Metabolismus sacharidů SOUHRN



Podobné dokumenty
Odbourávání a syntéza glukózy

Intermediární metabolismus. Vladimíra Kvasnicová

Metabolismus pentóz, glykogenu, fruktózy a galaktózy. Alice Skoumalová

Přehled energetického metabolismu

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová

METABOLISMUS SACHARIDŮ

Klinický detektivní příběh Glykémie

Regulace metabolických drah na úrovni buňky

Propojení metabolických drah. Alice Skoumalová

Struktura sacharidů. - testík na procvičení. Vladimíra Kvasnicová

Metabolismus aminokyselin 2. Vladimíra Kvasnicová

sloučeniny C, H, O Cukry = glycidy = sacharidy staré názvy: uhlohydráty, uhlovodany, karbohydráty

Struktura, vlastnosti a funkce sacharidů Vladimíra Kvasnicová

Metabolismus krok za krokem - volitelný předmět -

Chemie živin. Vladimíra Kvasnicová

Intermediární metabolismus - SOUHRN - Vladimíra Kvasnicová

Intermediární metabolismus CYKLUS SYTOST-HLAD. Vladimíra Kvasnicová

Dýchací řetězec (DŘ)

Biochemie jater. Vladimíra Kvasnicová

Energetický metabolizmus buňky

Základní stavební kameny buňky Kurz 1 Struktura -7

Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová

Diabetes mellitus. úplavice cukrová - heterogenní onemocnění působení inzulínu. Metabolismus glukosy. Insulin (5733 kda)

glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc*

Ivana FELLNEROVÁ 2008/11. *Ivana FELLNEROVÁ, PřF UP Olomouc*

Metabolismus aminokyselin. Vladimíra Kvasnicová

METABOLISMUS SACHARIDŮ

Inovace profesní přípravy budoucích učitelů chemie

Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová

Složky výživy - sacharidy. Mgr.Markéta Vojtová VOŠZ a SZŠ Hradec králové

Metabolismus sacharidů

Regulace metabolizmu lipidů

Metabolismus lipoproteinů. Vladimíra Kvasnicová

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

Pentosový cyklus. osudy glykogenu. Eva Benešová

Enzymy. Vladimíra Kvasnicová

METABOLISMUS SACHARIDŮ

ANABOLISMUS SACHARIDŮ

RNDr.Bohuslava Trnková ÚKBLD 1.LF UK. ls 1

METABOLISMUS SACHARIDŮ

Metabolismus lipidů. Vladimíra Kvasnicová. doporučené animace:

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie

fce jater: (chem. továrna, jako 1. dostává všechny látky vstřebané GIT) METABOLICKÁ (jsou metabolicky nejaktivnější tkání v těle)

Ukázky z pracovních listů z biochemie pro SŠ A ÚVOD

Regulace glykémie. Jana Mačáková

Regulace metabolických drah na úrovni buňky. SBT 116 Josef Fontana

*Ivana FELLNEROVÁ, PřF UP Olomouc*

Integrace metabolických drah v organismu. Zdeňka Klusáčková

Metabolismus sacharidů 2. Vladimíra Kvasnicová

Obecný metabolismus.

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Glykolýza a neoglukogenese

Metabolismus mikroorganismů

Štěpení lipidů. - potravou přijaté lipidy štěpí lipázy gastrointestinálního traktu

Biochemie jater. Eva Samcová

Pokuste se vlastními slovy o definici pojmu Sacharidy: ? Které sacharidy označujeme jako cukry?

Metabolismus pentos, glykogenu, fruktosy a galaktosy. Doc.Jana Novotná 2.LF UK Ústav lékařské chemie a klinické biochemie

CHECK GLUKOMETR: ACCU-CHECK. Autolanceta (odběrové pero) Z kapilární krve. Digitální glukometry. Rychlé, snadné, bezbolestné.

Didaktické testy z biochemie 2

Struktura lipidů. - testík na procvičení. Vladimíra Kvasnicová

1. anabolismus (syntéza, asimilace) přeměna látek jednodušších na látky složitější

METABOLISMUS MONOSACHARIDŮ

Test pro přijímací řízení magisterské studium Biochemie Napište vzorce aminokyselin Q a K

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech

Energetika a metabolismus buňky

Řízení metabolismu. Bazální metabolismus minimální látková přeměna potřebná pro udržení života při tělesném i duševním klidu

Glykemický index a jeho využití ve výživě sportovce. Bc. Blanka Sekerová Institut sportovního lekařství

1. Napište strukturní vzorce aminokyselin E a W a vzorce guanosinu a uracilu

Ukládání energie v buňkách

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Metabolismus lipidů - odbourávání. VY_32_INOVACE_Ch0212

GLUKÓZA a DIABETES MELLITUS

Bioenergetika: úloha ATP. Bioenergetika: úloha ATP. Bioenergetika: úloha ATP. Intermediární metabolizmus a energetická homeostáza

METABOLISMUS SACHARIDŮ. Biochemický ústav LF MU (H.P., ET)

- nejdůležitější zdroj E biologická oxidace (= štěpení cukrů, mastných kyselin a aminokyselin za spotřebování kyslíku)

Biochemicky významné sloučeniny a reakce - testík na procvičení

METABOLISMUS SACHARIDŮ

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Metabolismus sacharidů. VY_32_INOVACE_Ch0216.

