Logický agent, výroková logika. Návrh logického agenta
|
|
- Libuše Vlčková
- před 6 lety
- Počet zobrazení:
Transkript
1 Obsah: Logika Návrh logického agenta, výroková logika leš Horák Úvod do umělé inteligence 8/ / 3 Návrh logického agenta agent musí umět: reprezentovat stavy, akce, zpracovat nové vstupy z prostředí aktualizovat svůj vnitřní popis světa odvodit skryté informace o stavu světa odvodit vlastní odpovídající akce přístupy k tvorbě agenta deklarativní procedurální (kombinace) návrh agenta víc pohledů: znalostní hledisko tvorba agenta zadání znalostí pozadí, znalostí domény a cílového požadavku např automatické tai znalost mapy, dopravních pravidel, požadavek dopravit zákazníka na FI MU rno implementační hledisko jaké datové struktury K obsahuje + algoritmy, které s nimi manipulují Úvod do umělé inteligence 8/ 3 / 3 logický agent { = agent využívající znalosti (knowledge-based agent) reprezentace znalostí (knowledge representation) koncepty: vyvozování znalostí (knowledge reasoning) inference rozdíly od prohledávání stavového prostoru: znalost při prohledávání stavového prostoru jen zadané funkce (přechodová funkce, cílový test, ) znalosti logického agenta obecná forma umožňující kombinace těchto znalostí obecné znalosti důležité v částečně pozorovatelných prostředích (partially observable environments) fleibilita logického agenta: schopnost řešit i nové úkoly možnost učení nových znalostí úprava stávajících znalostí podle stavu prostředí Úvod do umělé inteligence 8/ / 3 Komponenty agenta, áze znalostí komponenty logického agenta: inferenční stroj (inference engine) báze znalostí (knowledge base) Komponenty agenta, áze znalostí algoritmy nezávislé na doméně znalosti o doméně báze znalostí (K) = množina vět (tvrzení) vyjádřených v jazyce reprezentace znalostí obsah báze znalostí: na začátku tzv znalosti pozadí (background knowledge) průběžně doplňované znalosti úkol tell(+k,+sentence) akce logického agenta: % kb agent action(+k,+time,+percept, ction, NewTime) kb agent action(k,time,percept,ction,newtime):- make percept sentence(percept,time,sentence), tell(k,sentence), % přidáme výsledky pozorování do K make action query(time,query), ask(k,query,ction), % zeptáme se na další postup make action sentence(ction,time,sentence), tell(k,sentence), % přidáme informace o akci do K NewTime is Time + Úvod do umělé inteligence 8/ 4 / 3
2 Popis světa PES zadání světa rozumného agenta: míra výkonnosti (Performance measure) plus body za dosažené (mezi)cíle, pokuty za nežádoucí následky prostředí (Environment) objekty ve světě, se kterými agent musí počítat, a jejich vlastnosti akční prvky (ctuators) možné součásti činnosti agenta, jeho akce se skládají z použití těchto prvků senzory (Sensors) zpětné vazby akcí agenta, podle jejich výstupů se tvoří další akce např zmiňované automatické tai: míra výkonnosti doprava na místo, vzdálenost, bezpečnost, bez přestupků, komfort, prostředí ulice, křižovatky, účastníci provozu, chodci, počasí, akční prvky řízení, plyn, brzda, houkačka, blinkry, komunikátory, senzory kamera, tachometr, počítač kilometrů, senzory motoru, GPS, Úvod do umělé inteligence 8/ 5 / 3 lastnosti problému Wumpusovy jeskyně PES zadání Wumpusovy jeskyně: P míra výkonnosti zlato +, smrt -, - za krok, - za užití šípu E prostředí Místnosti vedle Wumpuse zapáchají místnosti vedle jámy je vánek místnosti je zlato je v ní třpyt ýstřel zabije Wumpuse, pokud jsi obrácený k němu ýstřel vyčerpá jediný šíp, který máš Zvednutím vezmeš zlato ve stejné místnosti Položení odloží zlato v aktuální místnosti akční prvky Otočení vlevo, Otočení vpravo, Krok dopředu, Zvednutí, Položení, ýstřel S senzory, Třpyt, Zápach, Náraz do zdi, Chroptění Wumpuse Úvod do umělé inteligence 8/ 6 / 3 Průzkum Wumpusovy jeskyně 4 3 Zápach Zápach STRT Zápach Trpyt JÁM JÁM JÁM 3 4 pozorovatelné deterministické episodické statické diskrétní více agentů ne, jen lokální vnímání ano, přesně dané výsledky ne, sekvenční na úrovni akcí ano, Wumpus a jámy se nehýbou ano ne, Wumpus je spíše vlastnost prostředí 8 J X X Z X X TZ ZEDNI! W = gent = T = Třpyt = bezpečí J = Jáma Z = Zápach X = navštíveno W = Wumpus Úvod do umělé inteligence 8/ 7 / 3 Úvod do umělé inteligence 8/ 8 / 3
