warren (Warren Abstract Machine) implementace

Více

Aplikace: Znalostní báze

Aplikace: Znalostní báze Aplikace: Znalostní báze 1 Znalostní báze je systém, který dostává fakta o prostředí a dotazy o něm. Znalostní báze je agentem ve větším systému, který obsahuje prostředí (také agent), správce (agent),

Více

Umělá inteligence I. Roman Barták, KTIML.

Umělá inteligence I. Roman Barták, KTIML. Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Už umíme používat výrokovou logiku pro reprezentaci znalostí a odvozování důsledků. Dnes Dnes zopakujeme

Více

Marie Duží

Marie Duží Marie Duží marie.duzi@vsb.cz Normální formy formulí výrokové logiky Každé formuli výrokové logiky přísluší právě jedna pravdivostní funkce, zobrazení {p, q, r } {0, 1} (pravdivostní tabulka). Naopak však

Více

Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Metody odvozování. matematická východiska: logika, Prolog

Metody odvozování. matematická východiska: logika, Prolog Metody odvozování matematická východiska: logika, Prolog psychologická východiska: rámce biologická východiska: konekcionismus, neuronové sítě statistická východiska: kauzální (bayesovské) sítě ekonomická

Více

Usuzování za neurčitosti

Usuzování za neurčitosti Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích

Více

Výroková logika. p, q, r...

Výroková logika. p, q, r... Výroková logika Výroková logika je logika, která zkoumá pravdivostní podmínky tvrzení a vztah vyplývání v úsudcích na základě vztahů mezi celými větami. Můžeme též říci, že se jedná o logiku spojek, protože

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky

Matematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky Matematická logika Lekce 1: Motivace a seznámení s klasickou výrokovou logikou Petr Cintula Ústav informatiky Akademie věd České republiky www.cs.cas.cz/cintula/mal Petr Cintula (ÚI AV ČR) Matematická

Více

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 11 METODY VERIFIKACE SYSTÉMŮ NA ČIPU Hana Kubátov vá doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta 1 informačních

Více

Pravidlové znalostní systémy

Pravidlové znalostní systémy Pravidlové znalostní systémy 31. října 2017 2-1 Tvary pravidel Pravidla (rules) mohou mít například takovéto tvary: IF předpoklad THEN závěr IF situace THEN akce IF podmínka THEN závěr AND akce IF podmínka

Více

Úvod do TI - logika Výroková logika (2.přednáška) Marie Duží

Úvod do TI - logika Výroková logika (2.přednáška) Marie Duží Úvod do TI - logika Výroková logika (2.přednáška) Marie Duží marie.duzi@vsb.cz Výroková logika Analyzuje způsoby skládání jednoduchých výroků do výroků složených pomocí logických spojek. Co je to výrok?

Více

Logika. Dana Nejedlová Katedra informatiky Ekonomická fakulta Technická univerzita v Liberci

Logika. Dana Nejedlová Katedra informatiky Ekonomická fakulta Technická univerzita v Liberci Logika Dana Nejedlová Katedra informatiky Ekonomická fakulta Technická univerzita v Liberci 1 Úloha logiky v umělé inteligenci převést fakta na formalizované výroky, se kterými se dá automatizovaně operovat

Více

Rezoluční kalkulus pro výrokovou logiku

Rezoluční kalkulus pro výrokovou logiku AD4M33AU Automatické uvažování Rezoluční kalkulus pro výrokovou logiku Petr Pudlák Výroková logika Výhody Jednoduchý jazyk. Rozhodnutelnost dokazatelnosti i nedokazatelnosti. Rychlejší algoritmy. Nevýhody

Více

10. Techniky formální verifikace a validace

10. Techniky formální verifikace a validace Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není

Více

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz

Více

u odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming

u odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming Průběžná písemná práce Průběžná písemná práce Obsah: Průběžná písemná práce Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ délka pro vypracování: 25 minut nejsou povoleny žádné materiály

Více

Výroková a predikátová logika - XII

Výroková a predikátová logika - XII Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2015/2016 1 / 15 Algebraické teorie Základní algebraické teorie

Více

Výroková a predikátová logika - XIII

Výroková a predikátová logika - XIII Výroková a predikátová logika - XIII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XIII ZS 2013/2014 1 / 13 Úvod Algoritmická (ne)rozhodnutelnost Které

Více

Predikátová logika [Predicate logic]

Predikátová logika [Predicate logic] Predikátová logika [Predicate logic] Přesněji predikátová logika prvého řádu. Formalizuje výroky o vlastnostech předmětů (entit) a vztazích mezi předměty, které patří do dané předmětné oblasti univerza.