Vymezení biochemie moderní vědní obor, který chemickými metodami zkoumá biologické děje (bios = řecky život) spojuje chemii s biologií poznatky velmi

Metabolismus xenobiotik. Vladimíra Kvasnicová

9. Citrátový cyklus, oxidační dekarboxylace pyruvátu a anaplerotické dráhy

Metabolismus (přeměna látková) je základním znakem každé živé hmoty. Dělení metabolických pochodů: endergon ické reakce.

Biochemie, Makroživiny. Chemie, 1.KŠPA

vysoká schopnost regenerace (ze zachovalých buněk)

RNDr. Ivana Fellnerová, Ph.D. Katedra zoologie, PřF UP Olomouc

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/

Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (

Složky potravy a vitamíny

Metabolismus bílkovin. Václav Pelouch

Já trá, slinivká br is ní, slož ení potrávy - r es ení

Sacharidy a polysacharidy (struktura a metabolismus)

Respirace. (buněčné dýchání) O 2. Fotosyntéza Dýchání. Energie záření teplo BIOMASA CO 2 (-COO - ) = -COOH -CHO -CH 2 OH -CH 3

Vliv zdravé stravy na sportovní výkon

Osnova. Úvod Význam Dělení a klasifikace Vláknina vení. Metabolismus sacharidů

Buněčný metabolismus. J. Vondráček

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Metabolusmus lipidů - katabolismus

Konsultační hodina. základy biochemie pro 1. ročník. Přírodní látky Úvod do metabolismu Glykolysa Krebsův cyklus Dýchací řetězec Fotosynthesa

Energetické systémy lidského těla

Vztahy v intermediárním

Citrátový cyklus. Tomáš Kučera.

Bp1252 Biochemie. #8 Metabolismus živin

Transkript:

Metabolismus sacharidů SOUHRN Vladimíra Kvasnicová doporučená animace: http://ull.chemistry.uakron.edu/pathways/index.html

17 kj/g

Výskyt a funkce sacharidů v lidském těle v potravě polysacharidy, disacharidy, monosacharidy vstřebávají se jen monosacharidy, hlavní je glukóza zdroj energie pro všechny tkáně uloženy do zásoby ve formě glykogenu přeměna různých monosacharidů mezi sebou přeměna monosacharidů na různé deriváty sacharidů složené molekuly: proteoglykany, glykoproteiny, glykolipidy součást nukleových kyselin (ribóza, 2-deoxyribóza) nadbytek sacharidů se přemění na zásobní tuk

Chemická povaha, vlastnosti a reakce sacharidů polární, rozpustné ve vodě, bohatě hydratované polyhydroxyderiváty aldehydu nebo ketonu (karbonyl. slučeniny) alkoholová i karbonylová skupina: oxidace / redukce (vznik cukerných kyselin nebo alkoholů) aldehydová skupina: vazba na primární aminoskupiny proteinů (neenzymatická glykosylace = glykace proteinů) tvorba glykosidové vazby (enzymatická glykosylace - vazba na proteiny a lipidy přes -OH nebo -CONH 2 skupinu ) tvoří estery s kyselinou fosforečnou H 3 PO 4 (meziprodukty metabolismu)

MONOSACHARIDY glukóza galaktóza fruktóza glucitol (cukerný alkohol) H H H H H kyselina glukuronová (cukerná kyselina) ribóza glyceraldehyd dihydroxyaceton (nejjednodušší sacharidy)

Monosacharidy v buňce tvoří estery kyseliny forforečné ( fosfáty ) jejich uhlíkatá kostra je částečně oxidovaná : -CH(OH)- (při oxidaci poskytnou méně energie než oxidace tuků) zdroj energie: Glc, Fru, Gal / zásoba energie: glykogen přeměna na další sacharidy (složky nukleotidů, glykoproteinů) nebo deriváty sacharidů (aminocukry, uronové kyseliny v proteoglykanech) přeměna na tuk (zásoba energie) významné meziprodukty metabolismu: glyceraldehyd-3-fosfát dihydroxyacetonfosfát (DHAP) 1,3-bisfosfoglycerát anhydridová vazba

Monosacharidy glukóza produkce energie (glykolýza) zásoba energie (glykogen nebo přeměna na tuk) přeměna na další sacharidy, např. ribózu (pentózový cyklus kromě ribózy aj. sacharidů produkuje NADPH+H + ) přeměna na kyselinu glukuronovou (oxidací glukózy) fruktóza přeměna na glukózu produkce energie (glykolýza) zásoba energie (přeměna na tuk) galaktóza přeměna na glukózu nebo laktózu syntéza glykoproteinů a proteoglykanů ribóza syntéza nuklotidů mannóza syntéza glykoproteinů

GLUKÓZA centrální postavení chirální uhlík Obrázky převzaty z knihy Harper s Biochemistry a z http://www.vuw.ac.nz/staff/paul_teesdalespittle/organic/chiral_web/images/fig1_5d.gif (říjen 2007)