3 Logika Průzkum Wumpusovy jeskyně problémy Základní vlastnost logického vyvozování: Kdykoliv agent dospěje k závěru z daných informací tento závěr je zaručeně správný, pokud jsou správné dodané informace Obtížné situace: Z J J J J v (, ) i v (, ) žádná bezpečná akce Při předpokladu uniformní distribuce děr díra v (, ) má pravděpodobnost 86, na krajích 3 Zápach v (, ) nemůže se pohnout je možné použít donucovací strategii (strategy of coercion): ýstřel jedním ze směrů byl tam Wumpus je mrtvý (poznám podle Chroptění) bezpečné 3 nebyl tam Wumpus (žádné Chroptění) bezpečný směr Úvod do umělé inteligence 8/ 9 / 3 Logika Důsledek Logika Logika = syntae a sémantika formálního jazyka pro reprezentaci znalostí umožňující vyvozování závěrů Syntae definuje všechny dobře utvořené věty jazyka Sémantika definuje význam vět definuje pravdivost vět v jazyce (v závislosti na možném světě) např jazyk aritmetiky: + y je dobře utvořená věta; + y > není věta + y je pravda číslo + není menší než číslo y + y je pravda ve světě, kde = 7, y = + y je nepravda ve světě, kde =, y = 6 zápis na papíře v libovolné syntai v K se jedná o konfiguraci (částí) agenta vlastní vyvozování generování a manipulace s těmito konfiguracemi Úvod do umělé inteligence 8/ / 3 Logika Model Důsledek Model Důsledek (vyplývání, entailment) jedna věc logicky vyplývá z druhé (je jejím důsledkem): K = α Z báze znalostí K vyplývá věta α α je pravdivá ve všech světech, kde je K pravdivá např: K obsahuje věty Češi vyhráli Slováci vyhráli z K pak vyplývá Češi vyhráli nebo Slováci vyhráli z + y = 4 vyplývá 4 = + y Důsledek je vztah mezi větami (syntae), který je založený na sémantice možný svět = model formálně strukturovaný (abstraktní) svět, umožňuje vyhodnocení pravdivosti říkáme: m je model věty α α je pravdivá v m M(α) množina všech modelů věty α např: K = α = K = α M(K) M(α) Češi vyhráli Slováci vyhráli Češi vyhráli M(α) M(K) Úvod do umělé inteligence 8/ / 3 Úvod do umělé inteligence 8/ / 3
4 Logika Inference Inference yvozování požadovaných důsledků inference K i α věta α může být vyvozena z K pomocí (procedury) i (i odvodí α z K) všechny možné důsledky K jsou kupka sena ; α je jehla vyplývání = jehla v kupce sena; inference = její nalezení ezespornost: i je bezesporná K i α K = α Úplnost: i je úplná K = α K i α ztah k reálnému světu: Pokud je K pravdivá v reálném světě věta α vyvozená z K pomocí bezesporné inference je také pravdivá ve skutečném světě nejjednodušší logika, ilustruje základní myšlenky výrokové symboly P, P, jsou věty negace S je věta S je věta konjunkce S a S jsou věty S S je věta disjunkce S a S jsou věty S S je věta implikace S a S jsou věty S S je věta ekvivalence S a S jsou věty S S je věta Jestliže máme sémantiku pravdivou v reálném světě můžeme vyvozovat závěry o skutečném světě pomocí logiky Úvod do umělé inteligence 8/ 3 / 3 Sémantika výrokové logiky Sémantika výrokové logiky každý model musí určit pravdivostní hodnoty výrokových symbolů např: m = {P = false, P = false, P 3 = true} pravidla pro vyhodnocení pravdivosti u složených výroků pro model m: S je true S je false S S je true S je true a S je true S S je true S je true nebo S je true S S je true S je false nebo S je true tj je false S je true a S je false S S je true S S je true a S S je true rekurzivním procesem vyhodnotíme lib větu: P (P P 3 ) = true (false true) = true true = true pravdivostní tabulka: P Q P P Q P Q P Q P Q false false true false false true true false true true false true true false true false false false true false false true true false true