Více

Booleovy algebry. Irina Perfilieva. logo

Booleovy algebry. Irina Perfilieva. logo Booleovy algebry Irina Perfilieva Irina.Perfilieva@osu.cz 25. března 2010 Outline 1 Komplementární svazy 2 Booleovy algebry 3 Věty o Booleových algebrách Outline 1 Komplementární svazy 2 Booleovy algebry

Více

Výroková logika syntaxe a sémantika

Výroková logika syntaxe a sémantika syntaxe a sémantika Jiří Velebil: AD0B01LGR 2015 Handout 01: & sémantika VL 1/16 1 Proč formální jazyk? 1 Přirozené jazyky jsou složité a často nejednoznačné. 2 Komunikace s formálními nástroji musí být

Více

Matematika pro informatiky KMA/MATA

Matematika pro informatiky KMA/MATA Matematika pro informatiky KMA/MATA Informace k předmětu Mgr. Přemysl Rosa rosapr00@pf.jcu.cz, J349 Konzultační hodiny v ZS: úterý 10-11, čtvrtek 15-16 nebo individuálně po předchozí domluvě aktivní účast

Více

Výroková a predikátová logika - VII

Výroková a predikátová logika - VII Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře

Více

Rezoluce ve výrokové logice

Rezoluce ve výrokové logice Rezoluce ve výrokové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce ve VL 1/13 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. 2 X nesplnitelná iff X = ff. 3 Hledání kritických důsledků X syntakticky.

Více

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16 Predikátová logika - přednáška 3 6. 1. 2015 () Predikátová logika - přednáška 3 6. 1. 2015 1 / 16 Věta (o dedukci) Bud L jazyk, T teorie pro L, ϕ L-sentence a ψ L-formule. Pak Věta (o kompaktnosti) T ϕ

Více

Výroková a predikátová logika - VII

Výroková a predikátová logika - VII Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2013/2014 1 / 21 Sémantika PL Teorie Vlastnosti teorií Teorie

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

7 Jemný úvod do Logiky

7 Jemný úvod do Logiky 7 Jemný úvod do Logiky Základem přesného matematického vyjadřování je správné používání (matematické) logiky a logických úsudků. Logika jako filozofická discipĺına se intenzivně vyvíjí už od dob antiky,

Více

λογος - LOGOS slovo, smysluplná řeč )

λογος - LOGOS slovo, smysluplná řeč ) MATA P1: Výroky, množiny a operace s nimi Matematická logika (z řeckého slova λογος - LOGOS slovo, smysluplná řeč ) Výrok primitivní pojem matematické logiky. Tvrzení, pro které má smysl otázka o jeho

Více

09. seminář logika (úvod, výroková).notebook. November 30, 2011. Logika

09. seminář logika (úvod, výroková).notebook. November 30, 2011. Logika Logika 1 Logika Slovo logika se v češtině běžně používá ve smyslu myšlenková cesta, která vedla k daným závěrům. Logika je formální věda, zkoumající právě onen způsob vyvozování závěrů. Za zakladatele

Více

Normální formy. (provizorní text)

Normální formy. (provizorní text) Normální formy (provizorní text) Výrokový počet Definice. Jazyk výrokového počtu obsahuje výrokové proměnné p, q, r, s,..., spojky,,,.. a závorky (,). Výrokové proměnné jsou formule. Jestliže a jsou formule,

Více

Matematická indukce, sumy a produkty, matematická logika

Matematická indukce, sumy a produkty, matematická logika Matematická indukce, sumy a produkty, matematická logika 8.9. -.0.009 Matematická indukce Jde o následující vlastnost přirozených čísel: Předpokládejme:. Nějaké tvrzení platí pro.. Platí-li tvrzení pro

Více

Vysoké učení technické v Brně Fakulta elektrotechniky a informatiky Ústav biomedicínského inženýrství EXPERTNÍ SYSTÉMY.

Vysoké učení technické v Brně Fakulta elektrotechniky a informatiky Ústav biomedicínského inženýrství EXPERTNÍ SYSTÉMY. Vysoké učení technické v Brně Fakulta elektrotechniky a informatiky Ústav biomedicínského inženýrství EXPERTNÍ SYSTÉMY praktická cvičení Ing. Ivo Provazník, Ph.D., Ing. Jana Bardoňová 2000 Obsah 1 Úvod

Více

Výroková a predikátová logika - XII

Výroková a predikátová logika - XII Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2018/2019 1 / 15 Rezoluční metoda v PL Rezoluční důkaz Obecné

Více

Architektura počítačů Logické obvody

Architektura počítačů Logické obvody Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Digitální

Více

Inference v deskripčních logikách

Inference v deskripčních logikách Inference v deskripčních logikách Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Inference v deskripčních logikách 53 / 157 Co nás čeká 1 Základy deskripční logiky 2 Jazyk ALC Syntax a sémantika 3 Cyklické

Více

vyvozování znalostí (reasoning) zpracovává znalosti uložené v bázi znalostí (knowledge base, KB) a odpovědi na dotazy

vyvozování znalostí (reasoning) zpracovává znalosti uložené v bázi znalostí (knowledge base, KB) a odpovědi na dotazy Úvod do umělé inteligence Reprezentace a vyvozování znalostí Reprezentace a vyvozování znalostí REPREZENTACE A VYVOZOVÁNÍ ZNALOSTÍ otázka: E-mail: hales@fi.muni.cz Jak zapíšeme znalosti o problému/doméně?