Glukóza glykemie: 3,6 5,6 mm (nalačno) / až 10 mm (po jídle) po jídle: glykolýza, syntéza glykogenu, přeměna na tuk během hladovění: glykogenolýza, glukoneogeneze ostatní přeměny glukózy podle potřeby (pentózový cyklus, přeměna na jiné monosacharidy a deriváty) glykogen: syntéza z UDP-glukózy přeměna na galaktózu: z UDP-glukózy přeměna na kys. glukuronovou: z UDP-glukózy všechny přeměny glukózy vycházejí z glukóza-6-fosfátu

Cesta z trávicího traktu do tukové tkáně do buňky vstupují usnadněnou difuzí (protein. přenašeč) v krvi volně rozpuštěné, krevní cukr = glukóza filtruje se v ledvinách, v proximálním tubulu se zpětně vstřebává (ledvinový práh pro Glc = 9-10 mmol/l) rychlost nárůstu glykemie po jídle závisí na glykemickém indexu potravin, schopnosti vstřebání a funkci jater (glukostatická funkce jater), max. za 45-60 min. rychlost poklesu glykemie závisí na inzulinu glukózu využívají všechny buňky jako zdroj energie: oxidace na CO 2 a H 2 0 (anaerobně na laktát), nadbytek se přemění na glykogen nebo zásobní tuk

http://www.dieta.cz/pin/a42d60cf466844ea7ba3da35c38e167f/

Transport glukózy do buněk: usnadněná difuze (proteinový přenašeč GLUT různé typy) ERYTROCYTY NERVOVÁ TKÁŇ - transport nezávislý na inzulínu Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

JÁTRA - transport nezávislý na inzulínu Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

TUKOVÁ TKÁŇ SVALOVÁ TKÁŇ - transport ZÁVISLÝ na inzulínu INZULÍN ZVYŠUJE VSTUP GLC DO TĚCHTO BUNĚK Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

Obrázek převzat z Trends in Biochemical Sciences, reference edition, volume 6, str. 209. Elsevier/North-Holland Biomedical Press, 1981.

Sekundárně aktivní transport GLC: symport s Na + - tenké střevo, ledviny Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley-Liss, Inc., New York, 1997. ISBN 0-471-15451-2

Glc-6-P!!! + NADPH = tuk = hepatocyt Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley-Liss, Inc., New York, 1997. ISBN 0-471-15451-2

TEST: O transportu glukózy platí: a) v krvi je přenášena ve vazbě na transportní protein b) inzulín zvyšuje počet přenašečů GLUT-4 v cytoplazmatické membráně c) sekundárně aktivní transport glc do buňky se nachází ve střevě a v ledvinách d) fosforylovaná glukóza není skrz membránu buňky transportována

O transportu glukózy platí: a) v krvi je přenášena ve vazbě na transportní protein b) inzulín zvyšuje počet přenašečů GLUT-4 v cytoplazmatické membráně c) sekundárně aktivní transport glc do buňky se nachází ve střevě a v ledvinách d) fosforylovaná glukóza není skrz membránu buňky transportována

Přehled metabolismu sacharidů katabolické dráhy glykogenolýza (odbourávání glykogenu) glykolýza: 1x glukóza 2x pyruvát, 2x NADH, 2xATP aerobně: pyruvát acetyl-coa Krebsův cyklus CO 2 anaerobně: pyruvát + NADH laktát pentózový cyklus: glukóza CO 2 + pentóza + 2x NADPH anabolické dráhy glukoneogeneze (syntéza Glc z necukerných látek) syntéza glykogenu syntéza mastných kyselin (z acetyl-coa) a zásob. tuků

Glykolýza - souhrn enzymy glykolýzy se vyskytují v cytoplazmě buněk všech tkání inzulin glykolýzu aktivuje, glukagon inhibuje; k inhibici dochází i při zvýšeném poměru ATP/ADP v buňce (= dostatek energie) a při ph glykolýza může probíhat i za anaerobních podmínek (na rozdíl od β-oxidace mastných kyselin, oxidace ketolátek a Krebsova cyklu) substrát: glukóza / produkty: 2x pyruvát, 2x NADH, 2x ATP za aerobních podmínek je NADH regenerováno v dýchacím řetězci, pyruvát je po přeměně na acetyl-coa (PDH v mitochondrii) oxidován v Krebsově cyklu (acetyl 2 CO 2 ); k přenosu redukčních ekvivalentů (= elektronů z NADH) do mitochondrie slouží tzv. člunky (OA/Mal/Asp, DHAP/GP) za anaerobních podmínek je NADH regenerováno v cytoplazmě laktátdehydrogenázou (LD): redukce pyruvátu na laktát; laktát je následně uvolněn z buňky do krve a metabolizován ve tkáních s aerobním metabolismem (myokard, játra) pro erytrocyty je anaerobní glykolýza jediným zdrojem energie; odbočkou z glykolýzy v nich vzniká 2,3-BPG (bisfosfoglycerát), který po navázání na hemoglobin snižuje afinitu hemoglobinu ke kyslíku kyslík je z hemoglobinu uvolněn do tkání

G L Y K O L Ý Z A spotřeba energie štěpení na 2 triózy produkce energie glykolýza = oxidační štěpení glukózy

glukóza vstupující do glykolýzy Obrázek převzat z: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005

Tyto enzymy nutno znát! Obrázek převzat z http://web.indstate.edu/thcme/mwking/glycolysis.html (leden 2007)