true true true Úvod do umělé inteligence 8/ 5 / 3 Logická ekvivalence Úvod do umělé inteligence 8/ 4 / 3 Logická ekvivalence Dva výroky jsou logicky ekvivalentní právě tehdy, když jsou pravdivé ve stejných modelech: α β α = β a β = α (α β) (β α) komutativita (α β) (β α) komutativita ((α β) γ) (α (β γ)) asociativita ((α β) γ) (α (β γ)) asociativita ( α) α eliminace dvojí negace (α β) ( β α) kontrapozice (α β) ( α β) eliminace implikace (α β) ((α β) (β α)) eliminace ekvivalence (α β) ( α β) de Morgan (α β) ( α β) de Morgan (α (β γ)) ((α β) (α γ)) distributivita nad (α (β γ)) ((α β) (α γ)) distributivita nad Úvod do umělé inteligence 8/ 6 / 3
5 Platnost a splnitelnost Tvrzení pro Wumpusově jeskyni Platnost a splnitelnost ýrok je platný je pravdivý ve všech modelech např: true,,, ( ( )) Platnost je spojena s vyplýváním pomocí věty o dedukci: K = α (K α) je platný výrok ýrok je splnitelný je pravdivý v některých modelech např:, C ýrok je nesplnitelný je nepravdivý ve všech modelech např: Splnitelnost je spojena s vyplýváním pomocí důkazu α sporem (reductio ad absurdum): K = α (K α) je nesplnitelný Úvod do umělé inteligence 8/ 7 / 3 Tvrzení pro Wumpusově jeskyni Definujeme výrokové symboly J i,j je pravda Na [i, j] je Jáma a i,j je pravda Na [i, j] je báze znalostí K: pravidlo pro [, ]: R : J, pozorování: R :,, R 3 :, pravidla pro vztah Jámy a ánku: Jámy způsobují ve vedlejších místnostech R 4:, (J, J, ) R 5:, (J, J, J 3, ) poli je právě tehdy, když je ve vedlejším poli Jáma K = R R R 3 R 4 R 5 R 4 :, (J, J, ) R 5 :, (J, J, J 3, ) Úvod do umělé inteligence 8/ 8 / 3 Inference ve Wumpusově jeskyni kontrola modelů (model checking) procházení pravdivostní tabulky (vždycky eponenciální v n) vylepšené prohledávání s navracením (improved backtracking), např Davis Putnam Logemann Loveland heuristické prohledávání prostoru modelů (bezesporné, ale neúplné) aplikace inferenčních pravidel legitimní (bezesporné) generování nových výroků ze starých důkaz = sekvence aplikací inferenčních pravidel je možné použít inferenční pravidla jako operátory ve standardních prohledávacích algoritmech typicky vyžaduje překlad vět do normální formy situace: v [, ] nedetekováno nic krok doprava, v [, ] uvažujeme možné modely pro (budou nás zajímat jen Jámy) 3 pole s ooleovskými možnostmi {T, F } 3 = 8 možných modelů Úvod do umělé inteligence 8/ 9 / 3 Úvod do umělé inteligence 8/ / 3
6 Modely ve Wumpusově jeskyni uvažujeme všech 8 možných modelů: Pravdivostní tabulka pro inferenci K K = pravidla Wumpusovy jeskyně + pozorování α = [, ] je bezpečné pole K = α α = [, ] je bezpečné pole K = α 3 3 kontrola modelů jednoduchý způsob logické inference,, J, J, J, J, J 3, K α false false false false false false false false true false false false false false false true false true false true false false false false false false true false true false false false false true true true false true false false false true false true true false true false false false true true true true false true false false true false false false true true true true true true true true false false K = pravidla Wumpusovy jeskyně + pozorování α = [, ] je bezpečné pole Úvod do umělé inteligence 8/ / 3 Kontrola všech modelů do hloubky je bezesporná a úplná (pro konečný počet výrokových symbolů) % tt entails(+k,+lpha) tt entails(k,lpha):- proposition symbols(symbols,[k,lpha]), tt check all(k,lpha,symbols,[]) vrací true, pokud je lpha pravdivá v Modelu % tt check all(+k,+lpha,+symbols,+model) tt check all(k,lpha,[],model):- pl true(k,model),!,pl true(lpha,model) tt check all(k,lpha,[],model):-! tt check all(k,lpha,[p Symbols],Model):- % vytvoříme modely pro hodnoty symbolů tt check all(k,lpha,symbols,[p true Model]), tt check all(k,lpha,symbols,[p false Model]) O( n ) pro n symbolů, NP-úplný problém Úvod do umělé inteligence 8/ / 3 K = konjunkce Hornových klauzuĺı { výrokový symbol; nebo Hornova klauzule = (konjunkce symbolů) symbol např: K = C ( ) (C D ) pravidlo Modus Ponens pro K z Hornových klauzuĺı je úplné α,, α n, α α n β β pravidla pro logickou ekvivalenci se taky dají použít pro inferenci inference Hornových klauzuĺı algoritmus dopředného nebo zpětného řetězení oba tyto algoritmy jsou přirozené a mají lineární časovou složitost Úvod do umělé inteligence 8/ 3 / 3 Úvod do umělé inteligence 8/ 4 / 3