Více

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává. 1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

Více

Nepřijde a nedám 100 Kč měl jsem pravdu, o této

Nepřijde a nedám 100 Kč měl jsem pravdu, o této 1.4.4 Implikace Předpoklady: 010403 Implikace Implikace libovolných výroků a,b je výrok, který vznikne jejich spojením slovním obratem jestliže, pak, píšeme a b a čteme jestliže a, pak b. Výroku a se říká

Více

Plánování: reprezentace problému

Plánování: reprezentace problému Plánování: reprezentace problému 15. března 2018 1 Úvod 2 Konceptuální model 3 Množinová reprezentace 4 Klasická reprezentace Zdroj: Roman Barták, přednáška Plánování a rozvrhování, Matematicko-fyzikální

Více

Výroková a predikátová logika - IX

Výroková a predikátová logika - IX Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2013/2014 1 / 15 Korektnost a úplnost Důsledky Vlastnosti teorií

Více

Výroková a predikátová logika - XI

Výroková a predikátová logika - XI Výroková a predikátová logika - XI Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XI ZS 2014/2015 1 / 21 Další dokazovací systémy PL Hilbertovský kalkul

Více

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1 Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit

Více

Úvod do logiky a logického programování.

Úvod do logiky a logického programování. Úvod do logiky a logického programování Luboš Popelínský popel@fi.muni.cz www.fi.muni.cz/~popel Přehled učiva Opakování základů výrokové a predikátové logiky Normální formy ve výrokové a predikátové logice

Více

Obsah: CLP Constraint Logic Programming. u odpovědí typu A, B, C, D, E: jako 0)

Obsah: CLP Constraint Logic Programming. u odpovědí typu A, B, C, D, E: jako 0) Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Průběžná písemná práce Úvod do umělé inteligence 6/12 1 / 17 Průběžná písemná práce Průběžná písemná práce délka pro vypracování: 25

Více

Reprezentace a vyvozování znalostí

Reprezentace a vyvozování znalostí Reprezentace a vyvozování znalostí Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Reprezentace a vyvozování znalostí Logika rezoluční pravidlo Extralogické informace Pravidlové systémy

Více

Logika Libor Barto. Výroková logika

Logika Libor Barto. Výroková logika Logika Libor Barto Výroková logika Definice.(Jazyk výrokové logiky) Ve výrokové logice používáme tyto symboly: (1) Výrokové proměnné: velká písmena, případně opatřená indexy. (2) Výrokovéspojky:,,&,,,....

Více

Architektura počítačů Logické obvody

Architektura počítačů Logické obvody Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics 2/36 Digitální

Více

- existuje..., negace: pro všechny neplatí,... - pro všechna..., negace: existuje, že neplatí,...

- existuje..., negace: pro všechny neplatí,... - pro všechna..., negace: existuje, že neplatí,... .4.0 Formální logika shrnutí Předpoklady: 00409 Shrnutí logiky Důležité znalosti konjunkce, a b, "a", pravda, jen když jsou oba výroky pravdivé (jako průnik) disjunkce, a b, "nebo", lež, jen když jsou

Více

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod

Více

Systém přirozené dedukce výrokové logiky

Systém přirozené dedukce výrokové logiky Systém přirozené dedukce výrokové logiky Korektnost, úplnost a bezespornost Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 6. října 2008 Věta o korektnosti Věta (O korektnosti Systému

Více

Základní pojmy matematické logiky

Základní pojmy matematické logiky KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je

Více

1.4.3 Složené výroky implikace a ekvivalence

1.4.3 Složené výroky implikace a ekvivalence 1.4.3 Složené výroky implikace a ekvivalence Předpoklady: 1401, 1402 Pedagogická poznámka: Látka zabere spíše jeden a půl vyučovací hodiny. Buď můžete využít písemku nebo se podělit o čas s následující

Více

Reprezentace znalostí. Katedra kybernetiky, ČVUT v Praze.

Reprezentace znalostí. Katedra kybernetiky, ČVUT v Praze. Reprezentace znalostí Vladimír Mařík Katedra kybernetiky, ČVUT v Praze http://cyber.felk.cvut.cz/ preprezentace znalostí V paměti počítače požadavky na modularitu (M) asociativnost (A) Čtyři základní formalizmy:

Více

M - Výroková logika VARIACE

M - Výroková logika VARIACE M - Výroková logika Autor: Mgr. Jaromír Juřek Kopírování a další šíření povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

KMA/MDS Matematické důkazy a jejich struktura

KMA/MDS Matematické důkazy a jejich struktura Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 2 Výroková logika pokračování Logické vyplývání

Více