Obrázek převzat z http://web.indstate.edu/thcme/mwking/glycolysis.html (leden 2007)

Glykolýza připravuje glukózu pro aerobní metabolismus, nebo může být hlavním zdrojem energie pro buňku (ery) Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

Produkty aerobní glykolýzy 2 Produkty anaerobní glykolýzy 2 NADH byl spotřebován na přeměnu pyruvátu na laktát Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

2,3-BPG shunt (odbočka) V ERYTROCYTECH: 2,3-BPG afnitu Hb k O 2 Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley-Liss, Inc., New York, 1997. ISBN 0-471-15451-2

regulační enzym hexokináza glukokináza 6-fosfofrukto- 1-kináza (PFK-1) hlavní regulace (klíčový enzym) pyruvátkináza Regulace glykolýzy aktivace inzulin (indukce) fruktóza-1-fosfát (játra) ATP / AMP fruktóza-2,6-bisfosfát (zvýšen při poměru inzulin / glukagon) inzulin (indukce) inzulin (indukce) fruktóza-1,6-bisfosfát (regulace krokem vpřed) inhibice glukóza-6-fosfát fruktóza-6-fosfát ATP / AMP citrát kyselé ph glukagon (represe, inhibice fosforylací) ATP / AMP acetyl-coa

NEVRATNÁ REAKCE Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

K m K m U červené křivky lze z osy x odečíst vyšší hodnotu K m enzym má nižší afinitu k substrátu (potřebuje ho větší množství, aby rychlost reakce dosáhla hodnoty V max /2) Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

NEVRATNÁ REAKCE Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

NEVRATNÁ REAKCE = fosforylace na substrátové úrovni (tvorba ATP, energii poskytuje makroergní sloučenina) Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

P i + = fosforylace na substrátové úrovni Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

Osud NADH+H + Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

Transport redukčních ekvivalentů do mitochondrie Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley-Liss, Inc., New York, 1997. ISBN 0-471-15451-2 MALÁT-ASPARTÁTOVÝ ČLUNEK

Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

GLYCEROLFOSFÁTOVÝ ČLUNEK Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley-Liss, Inc., New York, 1997. ISBN 0-471-15451-2

= transaminace = redukce = karboxylace = oxidační dekarboxylace Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

TEST: Při odbourání glukózy glykolýzou a) vznikají z jedné glukózy dva pyruváty b) se spotřebovávají 2 ATP c) jsou redukční ekvivalenty transportovány do mitochondrie člunkovým mechanismem d) může vznikat jako vedlejší produkt 2,3-bisfosfoglycerát

Při odbourání glukózy glykolýzou a) vznikají z jedné glukózy dva pyruváty b) se spotřebovávají 2 ATP c) jsou redukční ekvivalenty transportovány do mitochondrie člunkovým mechanismem d) může vznikat jako vedlejší produkt 2,3-bisfosfoglycerát

TEST: O regulaci glykolýzy platí a) regulační enzymy katalyzují nevratné reakce glykolýzy b) inzulín glykolýzu inhibuje c) glykolýza je inhibovaná při ATP/ADP d) regulační enzym glukokináza má vyšší afinitu pro glukózu než hexokináza

O regulaci glykolýzy platí a) regulační enzymy katalyzují nevratné reakce glykolýzy b) inzulín glykolýzu inhibuje c) glykolýza je inhibovaná při ATP/ADP d) regulační enzym glukokináza má vyšší afinitu pro glukózu než hexokináza

Glukoneogeneze - souhrn glukoneogeneze = syntéza glukózy z necukerných prekurzorů aktivována stresovými hormony (glukagon, adrenalin, kortizol), tj. ve stresu, včetně hladovění; inhibována je inzulinem, tj. po jídle probíhá hlavně v játrech (90%) a ledvinách (10%); při dlouhodobém hladovění se ledviny na syntéze glukózy podílejí větší měrou (až 40 %) substráty: nejméně 3-uhlíkaté molekuly (laktát,pyruvát,alanin,glycerol) laktát: regenerace glukózy metabolizované za anaerobních podmínek (Coriho cyklus: glc 2 pyr 2 lac 2 pyr glc) glycerol: při hladovění vzniká z odbourávaných TAG tukové tkáně meziprodukty Krebsova cyklu: všechny se mohou přeměnit na oxalacetát, což je meziprodukt glukoneogeneze; mezipruktem NENÍ acetyl-coa ( 2 CO 2 ) α-ketokyseliny: pyruvát, oxalacetát, α-ketoglutarát (vznikají transaminací aminokyselin: alaninu, aspartátu, glutamátu) glukogenní aminokyseliny: odbourávají se na meziprodukty Krebsova cyklu nebo na pyruvát pokud vychází z pyr (tj. i lac) a meziprod. Krebsova cyklu, tak začíná v mitochondrii; většina enzymů je v cytoplazmě společné s glykolýzou reg. enzymy katalyzují reakce, které nejsou obrácenou glykolýzou

glukóza vstupující do glykolýzy pyruvát vstupující do glukoneogeneze Obrázek převzat z: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005