7 Dopředné řetězení Dopředné řetězení příklad Idea: aplikuj pravidlo, jehož premisy jsou splněné v K přidej jeho důsledek do K pokračuj do doby, než je nalezena odpověd K: P Q L M P L M P L L ND-OR graf K: L Q P M P Q L M P L M P L L Q P L M Úvod do umělé inteligence 8/ 5 / 3 lgoritmus dopředného řetězení Zpětné řetězení Úvod do umělé inteligence 8/ 6 / 3 :- op( 8, f, if), op( 7, f, then), op( 3, fy, or), op(, fy, and) forward :- new derived fact( P),!, % Nový fakt write( Derived: ), write( P), nl, assert( fact( P)), forward % Pokračuje generování faktů ; write( No more facts ), nl % šechny fakty odvozeny new derived fact( Concl) :- if Cond then Concl, % Pravidlo \+ fact( Concl), % Concl ještě není fakt composed fact( Cond) % Cond je true Idea: pracuje zpětně od dotazu q zkontroluj, jestli není q už známo dokaž zpětným řetězením všechny premisy nějakého pravidla, které má q jako důsledek kontrola cyklů pro každý podcíl se nejprve podívej, jestli už nebyl řešen (tj pamatuje si true i false výsledek) composed fact( Cond) :- fact( Cond) % Jednoduchý fakt composed fact( Cond and Cond) :- composed fact( Cond), composed fact( Cond) composed fact( Cond or Cond) :- composed fact( Cond); composed fact( Cond) Úvod do umělé inteligence 8/ 7 / 3 Úvod do umělé inteligence 8/ 8 / 3
8 Zpětné řetězení příklad Porovnání dopředného a zpětného řetězení P Q L M P L M P L L L Q P M dopředné řetězení je řízeno daty automatické, nevědomé zpracování např rozpoznávání objektů, rutinní rozhodování může udělat hodně nadbytečné práce bez vztahu k dotazu/cíli zpětné řetězení je řízeno dotazem vhodné pro hledání odpovědí na konkrétní dotaz např Kde jsou moje kĺıče Jak se mám přihlásit na PGS složitost zpětného řetězení může být mnohem menší než lineární vzhledem k velikosti K obecný inferenční algoritmus rezoluce zpracovává formule v konjunktivní normální formě (konjunkce disjunkcí literálů) rezoluce je bezesporná a úplná pro výrokovou logiku i predikátovou logiku řádu Úvod do umělé inteligence 8/ 9 / 3 Úvod do umělé inteligence 8/ 3 / 3
Logický agent, výroková logika
Logický agent, výroková logika Aleš Horák E-mail: hales@fimunicz http://nlpfimunicz/uui/ Obsah: Logický agent Logika Výroková logika Inference důkazové metody Úvod do umělé inteligence 8/12 1 / 30 Logický
VíceLogický agent, výroková logika
Logický agent, výroková logika Aleš Horák E-mail: hales@fimunicz http://nlpfimunicz/uui/ Obsah: Statistické výsledky průběžné písemky Logický agent Logika Výroková logika Důkazové metody Úvod do umělé
VíceLogický agent, výroková logika
Logický agent, výroková logika leš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Statistické výsledky průběžné písemky Logický agent Logika Výroková logika Důkazové metody Úvod do umělé
VíceLogický agent, výroková logika.
Úvod do umělé inteligence Logický agent, výroková logika E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Statistické výsledky průběžné písemky Logický agent Wumpusova jeskyně Logika Výroková
VíceVýroková logika - opakování
- opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α
VíceZáklady logiky a teorie množin
Pracovní text k přednášce Logika a teorie množin (I/2007) 1 1 Struktura přednášky Matematická logika 2 Výroková logika Základy logiky a teorie množin Petr Pajas pajas@matfyz.cz Predikátová logika 1. řádu
VíceFormální systém výrokové logiky
Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)
VíceLogika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.
Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:
Víceteorie logických spojek chápaných jako pravdivostní funkce
Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových
VíceMatematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro
VíceJak jsem potkal logiku. Převod formule do (úplného) disjunktivního tvaru. Jan Hora
Česká zemědělská univerzita 17. října 2011 U makléře Já: Dobrý den, rád bych koupil nějaký světlý byt. Chtěl bych, aby měl dvě koupelny a aby byl v domě výtah. A neměl by být nijak extrémně drahý. Makléř:
VíceVýroková a predikátová logika - V
Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský
VíceLogika a logické programování
Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho
VíceMATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ TEORIE ROZHODOVÁNÍ Metodický list č. 1 Název tématického celku: Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do
VíceLogika. 5. Rezoluční princip. RNDr. Luděk Cienciala, Ph. D.
Logika 5. Rezoluční princip RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,
VíceVýroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
Vícepopel, glum & nepil 16/28
Lineární rezoluce další způsob zjemnění rezoluce; místo stromu směřujeme k lineární struktuře důkazu Lineární rezoluční odvození (důkaz) z Ë je posloupnost dvojic ¼ ¼ Ò Ò taková, že Ò ½ a 1. ¼ a všechna
VíceSémantika výrokové logiky. Alena Gollová Výroková logika 1/23
Výroková logika Alena Gollová Výroková logika 1/23 Obsah 1 Formule výrokové logiky 2 Alena Gollová Výroková logika 2/23 Formule výrokové logiky Výrok je oznamovací věta, o jejíž pravdivosti lze rozhodnout.
VíceMATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém
VíceSpojování výroků (podmínek) logickými spojkami
Spojování výroků (podmínek) logickými spojkami Spojování výroků logickými spojkami a) Konjunkce - spojení A B; Pravdivostní tabulka konjunkce A B A B 0 0 0 0 1 0 1 0 0 1 1 1 AND; A a současně B Konjunkce
VíceKaždé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
VíceVýroková logika. Teoretická informatika Tomáš Foltýnek
Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox
Více7. Inferenční metody. Inferenční metody Václav Matoušek, Josef Strolený Úvod do znalostního inženýrství, ZS 2014/
Inferenční metody 18.11.2014 7-1 Inferenční metody Rezoluční systémy Dopředné a zpětné řetězení Výběr dotazu Nemonotónní usuzování 7-2 a) Česká Literatura Dvořák J.: Expertní systémy. Skriptum VUT Brno,
VíceLOGIKA VÝROKOVÁ LOGIKA
LOGIKA Popisuje pravidla odvozování jedněch tvrzení z druhých. Je to myšlenková cesta ke správným závěrům. Vznikla jako součást filosofie. Zakladatelem byl Aristoteles. VÝROKOVÁ LOGIKA Obsahuje syntaktická,
VíceKterá tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana.
Trosečníci Adam, Barry, Code a Dan zapoměli po čase kalendář. Začali se dohadovat, který den v týdnu vlastně je. Každý z nich řekl svůj názor: A: Dnes je úterý nebo zítra je neděle B: Dnes není úterý nebo
VíceÚvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží
Úvod do TI - logika Výroková logika - pokračování (3.přednáška) Marie Duží marie.duzi@vsb.cz Normální formy formulí výrokové logiky Každé formuli výrokové logiky přísluší právě jedna pravdivostní funkce,
VíceVýroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a
VíceKapitola Výroky
1 Kapitola 1 Výroková logika 1.1 Výroky 1.1.1 Příklad Rozhodněte, zda následující posloupnosti symbolú jsou výrokové formule. Jde-li o formuli, pak sestrojte její strom, určete její hloubku a uved te všechny
VíceVýroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou
VíceSémantika predikátové logiky
Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem
VíceLogika. 6. Axiomatický systém výrokové logiky
Logika 6. Axiomatický systém výrokové logiky RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,
VíceMatematická logika. Miroslav Kolařík
Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Více6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS
Základy logiky Umělá inteligence a rozpoznávání, LS 2012 6-1 Logika je naukou, která se zabývá studiem lidského uvažování. Mezi základní úlohy logiky patří nalézání metod správného usuzování, tedy postupů,
VíceKlasická výroková logika - tabulková metoda
1 Klasická výroková logika - tabulková metoda Na úrovni výrokové logiky budeme interpretací rozumět každé přiřazení pravdivostních hodnot výrokovým parametrům. (V případě přiřazení pravdivostních hodnot
Více1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7
1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není
VíceZnalosti a jejich reprezentace, základní postupy, výroková logika. Katedra kybernetiky, FEL, ČVUT v Praze