Glukoneogeneze probíhá jako obrácená glykolýza s výjimkou 3 reakcí! (= regulační reakce) Obrázek převzat z http://www.biochem.arizona.edu/classe s/bioc462/462b/graphics/glycolysisgn GLehn4Fig14-16.jpg (prosinec 2007)

Glukoneogeneze = tvorba glukózy z necukerných prekurzorů Obrázek převzat z http://www2.mcdaniel.edu/chemistry/ch3321jpgs/metabolism/gluconeogenesis.jpg (prosinec 2007)

pouze v mitochondrii Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

Cyklus Coriových (Coriho cyklus) játra erytrocyty, sval Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley-Liss, Inc., New York, 1997. ISBN 0-471-15451-2

Glukózo-alaninový cyklus játra svaly Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley-Liss, Inc., New York, 1997. ISBN 0-471-15451-2

= tuk Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley-Liss, Inc., New York, 1997. ISBN 0-471-15451-2

Regulace glukoneogeneze regulační enzym pyruvátkarboxyláza fosfoenolpyruvát karboxykináza fruktóza-1,6- bisfosfatáza glukóza-6-fosfatáza aktivace acetyl-co A kortizol, glukagon (indukce) kortizol, glukagon (indukce) kortizol, glukagon (indukce) kortizol, glukagon (indukce) inhibice inzulin (represe) inzulin (represe) AMP / ATP fruktóza-2,6- bisfosfát (zvýšen při inzulin / glukagon) inzulin (represe) inzulin (represe)

Regulace glukoneogeneze Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

TEST: Glukoneogeneze a) vychází vždy z pyruvátu b) je katalyzována zcela stejnými enzymy jako glykolýza c) se podílí na přeměně uhlíkaté kostry mastných kyselin (např. kyseliny palmitové) na glukózu d) probíhá převážně v játrech a ledvinách

Glukoneogeneze a) vychází vždy z pyruvátu b) je katalyzována zcela stejnými enzymy jako glykolýza c) se podílí na přeměně uhlíkaté kostry mastných kyselin (např. kyseliny palmitové) na glukózu d) probíhá převážně v játrech a ledvinách

TEST: O regulaci glukoneogeneze platí: a) je aktivována glukagonem b) regulační enzymy glukoneogeneze jsou shodné s regulačními enzymy glykolýzy c) glukoneogeneze je aktivována při hladovění d) mezi regulační enzymy glukoneogeneze patří pyruvátkarboxyláza

O regulaci glukoneogeneze platí: a) je aktivována glukagonem b) regulační enzymy glukoneogeneze jsou shodné s regulačními enzymy glykolýzy c) glukoneogeneze je aktivována při hladovění d) mezi regulační enzymy glukoneogeneze patří pyruvátkarboxyláza

Glykogen - struktura větvený polymer glukózy (= glukan), na každé 8. 10. Glc větev α(1 4) vazby v lineárním řetězci, větev připojena α(1 6) jeden redukující konec, ostatní konce neredukující (větve) v buňce bývá na redukujícím konci kovalentně navázán na protein glykogenin (= enzym zahajující syntézu glykogenu) glykogen je uložen v cytoplazmě buněk bohatě hydratované glykogenové inkluze, histochemický průkaz PAS reakcí vyskytuje se v mnoha tkáních, nejvíce v játrech (10 % hmotnosti tkáně, 100 g celkem) a svalech (2 %, 400 g celkem) kromě jater využívají ostatní tkáně glykogenové zásoby glukózy jen pro svou vlastní potřebu jaterní glykogen je hlavním zdrojem krevní Glc na počátku hladovění

GLYKOGEN (Glc) n OH neredukující konec redukující konec Obrázek převzat z http://students.ou.edu/r/ben.a.rodriguez-1/glycogen.gif (říjen 2007)

Glykogen - degradace v potravě obsažen v mase, trávicí enzym: α-amyláza (hydroláza) v buňce je odbouráván glykogen fosforylázou (transferáza) větve odstraňovány odvětvovacím enzymem (transferáza), vazbu α(1 6) štěpí glykosidáza (hydroláza) hlavní degradační produkt: glukóza-1-fosfát (izomerován na Glc-6-P mutázou); fosfát pochází z anorg. fosfátu nikoli z ATP pro uvolnění glukózy do krve je nezbytná Glc-6-fosfatáza (v endoplazmatickém retikulu, chybí ve svalech) část glykogenu se v buňce odbourává v lyzosomech porucha degradace: glykogenózy ( střádavá onemocnění ), různé typy, postihují jednu nebo více tkání, různě těžký průběh (smrt v dětství či jen přechodné problémy během života); játra: hypoglykémie, sval: slabost, křeče; obecně: zvětšení orgánů

Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

P i glykogen glukóza ATP ADP Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

Množství glykogenu v játrech během dne Obrázek převzat z knihy Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley-Liss, Inc., New York, 1997. ISBN 0-471-15451-2

Glykogen - syntéza nutný primer: zbytek glykogenu nebo enzym glykogenin substrát: UDP-glukóza (Glc Glc-6-P Glc-1-P + UTP UDP-glc) enzym glykogen syntáza: α(1 4) a větvící enzym: α(1 6) glykogen při syntéze narůstá na neredukujících koncích: UDP aktivuje glukózu na uhlíku číslo 1 (UDP-1-Glc) vytváří se α(1 4) O-glykosidová vazba mezi glykogenem a glukózou, tj. glukóza se váže na 4. uhlík koncové glukózy glykogenu (= neredukující konec) takto je metabolismus glykogenu rychlý: syntéza i odbourávání může probíhat současně na mnoha koncových větvích glykogenu (neredukující konce) z tohoto důvodu je i produktem štěpení glykogenu glukóza-1-p

Metabolismus glykogenu animace Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

Regulace metabolismu glykogenu regulační enzym glykogenfosforyláza (degradace glykogenu) glykogensyntáza (syntéza glykogenu) aktivace glukagon, adrenalin (fosforylace) ATP / AMP Ca 2+ (ve svalu) inzulin (indukce) glukóza-6-fosfát inhibice ATP / AMP glukóza-6-fosfát glukóza glukagon, adrenalin (fosforylace)

TEST: Glykogen a) je syntetizován glykogenfosforylázou b) slouží jako zdroj krevní glukózy při hladovění c) je odbouráván při poměru inzulin/glukagon d) se syntetizuje z UDP-glukózy

Glykogen a) je syntetizován glykogenfosforylázou b) slouží jako zdroj krevní glukózy při hladovění c) je odbouráván při poměru inzulin/glukagon d) se syntetizuje z UDP-glukózy

Pentózový cyklus - souhrn také hexózomonofosfátový zkrat neboť je zde oxidována a štěpena glukóza ve formě monofosfátu (narozdíl od glykolýzy) jde o alternativní oxidační štěpení glukózy v buňce pomocí NADP +, cyklus může být chápán jako odbočka glykolýzy nevzniká zde žádné ATP ani NADH či FADH 2, tj. neslouží k tvorbě energie pro buňku (není propojen s dých. řetězcem) substrát: Glc-6-P / produkty: CO 2, 2 NADPH, různé monosacharidy (jejich fosfáty), hlavně Rib-5-P regulační enzym: glc-6-p-dehydrogenáza, jeho genetický defekt je příčinou hemolytické anemie; regulován poměrem NADP + /NADPH; inzulin zvyšuje syntézu reg. enzymu 2 části: oxidační (nevratná) a přeměna sacharidů (vratná) pentózový cyklus běží buď jako cyklus (produkce NADPH), nebo funguje jako zdroj Rib-5-P pro syntézu nukleotidů

Pentózový cyklus oxidační fáze (nevratná) vzájemné přeměny sacharid-monop (vratné) Obrázek převzat z http://courses.cm.utexas.edu/archive/spring2002/ch339k/robertus/overheads-3/ch15_pentose-alternatives.jpg (prosinec 2006)

Obrázek převzat z http://web.indstate.edu/thcme/mwking/pentose-phosphate-pathway.html (prosinec 2006)

syntéza nukleotidů meziprodukty glykolýzy Obrázek převzat z http://web.indstate.edu/thcme/mwking/pentose-phosphate-pathway.html (prosinec 2006)

Obrázek převzat z http://www.richmond.edu/~jbell2/14f34.jpg (prosinec 2006)

Obrázek převzat z http://courses.cm.utexas.edu/archive/spring2002/ch339k/robertus/overheads-3/ch15_pentose-alternatives.jpg (prosinec 2006)

Regulace pentózového cyklu probíhá na úrovni dostupnosti substrátů a odčerpávání produktů NADPH / NADP + reakce vyžadující NADP + jsou inhibovány nedostatkem tohoto koenzymu

TEST: Pentózový cyklus a) je zdrojem NADH+H + b) zahrnuje reakce schopné přeměnit glukózu na 6 CO 2 c) je regulován na úrovni glukóza-6-fosfát dehydrogenázy d) je propojen s glykolýzou přes glc-6-p, fruktóza-6-p a glyceraldehyd-3-p

Pentózový cyklus a) je zdrojem NADH+H + b) zahrnuje reakce schopné přeměnit glukózu na 6 CO 2 c) je regulován na úrovni glukóza-6-fosfát dehydrogenázy d) je propojen s glykolýzou přes glc-6-p, fruktóza-6-p a glyceraldehyd-3-p

zdroj: Fruktóza sacharóza (Glc-Fru): štěpena sacharázou ve střevě volná v ovoci ( ovocný cukr = fruktóza) a medu část fruktózy se přeměňuje na glukózu už ve střevě, metabolizována je hlavně v játrech fruktokináza (Fru-1-P), hexokináza (Fru-6-P) aldoláza B (defekt: vrozená intolerance fruktózy) fruktóza nezvyšuje produkci inzulinu, její vstup do buněk i metabolismus je na inzulinu nezávislý fruktóza aktivuje glykolýzu (glukokinázu) a sama je metabolizována rychleji než Glc (nejde přes PFK-1) osud: glykolýza, lipogeneze; syntéza mannózy (pro glykoproteiny)

Metabolismus fruktózy v játrech syntéza TAG = aldoláza B glykolýza nebo glukoneogeneze Obrázek převzat z http://web.indstate.edu/thcme/mwking/glycolysis.html (leden 2007)