Znalosti a jejich reprezentace, základní postupy, výroková logika Jiří Kléma Katedra kybernetiky, FEL, ČVUT v Praze /doku.php/courses/a7b33sui/start pcelá čísla motivační příklad 1 :: Srovnejme dvě odlišné
VíceObsah Předmluva Rekapitulace základních pojmů logiky a výrokové logiky Uvedení do predikátové logiky...17
Obsah Předmluva...3 0. Rekapitulace základních pojmů logiky a výrokové logiky...11 0.1 Logika jako věda o vyplývání... 11 1. Uvedení do predikátové logiky...17 1.1 Základní terminologie... 17 1.2 Základní
Vícevhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí
Rezoluce: další formální systém vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí pracujeme s formulemi v nkf (též klauzulárním tvaru), ale používáme
Vícepřednáška 2 Marie Duží
Logika v praxi přednáška 2 Marie Duží marie.duzi@vsb.cz 1 1 Výroková logika Analyzuje způsoby skládání jednoduchých výroků do výroků složených pomocí logických spojek. Co je to výrok? Výrok je tvrzení,
VíceProlog PROgramming in LOGic část predikátové logiky prvního řádu rozvoj začíná po roce 1970 Robert Kowalski teoretické základy Alain Colmerauer, David
Úvod do Prologu Prolog PROgramming in LOGic část predikátové logiky prvního řádu rozvoj začíná po roce 1970 Robert Kowalski teoretické základy Alain Colmerauer, David Warren (Warren Abstract Machine) implementace
VíceAplikace: Znalostní báze
Aplikace: Znalostní báze 1 Znalostní báze je systém, který dostává fakta o prostředí a dotazy o něm. Znalostní báze je agentem ve větším systému, který obsahuje prostředí (také agent), správce (agent),
VíceUmělá inteligence I. Roman Barták, KTIML.
Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Už umíme používat výrokovou logiku pro reprezentaci znalostí a odvozování důsledků. Dnes Dnes zopakujeme
VíceMarie Duží
Marie Duží marie.duzi@vsb.cz Normální formy formulí výrokové logiky Každé formuli výrokové logiky přísluší právě jedna pravdivostní funkce, zobrazení {p, q, r } {0, 1} (pravdivostní tabulka). Naopak však
VíceLogika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
VíceMetody odvozování. matematická východiska: logika, Prolog
Metody odvozování matematická východiska: logika, Prolog psychologická východiska: rámce biologická východiska: konekcionismus, neuronové sítě statistická východiska: kauzální (bayesovské) sítě ekonomická
VíceUsuzování za neurčitosti
Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích
VíceVýroková logika. p, q, r...
Výroková logika Výroková logika je logika, která zkoumá pravdivostní podmínky tvrzení a vztah vyplývání v úsudcích na základě vztahů mezi celými větami. Můžeme též říci, že se jedná o logiku spojek, protože
VíceVýroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
VíceMatematická logika. Lekce 1: Motivace a seznámení s klasickou výrokovou logikou. Petr Cintula. Ústav informatiky Akademie věd České republiky
Matematická logika Lekce 1: Motivace a seznámení s klasickou výrokovou logikou Petr Cintula Ústav informatiky Akademie věd České republiky www.cs.cas.cz/cintula/mal Petr Cintula (ÚI AV ČR) Matematická
Vícepostaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy
Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných
VíceEvropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 11 METODY VERIFIKACE SYSTÉMŮ NA ČIPU Hana Kubátov vá doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta 1 informačních
VícePravidlové znalostní systémy
Pravidlové znalostní systémy 31. října 2017 2-1 Tvary pravidel Pravidla (rules) mohou mít například takovéto tvary: IF předpoklad THEN závěr IF situace THEN akce IF podmínka THEN závěr AND akce IF podmínka
VíceÚvod do TI - logika Výroková logika (2.přednáška) Marie Duží
Úvod do TI - logika Výroková logika (2.přednáška) Marie Duží marie.duzi@vsb.cz Výroková logika Analyzuje způsoby skládání jednoduchých výroků do výroků složených pomocí logických spojek. Co je to výrok?
VíceLogika. Dana Nejedlová Katedra informatiky Ekonomická fakulta Technická univerzita v Liberci
Logika Dana Nejedlová Katedra informatiky Ekonomická fakulta Technická univerzita v Liberci 1 Úloha logiky v umělé inteligenci převést fakta na formalizované výroky, se kterými se dá automatizovaně operovat
VíceRezoluční kalkulus pro výrokovou logiku
AD4M33AU Automatické uvažování Rezoluční kalkulus pro výrokovou logiku Petr Pudlák Výroková logika Výhody Jednoduchý jazyk. Rozhodnutelnost dokazatelnosti i nedokazatelnosti. Rychlejší algoritmy. Nevýhody
Více10. Techniky formální verifikace a validace
Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není
VíceBooleovská algebra. Booleovské binární a unární funkce. Základní zákony.