Sorbitol cukerný alkohol vznikající redukcí karbonylové skupiny fruktózy nebo glukózy (alternativní název: glucitol) glucitol jako umělé sladidlo (E420) se vstřebává v távicím traktu jen málo (polární látka) enzym aldóza reduktáza (glukóza sorbitol; NADPH): v mnoha tkáních, významný v játrech, sítnici, oční čočce, periferních nervech a ledvinách (problémy u pacientů s hyperglykemií: osmoticky aktivní sorbitol zadržuje v buňkách vodu, změna osmolarity je příčinou šedého zákalu, periferní neuropatie a cévních problémů vedoucích k poškození ledvin a oční sítnice) sorbitol je dále oxidován na fruktózu sorbitol dehydrogenázou (sorbitol fruktóza; NAD + ): významné v játrech a semenných váčcích (spermie získávají energii z Fru)

Obrázek je převzat z učebnice: Devlin, T. M. (editor): Textbook of Biochemistry with Clinical Correlations, 4th ed. Wiley-Liss, Inc., New York, 1997. ISBN 0-471-15451-2

TEST: Fruktóza a) může být fosforylována buď na fru-6-p nebo na fru-1-p b) může být v těle přeměněna na tuk c) po přeměně na fru-1-p inhibuje glukokinázu d) nemůže být v těle přeměněna na glukózu

Fruktóza a) může být fosforylována buď na fru-6-p nebo na fru-1-p b) může být v těle přeměněna na tuk c) po přeměně na fru-1-p inhibuje glukokinázu d) nemůže být v těle přeměněna na glukózu

Galaktóza koncentrace v krvi: 0 0,3 mm zdroj: laktóza (Gal-Glc) štěpena laktázou ve střevě; vzniká i štěpením glykoproteinů a glykolipidů v lyzosomech syntéza: z glukózy (galaktóza je 4-epimer glukózy) vstup do buněk je nezávislý na inzulinu galaktokináza (Gal-1-P), v mnoha buňkách galaktóza se přeměňuje hlavně v játrech na glukózu uridyltransferáza: Gal-1-P + UDP-Glc UDP-Gal + Glc-1-P epimeráza: UDP-Gal UDP-Glc defekt galaktokinázy nebo uridyltransferázy: galaktosemie využití: glykoproteiny, glykolipidy, glykosaminoglykany, laktóza mateřského mléka

Metabolismus galaktózy epimerizace probíhá na úrovni UDPderivátů Obrázek převzat z http://web.indstate.edu/thcme/mwking/glycolysis.html (leden 2007)

součást glykoproteinů (gp) Mannóza 2-epimer glukózy, ale nevzniká epimerací Glc, nýbrž z fruktózy (což je ketoizomer glukózy, >CO sk. v pozici 2) syntéza: Fru-6-P Man-6-P (izomerace); mannóza se touto cestou může i odbourávat (Fru-6-P je meziprodukt glykolýzy) z jejího derivátu N-acetylmannózaminu a z pyruvátu vzniká kyselina neuraminová: její deriváty označované jako sialové kyseliny (Sia, NeuAc) jsou také součástí glykoproteinů (vázány na koncích oligosacharidových větviček gp, nejsou v rostlinných glykoproteinech); mají záporný náboj (-COO - ), odpuzováním se navzájem načechrávají strukturu glykoproteinu v prostoru stárnoucí gp krevní plazmy ztrácejí tyto koncové struktury Sia a jsou tak rozeznány buňkami a odbourány

GLYKOPROTEINY Obrázek převzat z knihy: J.Koolman, K.H.Röhm / Color Atlas of Biochemistry, 2 nd edition, Thieme 2005

Syntéza aminocukrů aminocukry vznikají z Fru-6-P amidací pomocí Gln, acetylací aminodusíku a následnou izomerací (Glc/Gal) http://www.biochemj.org/bj/353/0245/bj3530245.htm (duben 2012)

ABO systém Obrázek převzat z http://www.life.umd.edu/classroom/bsci422/mosser/abo.gif (březen 2007)

PROTEOGLYKANY osový protein + glykosaminoglykany (GAG) (aminocukr-uronová kys.) n Obrázek převzat z http://www.grandmeadows.com/archives/truth1.gif (říjen 2007)

Syntéza kys. glukuronové syntéza glykosaminoglykanů konjugační reakce v játrech Obrázek převzat z http://www.kumc.edu/research/medicine/biochemistry/bioc800/car02fra.htm (leden 2007)

TEST: Glukóza může být v těle přeměněna na a) ribózu: za využití reakcí pentózového cyklu b) fruktózu, např. přes glucitol c) kyselinu glukuronovou: oxidací glukózy na C1 d) galaktózu: galaktóza je 2-epimer glukózy

Glukóza může být v těle přeměněna na a) ribózu: za využití reakcí pentózového cyklu b) fruktózu, např. přes glucitol c) kyselinu glukuronovou: oxidací glukózy na C1 d) galaktózu: galaktóza je 2-epimer glukózy

Klinické souvislosti (více viz. poznámky) glykemická křivka (normální a snížená tolerance glc, DM) - ogtt glykemický index (rychlost nárůstu glykémie po jídle) - GI vláknina (rozpustná a nerozpustná) glykace proteinů (glykovaný hemoglobin, fruktózamin) glykosurie (ledvinný práh pro glukózu) glykorachie (koncentrace glc v mozkomíšním moku) laktátová acidóza (metabolická acidóza) hemolytické anemie (při defektech enzymů glykolýzy a pent. cyklu) metabolismus svalu (anaerobní a aerobní cvičení)

poznámky 1) nárůst glykémie po požití sacharidů se testuje pomocí ogtt (vypití nápoje obsahujícího 75 g glukózy / 300 ml, měří se glykemie nalačno, za 60 a 120 min. po vypití) - maximum glykémie je za 45-60 min., do 120 min. se vrací k normálu; u porušené glukózové tolerance je po 60 min. glykémie vyšší než 11 mm, ale po 120 min. je již nižší, zatímco u DM zůstává zvýšená nad 11 mm i po 120 min. (= potvrzení diabetu; méně než 7,8 mm po 120 min. DM vylučuje) tvar glykemické křivky závisí na rychlosti vstřebávání (strmost vzestupné části), výška píku ukazuje na funkci jater, sestupná část křivky odpovídá odezvě těla na inzulin glykemický index potravin udává jak sacharidy (50 g) dané potraviny zvyšují glykemii po jídle ve srovnání s podáním stejného množství čisté glukózy: plocha pod křivkou po požití potraviny dělená plochou pod křivkou po požití glukózy, vyjadřuje se v %; do 55 jde o nízký GI (= vhodné potraviny, např. celozrnné pečivo, zelenina, rýže: zvyšují glykemii pozvolna, tj. dochází jen k menšímu vyplavení inzulinu); GI nad 75 je vysoký, díky vyplavení více inzulinu se syntetizuje i více TAG (bílé pečivo, pivo) vláknina (celulóza, pektin, hemicelulózy) zvětšuje objem tráveniny, zpomaluje vstřebávání látek, urychluje pasáž střevy a tím i kontakt škodliviny se střevní sliznicí, změkčuje stolici (váže vodu), vyloučí se víc cholesterolu a žlučových kyselin - tím se snižuje cholesterolémie; rozpustná vláknina (např. pektin) je metabolizována střevními bakteriemi - produkty (krátké karboxylové kyseliny) slouží jako zdroj energie pro kolonocyty glykace proteinů probíhá neenzymaticky: Schiffova báze (aldimin) mezi Glc a primární -NH 2 skupinou proteinu; po čase dochází k přesmyku: Amadoriho produkt (ketoamin, fruktózamin), který je nevratný; u proteinů s dlouhým biologickým poločasem (v endotelu, myelinových pochvách, glomerulární membráně, sítnici) dochází po týdnech a měsících k oxidaci navázané Glc a vznikající produkty se váží na další místa v proteinu (cross links), což poškozuje jeho funkci (neuropatie, retinopatie, glomeruloskleróza, gangréna dolních končetin u diabetiků - díky vzniku tzv AGE = advanced glycation end-products); glykuje se nejen hemoglobin (do 4,5% dobrá kompenzace diabetu, nad 6% neuspokojivá), ale i albumin a ApoB100 (ateroskleróza)

Glykovaný hemoglobin fruktóza http://www.medicographia.com/2010/01/advanced-glycation-end-products-ages-and-their-receptors-ragesin-diabetic-vascular-disease/

poznámky 2) ke glykosurii dochází pokud je alespoň 15 minut glykemie zvýšená nad 10 mm: profiltrovaná glukóza se z primární moči nevstřebá všechna zpět do krve; při poškození ledvin může ke glykosurii dojít i při nižších glykemiích (2,8 mm), u diabetické glomerulosklerózy může být bez glykosurie i vysoká glykemie (19 mm) glykorachie (v moku z lumbální punkce) bývá 60% z hodnoty glykemie odebrané 4 hod. před odběrem moku; nízké hodnoty bývají u bakteriálních infencí (meningitida), nádorech či krvácení do mozku, kdy současně roste v moku koncentrace laktátu z anaerobní glykolýzy bakterií, nádorových buněk, erytrocytů při nadprodukci laktátu v těle (hypoxie tkání, anaerobní cvičení) dokází k poklesu ph krve (laktátová acidóza) - měří se koncentrace laktátu v krvi při defektu některého z enzymů glykolýzy (např. pyruvátkinázy) nebo glukóza-6- fosfát dehydrogenázy pentózového cyklu jsou postiženy erytrocyty předčasnou lýzou: nedostatečná glykolýza produkuje méně ATP - v buňce se hromadí Na +, táhne za sebou vodu, erytrocyt zvětšuje objem a dříve praskne; pokud pentózový cyklus neprodukuje dostatek NADPH, není erytrocyt dostatečně chráněn proti oxidačnímu stresu - dochází k poškození membrány a hemolýze při intenzivní svalové práci (sprint, zvedání činek) je sval méně okysličován a energii získává anaerobní glykolýzou; laktát se hromadí v buňce a snižuje ph, které inhibuje glykolýzu a způsobí vyčerpání svalů, bolest; odstarnění laktátu ze svalu probíhá dostatečně až po ukončení svalové práce; při aerobním cvičení jsou oxidovány mastné kyseliny, pro vstup acetyl-coa do Krebsova cyklu je nezbytný dostatek oxalacetátu, který vzniká hlavně z pyruvátu - tj. i při aerobním cvičení sval potřebuje utilizovat určité množství glukózy