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
Víceu odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming
Průběžná písemná práce Průběžná písemná práce Obsah: Průběžná písemná práce Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ délka pro vypracování: 25 minut nejsou povoleny žádné materiály
VíceVýroková a predikátová logika - XII
Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2015/2016 1 / 15 Algebraické teorie Základní algebraické teorie
VíceVýroková a predikátová logika - XIII
Výroková a predikátová logika - XIII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XIII ZS 2013/2014 1 / 13 Úvod Algoritmická (ne)rozhodnutelnost Které
VícePredikátová logika [Predicate logic]
Predikátová logika [Predicate logic] Přesněji predikátová logika prvého řádu. Formalizuje výroky o vlastnostech předmětů (entit) a vztazích mezi předměty, které patří do dané předmětné oblasti univerza.
VíceBooleovy algebry. Irina Perfilieva. logo
Booleovy algebry Irina Perfilieva Irina.Perfilieva@osu.cz 25. března 2010 Outline 1 Komplementární svazy 2 Booleovy algebry 3 Věty o Booleových algebrách Outline 1 Komplementární svazy 2 Booleovy algebry
VíceVýroková logika syntaxe a sémantika
syntaxe a sémantika Jiří Velebil: AD0B01LGR 2015 Handout 01: & sémantika VL 1/16 1 Proč formální jazyk? 1 Přirozené jazyky jsou složité a často nejednoznačné. 2 Komunikace s formálními nástroji musí být
VíceMatematika pro informatiky KMA/MATA
Matematika pro informatiky KMA/MATA Informace k předmětu Mgr. Přemysl Rosa rosapr00@pf.jcu.cz, J349 Konzultační hodiny v ZS: úterý 10-11, čtvrtek 15-16 nebo individuálně po předchozí domluvě aktivní účast
VíceVýroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře
VíceRezoluce ve výrokové logice
Rezoluce ve výrokové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce ve VL 1/13 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. 2 X nesplnitelná iff X = ff. 3 Hledání kritických důsledků X syntakticky.
VícePredik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16
Predikátová logika - přednáška 3 6. 1. 2015 () Predikátová logika - přednáška 3 6. 1. 2015 1 / 16 Věta (o dedukci) Bud L jazyk, T teorie pro L, ϕ L-sentence a ψ L-formule. Pak Věta (o kompaktnosti) T ϕ
VíceVýroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2013/2014 1 / 21 Sémantika PL Teorie Vlastnosti teorií Teorie
VíceVýroková a predikátová logika - III
Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2014/2015 1 / 21 Výroková logika Horn-SAT Horn-SAT Jednotková
VíceMatematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
Více7 Jemný úvod do Logiky
7 Jemný úvod do Logiky Základem přesného matematického vyjadřování je správné používání (matematické) logiky a logických úsudků. Logika jako filozofická discipĺına se intenzivně vyvíjí už od dob antiky,
Víceλογος - LOGOS slovo, smysluplná řeč )
MATA P1: Výroky, množiny a operace s nimi Matematická logika (z řeckého slova λογος - LOGOS slovo, smysluplná řeč ) Výrok primitivní pojem matematické logiky. Tvrzení, pro které má smysl otázka o jeho
Více09. seminář logika (úvod, výroková).notebook. November 30, 2011. Logika
Logika 1 Logika Slovo logika se v češtině běžně používá ve smyslu myšlenková cesta, která vedla k daným závěrům. Logika je formální věda, zkoumající právě onen způsob vyvozování závěrů. Za zakladatele
VíceNormální formy. (provizorní text)
Normální formy (provizorní text) Výrokový počet Definice. Jazyk výrokového počtu obsahuje výrokové proměnné p, q, r, s,..., spojky,,,.. a závorky (,). Výrokové proměnné jsou formule. Jestliže a jsou formule,
VíceMatematická indukce, sumy a produkty, matematická logika
Matematická indukce, sumy a produkty, matematická logika 8.9. -.0.009 Matematická indukce Jde o následující vlastnost přirozených čísel: Předpokládejme:. Nějaké tvrzení platí pro.. Platí-li tvrzení pro
VíceVysoké učení technické v Brně Fakulta elektrotechniky a informatiky Ústav biomedicínského inženýrství EXPERTNÍ SYSTÉMY.
Vysoké učení technické v Brně Fakulta elektrotechniky a informatiky Ústav biomedicínského inženýrství EXPERTNÍ SYSTÉMY praktická cvičení Ing. Ivo Provazník, Ph.D., Ing. Jana Bardoňová 2000 Obsah 1 Úvod
VíceVýroková a predikátová logika - XII
Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2018/2019 1 / 15 Rezoluční metoda v PL Rezoluční důkaz Obecné
VíceArchitektura počítačů Logické obvody
Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Digitální
VíceInference v deskripčních logikách
Inference v deskripčních logikách Petr Křemen FEL ČVUT Petr Křemen (FEL ČVUT) Inference v deskripčních logikách 53 / 157 Co nás čeká 1 Základy deskripční logiky 2 Jazyk ALC Syntax a sémantika 3 Cyklické
Vícevyvozování znalostí (reasoning) zpracovává znalosti uložené v bázi znalostí (knowledge base, KB) a odpovědi na dotazy
Úvod do umělé inteligence Reprezentace a vyvozování znalostí Reprezentace a vyvozování znalostí REPREZENTACE A VYVOZOVÁNÍ ZNALOSTÍ otázka: E-mail: hales@fi.muni.cz Jak zapíšeme znalosti o problému/doméně?
Vícevýrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.
1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.
VíceNepřijde a nedám 100 Kč měl jsem pravdu, o této
1.4.4 Implikace Předpoklady: 010403 Implikace Implikace libovolných výroků a,b je výrok, který vznikne jejich spojením slovním obratem jestliže, pak, píšeme a b a čteme jestliže a, pak b. Výroku a se říká
VícePlánování: reprezentace problému
Plánování: reprezentace problému 15. března 2018 1 Úvod 2 Konceptuální model 3 Množinová reprezentace 4 Klasická reprezentace Zdroj: Roman Barták, přednáška Plánování a rozvrhování, Matematicko-fyzikální
VíceVýroková a predikátová logika - IX
Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2013/2014 1 / 15 Korektnost a úplnost Důsledky Vlastnosti teorií
VíceVýroková a predikátová logika - XI
Výroková a predikátová logika - XI Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XI ZS 2014/2015 1 / 21 Další dokazovací systémy PL Hilbertovský kalkul
VíceNegativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1
Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit
VíceÚvod do logiky a logického programování.
Úvod do logiky a logického programování Luboš Popelínský popel@fi.muni.cz www.fi.muni.cz/~popel Přehled učiva Opakování základů výrokové a predikátové logiky Normální formy ve výrokové a predikátové logice
VíceObsah: CLP Constraint Logic Programming. u odpovědí typu A, B, C, D, E: jako 0)
Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Průběžná písemná práce Úvod do umělé inteligence 6/12 1 / 17 Průběžná písemná práce Průběžná písemná práce délka pro vypracování: 25
VíceReprezentace a vyvozování znalostí
Reprezentace a vyvozování znalostí Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Reprezentace a vyvozování znalostí Logika rezoluční pravidlo Extralogické informace Pravidlové systémy
VíceLogika Libor Barto. Výroková logika
Logika Libor Barto Výroková logika Definice.(Jazyk výrokové logiky) Ve výrokové logice používáme tyto symboly: (1) Výrokové proměnné: velká písmena, případně opatřená indexy. (2) Výrokovéspojky:,,&,,,....
VíceArchitektura počítačů Logické obvody
Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics 2/36 Digitální
Více- existuje..., negace: pro všechny neplatí,... - pro všechna..., negace: existuje, že neplatí,...
.4.0 Formální logika shrnutí Předpoklady: 00409 Shrnutí logiky Důležité znalosti konjunkce, a b, "a", pravda, jen když jsou oba výroky pravdivé (jako průnik) disjunkce, a b, "nebo", lež, jen když jsou
VíceMísto pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu
VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod
VíceSystém přirozené dedukce výrokové logiky
Systém přirozené dedukce výrokové logiky Korektnost, úplnost a bezespornost Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 6. října 2008 Věta o korektnosti Věta (O korektnosti Systému
VíceZákladní pojmy matematické logiky
KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je
Více1.4.3 Složené výroky implikace a ekvivalence
1.4.3 Složené výroky implikace a ekvivalence Předpoklady: 1401, 1402 Pedagogická poznámka: Látka zabere spíše jeden a půl vyučovací hodiny. Buď můžete využít písemku nebo se podělit o čas s následující
VíceReprezentace znalostí. Katedra kybernetiky, ČVUT v Praze.
Reprezentace znalostí Vladimír Mařík Katedra kybernetiky, ČVUT v Praze http://cyber.felk.cvut.cz/ preprezentace znalostí V paměti počítače požadavky na modularitu (M) asociativnost (A) Čtyři základní formalizmy:
VíceM - Výroková logika VARIACE
M - Výroková logika Autor: Mgr. Jaromír Juřek Kopírování a další šíření povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu
VíceVýroková logika dokazatelnost
Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových
VíceKMA/MDS Matematické důkazy a jejich struktura
Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 2 Výroková logika pokračování Logické vyplývání
Více